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Abstract: This paper studies the pattern of technical change at the firm level by applying and
extending the Quantal Response Statistical Equilibrium model (QRSE). The model assumes that
a large number of cost minimizing firms decide whether to adopt a new technology based on the
potential rate of cost reduction. The firm in the model is assumed to have a limited capacity to
process market signals so there is a positive degree of uncertainty in adopting a new technology.
The adoption decision by the firm, in turn, makes an impact on the whole market through changes in
the factor-price ratio. The equilibrium distribution of the model is a unimodal probability distribution
with four parameters, which is qualitatively different from the Walrasian notion of equilibrium
in so far as the state of equilibrium is not a single state but a probability distribution of multiple
states. This paper applies Bayesian inference to estimate the unknown parameters of the model
using the firm-level data of seven advanced OECD countries over eight years and shows that the
mentioned equilibrium distribution from the model can satisfactorily recover the observed pattern of
technical change.

Keywords: induced technical change; statistical equilibrium; bounded rationality; cost minimizing
behavior; quantal response; factor price
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1. Introduction

One of the most interesting features of the patterns of technical change in the modern economy
is that the empirical frequency distributions of the rate of changes in labor productivity, capital
productivity, and the realized rate of cost reduction (a negative total factor productivity growth)
have a stable shape in many different economies over different time periods. Figure 1 displays the
log frequency distribution of these variables for the UK firms from 20062013, whose patterns are
consistently observed in other countries, as we will see in the following section:

All distributions exhibit the same highly peaked symmetric pattern, yielding a well-behaved
tent-shaped distribution. This consistency of the empirical frequency distributions implies that
a systematic force in the process of technical change generates what is called in thermodynamics
statistical equilibrium [1,2]. Statistical equilibrium is defined as the most likely state of the system in the
form of a probability distribution. Unlike the conventional notions of equilibrium in economics such
as the market-clearing Walrasian equilibrium, whose main theoretical power is to prove the existence
of the equilibrium state of the system expressed as the fixed point, statistical equilibrium inherently
predicts the central tendency and the fluctuations around it simultaneously. Consequently, it provides
a useful framework for analyzing the systemic force underlying the patterns of observed frequency
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distributions. (There is a wide body of economics literature on statistical equilibrium applications such
as [3-10]. For a survey on information theoretic approaches in economics, see [11-14].)
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Figure 1. The frequency distribution of the growth rate of labor and capital productivity, v, x and the
rate of cost reduction { of the UK from 2006-2013 with log scale on the vertical axis. The histograms are
centered for each year. Both distributions exhibit a peaked tent shape. Data Source: ORIBS-AMADEUS.

This paper applies and extends the theoretical framework of the Quantal Response Statistical
Equilibrium model (QRSE) recently proposed by [15], and develops a model of two systemic forces
that govern the process of firms’ technical progress. The paper also utilizes an entropy constrained
model of induced technical change (ITC) as the baseline model of a firm’s behavior in adopting a new
technology. The ITC model makes a behavioral assumption that the firm tries to maximize the rate of
cost reduction, and therefore, responds with a higher probability to the higher potential cost reduction
the new technology would bring about. The firm, however, is assumed to have a limited capacity
to process market signals so that there is a positive uncertainty in adopting an optimal technology.
On the other hand, the model assumes that the adoption of a new technology by the firm makes
an impact on the factor market and adversely changes the factor-price ratio of the firm against the
firm’s initial choice.

The equilibrium distribution of this model is a unimodal distribution of the rate of cost reductions
with four parameters, qualitatively predicting the observed peaked distribution of the rate of cost
reduction. We then utilize a Bayesian inference to recover the four unknown parameters of the model
by fitting the derived statistical equilibrium distribution to the observed distribution of a firm’s rate of
cost reductions in the seven different advanced EU countries over eight years. The empirical result
shows that, during the financial crisis in 2007-2009, the firms became more reluctant to adopt a new
technology and needed a higher premium on the potential rate of cost reduction to do so. Also, there
was a higher degree of uncertainty in adopting a new technology, so that the economic gains from the
technical change were reduced.

The paper consists of four parts. Section 2 provides a description of the data we use in the paper
and displays the firm-level frequency distributions of a few technological variables such as the rate of
changes in labor productivity, capital productivity, and the realized rate of cost reductions. Section 3
discusses the QRSE model of technical change. The statistical equilibrium of the model will be derived
in this section. Section 4 sets up a Bayesian model to estimate the unknown parameters of the statistical
equilibrium distribution and recovers the posterior distributions of the rate of cost reductions and
the adoption decision. Section 5 discusses further the methodological advantages of the statistical
equilibrium approach.
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2. Patterns of Technical Change

2.1. Data

We use the AMADEUS database where OECD firm-level data is available (I am grateful to
Columbia University for the access to AMADEUS database.) and extract four variables: wages (W),
the number of employees (L), total asset (K), and earnings before interest and taxes (EBIT) for 9 years
of observations in 7 different advanced EU countries: the United Kingdom, Germany, France, Italy,
Spain, Sweden, and Portugal. The first five countries are the largest EU economies and their combined
GPD shares around 70% of the entire EU GDP. Sweden and Portugal are included to see if relatively
small sized economies have the same patterns as other larger economies.

Labor productivity x and capital productivity p are defined as the total value added divided by
total labor and total capital invested, respectively. Since the sum of EBIT and wages is the value added
of the firm, x and p in year t are calculated as x; = (W¢+ EBIT) /L; and p; = (W + EBIT}) /K.
The growth rate of labor and capital productivity is obtained as v+ = (x; — x;_1)/x;—1 and
Xt = (ot —pt—1)/pt—1. For a detailed discussion on the accounting framework, see [16].

Assuming the constancy of the wage and profit rates, the growth rate of cost reduction can be
expressed as the average of v and x weighted by the unit labor and unit capital costs, {; = w7y + i xt,
where w = W / (W + EBIT;) and 7t = EBIT; / (W + EBIT}), respectively. ({ can be derived by taking
the log derivative of the unit total cost given the wage and profit rate. The total costs C is the sum of
the total labor and capital cost: C = rK 4 wL, where r = EBIT /K and w = W /L are the rate of profit
and the wage rate. Therefore, d(CC/g ) = wd (x)/x+ md(p)/p = w7y + mx.) Itis instructive to note that
¢ is mathematically equivalent to the negative total factor productivity growth. We exclude those
firms whose value added (W + EBIT) is negative. This effectively sets the lower bound of the growth
rates to —100%. For simplicity, we also confine the upper bound of the growth rate to 100%. This is
one way of excluding extreme values from the noisy firm-level data. Since the focus of the paper is

to analyze some salient patterns of the observed distributions, restricting the data to economically
plausible range can be a good first approximation. Around 10% of the data points have been removed
after this manipulation. The following is the number of observations for 7 countries for 8 years: the
United Kingdom = 188,223, Germany = 86,306, France = 75,894 , Italy = 345,037, Spain = 524,705,
Portugal = 181,195, Sweden = 211,237.

2.2. Empirical Distributions of y, x and, {

We first present the log-frequency distributions of the growth rate of labor and capital productivity,
v and x in Figure 2. See Appendix A for a summary statistics of the distributions.

Both 7 and x in all countries in different years show the same patterns as the ones from the UK
mentioned in the introduction, exhibiting a fairly stable tent shaped distribution. This strong regularity
is also observed in the frequency distribution of { as is shown in Figure 3.

The highly peaked symmetric distribution of { consistently observed in many different countries
over a decade implies that there is a systematic force in the process of technical change that governs
the deviation of the rate of cost reduction from its central tendency, which we will explore in the
following section.
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with log scale on the vertical axis. The histograms are centered for each country and each year. Both

Figure 2. The frequency distribution of the growth rate of labor and capital productivity, v and y,

distributions exhibit a peaked tent shape.
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Figure 3. The frequency distribution of the growth rate of cost reduction ¢ with log scale on the vertical
axis. The histograms are centered for each country and each year. The distribution exhibits a peaked
tent shape.

3. A Statistical Equilibrium Model of the ITC

A highly peaked and symmetric pattern of the frequency distributions of v, x, and { suggest that
there is a central tendency in the distribution and structured deviations from it. The observed pattern of
technical progress departs from the single-state equilibrium, such as the Walrasian equilibrium, in that
the deviation from the central tendency (that is, the mode of the frequency distribution) is persistent
and is not properly explained by the normal distribution as is in the case of many stochastic Walrasian
models. (The actual fit of the observed data of { is better explained by the Laplace distribution

f(x | ub) = zib exp (— ‘x;” | ), where y and b are the location and the scale parameter. There are
a few notable economic studies deriving and applying the Laplace distribution from the statistical
equilibrium perspective. For example, see [17,18] for their studies on the firm profit rates and growth
rates.) A more proper concept of equilibrium compatible with the pattern of the observed data is one
that predicts the equilibrium as a distribution of different states.

While the notion of equilibrium as a probability distribution is relatively unfamiliar to economists,
it has been widely accepted in physics and information theory under the name of statistical
equilibrium [1,2]. Statistical equilibrium represents the most likely state of the system in the form
of a probability distribution p(x), which can be derived by maximizing the entropy of the system,
Hp(x)] = — L p(x)log[p(x)]. (For the discussions on the derivation of different statistical equilibrium
from the maximum entropy, see [19,20].) The Walrasian single-state equilibrium is an unattainable
special case of this equilibrium when only one state is assigned a positive probability. The statistical
equilibrium of most systems in reality does not collapse to a degenerate distribution but assigns
a positive probability to multiple states. Therefore, introducing statistical equilibrium to economics
suggests that the goal of economic models is to find a non-degenerate probability distribution of the
target system that explains the central tendency along with inherent fluctuations around it.
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Based on the statistical equilibrium approach, we will introduce one class of model called the QRSE
model [15]. Suppose a finite set of outcomes X — R and a finite discrete set of actions A = {ay,...,a,}.
In our example of the firm’s choice of technique, the discrete action variable is a binary set A = {a,a}
consisting of two complementary actions with a and a indicating the adoption and non-adoption of
a new technology, while the set of outcomes consists of the rate of cost reduction expected from the
new technology. The key dynamics of this model is that the outcome and action variables interact with
each other. First, the quantal response part of the model predicts that the firm decision on the adoption
of a new technology is determined in response to the outcome variable, , the degree of potential rate
of cost reduction. The impact of the potential cost reduction on the probability of adoption is expressed
through the conditional probability of A on ¢, p(A|{). Second, the model predicts that the rate of cost
reduction itself is also affected by the firm’s act of adopting a new technology. The impact of adoption
of technology on outcome variables is expressed as p({|A).

Different economic theories of technical change can lead to different specifications of these
two-way interactions expressed by p(A|() and p({|A). The following subsections discuss the QSRE
model of ITC to specify these interactions and derive the statistical equilibrium distribution of the rate
of cost reduction.

3.1. The Impact of the Cost Reduction on Adoption of a New Technology

We employ the induced technical change (ITC) model [21-25] as the baseline behavioral model
for a choice of technique. In this model, a typical firm maximizes { by adopting a new technology
constrained by the innovation possibilities frontier (IPF), which defines a trade-off between increases in
labor and capital productivity. To maximize J, the firm adopts a technology that affects v and x in
response to changes in w and 7t. For example, if there is an increase in unit labor cost w, the firm will be
better off introducing a labor-saving technology, which is expressed by increasing v and decreasing x.

Following the logic of the ITC model, our model assumes that the probability of the firm adopting
anew technique depends on how much cost reduction { it can achieve. Therefore, the quantal response
function is expressed by the conditional distribution of the adoption decision on the potential rate
of cost reduction, p[A|{]. The quantal response function has an associated payoff function u[A, ]
representing the payoff to the typical firm of adopting a new technique. The model assumes that the
typical firm maximizes the expected payoff with a mixed strategy of A = {a,a}. This boils down to
a simple maximization problem as follows:

max ;;O(AIC)u(A,C), ey
st Y p(AlD) =1
A

With no further constraint, the solution to this problem is the Dirac Delta function, choosing to either
adopt or not adopt:

p(A|{) = DiracDelta(A — A[u, A,7]), )

where A[u, A, ] is the choice of adoption or non-adoption that maximizes the payoff. Therefore,
the resulting frequency distribution of p(A|{) puts unit weight on the payoff-maximizing action and
zero weight on the other.

From a statistical equilibrium point of view, however, this result is extremely unlikely to happen
because it requires the entropy of the system to be zero. In economics, the zero entropy case can be
understood as a perfect rationality model, in which the typical firm has a full capacity to process all
relevant market signals, resulting in a complete certainty about her decision. In the context of technical
change, the perfect rationality model implies that any changes in the input costs will induce an optimal
response of technical change so that the potential rate of cost reduction is fully exhausted. Since the zero
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entropy is not attainable in the real world and remains only as an unrealistic theoretical entity, we need
to generalize the model by introducing a positive minimum entropy H,,;,. This simple modification
is one way to model the bounded rationality of the economic agent. Consequently, the model yields
a different maximization problem with an entropy constraint as follows:

max ) p(A A|§
s.t Zp

H[p(A|0)] = — }_ p(A[Z) Log[p(AlZ)] = Hypin - ®)

A Lagrangian function of this maximization problem is:

Y p(AIDu(A, Q) = p (p(AID) = 1) + T (3 p(Al) Loglp(AlD)] — Hipin) -

The resulting frequencies of p(A|{) at a behavior temperature or “shadow price” T is:

u(Ag
4 u(Ax) e T
pAIG) =Z(u,T,A) e T = — 1, 4)
e T

where the partition function Z(u, T,A) = Y e e . The result suggests that the optimal technical
change is not a single rate of cost reduction, but a probability distribution of all the possible rates
of cost reduction. The behavior temperature T, which was originally called entropy prices in Foley’s
seminal work on the statistical equilibrium approach to economics [4], plays an important economic
role because it determines the overall intensity of the payoff of economic actions in the market.
As we will see in more detail in the subsequent discussions, higher behavior temperature T implies
lower intensity of the payoff and thus more uncertainty over the possible economic actions. This
form of Quantal Response (QE) model has been used to model bounded rationality in economics.
A general survey of QE models can be found in [26-28]. One major difference of the QRSE model
from the previous models in the QE literature is that our QE model is obtained as an implication of
the maximum entropy principle, not a behavioral assumption. (For a seminal work on the QE models
from the game-theoretic perspectives, see [29-31]. A discussion on the entropy theoretic approach
to the bounded rationality can be found in [32]. I appreciate the anonymous referees of this journal
for this point.)
Further deriving p(A|{) for a binary variable A, we have:

e T 1
p(A=all) = AR = @l —u@d) /
T 1+e T
_ @) —u(@g)
_ e T
p(A=alf) = 1-p(@a0) = PRI =TT
1+e”

The recovered conditional distribution p(A|{) gives the probability of a particular action given
observed economic variable . Except for the case when the behavior temperature T is zero, the link
function is not degenerate and assigns positive probabilities to heterogeneous responses.

The payoff difference u(a,{) — u(a, ) (that is, the difference in payoff between adoption and
non-adoption) can be modeled to satisfy the following conditions. First, a higher { increases the payoff
of adoption while lowering the payoff of non-adoption, and therefore increases the payoff difference.
Second, the payoff difference becomes zero so that the firm is indifferent to the adoption of a new
technology when { is equal to a shift parameter y that determines the indifference point or the hurdle
point of the rate of cost reduction where the probability of adopting a new technology is 50%. This
shift parameter y can be understood as a “premium” on the rate of cost reduction required for the
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firm to adopt the technology. If y is high, this implies that the firm needs a higher premium on the
rate of cost reduction to adopt the technology with a higher than 50% probability. The simplest linear
function that reflects these two constraints is:

u(a,§) —u@,g) =¢—p ®)
Therefore, the impact of the rate of cost reduction on adoption of a new technology is modeled as

1

p(A=all) = ——,
14+e T

p(A=all) = - (6)
1+e T

Figure 4 shows the quantal response function with the behavior temperature T:

Logit Quantal Response Function

3H — T=10
— T=1
— T=05
Wl — T=0.25
S T=0.1
T=0.05
— T=0.01
© T=0.001
~N =
it}
NS
N—”
2 <
o
N
o
<l
o
-1.0 -0.5 0.0 0.5 1.0

Figure 4. A quantal response function with the behavior temperature T and y = 0. The horizontal
axis represents the the rate of cost reduction, , while the vertical axis represents the frequency of the
adoption of a technology.

This figure shows that the higher the behavior temperature, the more uncertain the decision.
Except for the unattainable case when T = 0, the function predicts a gradual increase in the frequency
of action in response to a higher rate of cost reduction. When T is sufficiently large, the quantal
response becomes uniform across different actions (the red line). When the behavior temperature T is
close to zero, the function becomes a step function (the brown line) [14].
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3.2. The Impact of the Adoption of a New Technology on the Rate of Cost Reduction

The key assumption of the ITC model is that the firm faces a limit in technical progress, the IPF,
through which available technologies are constrained by the trade-off between the rates of increase of
labor and capital productivity. Under the IPF constraint, an increase in productivity of one input is
made possible at the cost of a decrease in productivity of the other input. For example, higher labor
productivity growth is coupled with lower capital productivity growth on the innovation possibilities
frontier. The trade-off between x and 7y can be represented by the concave function:

v=f(x), with f <0, f"<0. @)

Figure 5 displays a hypothetical IPF:

Innovation Possibility Fronter

= X" X

— y=1)
--- f(x*) = -(1-w")/w*

Y

Figure 5. An innovation possibilities frontier. The bold line represents the innovation possibilities
frontier (IPF), a functional relationship of the trade-off between ) and <. The dotted line represents
a tangent line of IPF at y = x*. The tangent is the maximum rate of cost reduction given the unit labor
and capital cost w = w* and T = 7*.

The key property of the IPF is that the tangent of the function is the negative factor-price ratio,
—7t/w [22]. Depending on a particular 7t/w, the firm chooses the corresponding cost-minimizing
techniques on the frontier.

The second primary assumption of the QRSE model of technical change is that the adoption
of new technology has an impact on the rate of cost reduction through changes in the factor-price
ratio. In the model, the typical firm adopts a new technology with a higher than average rate of cost
reduction, and therefore, the expected rate of cost reduction conditional on adoption is greater than
the expected rate of cost reduction conditional on non-adoption. Now suppose that the act of adopting
a new technology does not make any impact on the factor market. In this case, the difference in the
conditional expectations of the rate of cost reduction will not be corrected, so that the firm with a new
technology will continue to have a higher rate of cost reduction. However, if the new technology
changes the factor prices in the market and makes the input initially saved become more expensive,
the initial gain in the increased rate of cost reduction will be lost unless the firm finds another new
optimal technology for the changed factor-price ratio.

To illustrate, suppose that the firm adopts a labor-saving and capital-consuming technology in
response to a higher cost of labor input relative to the capital input. As a result, the firm would
require less labor and more capital, which, in turn, will twist the factor-price ratio against the firm’s
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initial choice by making the labor input cheaper relative to the capital input. Following [15], we can
model this negative feedback (or the competitive pressure) in terms of the difference between the two
conditional expectation of { weighted by the marginal probability of action variable:

E(Zla)p(a) — E(Cla)p(a) <6, ®)

where ¢ represents the degree of the “ineffectiveness” of the competitive pressure. The larger ¢ is,
the less effective market response is as to the adoption of new technology. When é = 0, it implies
that the factor market is so effective that it completely corrects any impacts from the technical change.
In contrast, when é = oo, the cost reduction achieved by a new technology will not be offset by the
negative feedback from the adverse changes in the factor-price ratio.

3.3. Maximum Entropy Program of the Quantal Response ITC Model

Up to now we have discussed two model assumptions in terms of the interaction between the
action variable A and the outcome variable {. Additionally, we introduce the mean constraint on ,
E(Z) = 1, which represents the typical rate of cost reduction deemed by the cost-minimizing firms in
a competitive market. (For a detailed discussion on the first moment constraints in economic models,
see [33].) These assumptions can be used as the constraints of our maximum entropy program to find
the statistical equilibrium of A and . Using the constraints in Equation (7) and (8), and the mean
constraint of the model E({) = 1, the maximum entropy program can be written as follows:

max  — [ ¥ p(A,) Loglp(4,0)ld, ©
5.t /2p(A,g)dg:1

[r@az =y

[ a0z - /p O)edz <6

==

The solution to this problem is expressed in terms of the joint distribution p(A, {) which implies
two “predicted” marginal distributions, p(A), p({), and two conditional distributions, p(A|7), p({|A).
Since the data on the action variable A are not observable, we need to express the solution in terms
of the marginal distribution of ¢, p({) to be able to estimate the unknown parameters of the model.
The solution to this program then becomes:

ﬁTanh[—T"]g X7

() = (10)
p =
Eg eH%TefﬁTanh{—T]‘] e KC:
where H, 7({) = H [ g_ly , g_ll ] and Tanh|«] is the hyperbolic tangent function, written as ?;ZH
T 41 e T 41

(See [15] for the proogf. The solution is in discrete terms and requires the coarse-grained bins of {.)
There are four unknown parameters, y, T, f and k. 4 and T are the location and the shape parameter of
the quantal response function, j3 is the Lagrangian multiplier of the J constraint and implies the impact
of adoption A on the cost reduction {, and «x is the Lagrangian multiplier of the mean constraint ¢,
which determines the skewness of the distribution. A graphical characterization of distribution (10) is
provided in Figure 6.
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Figure 6. QRSE distributions with different parameter values of 3, T, 8, and k. u determines the
location of the distribution, while x determines its skewness. x close to zero represents a symmetric
QRSE distribution. Predictably, T and B determine how disperse the distribution is. The lower T and
higher f are, the more spread out the distribution becomes.

4. Bayesian Estimation of the Model

4.1. Model Specification

In estimating y, T, B and x, we will rely on the Bayesian inference. In setting up the likelihood
function, we utilize the observed distribution of { and use it as a reference distribution whose
divergence from p({) determines the likelihood of the four unknown parameters. (One could use
the derived maximum entropy distribution as a likelihood function and evaluate it directly. This
method requires a numerical integration of the partition function since it does not have a closed
form solution. One small issue with this method is that the integration needs to be repeated at each
evaluation, which can slow down the computation, especially when we sample from it with a large
number of iterations and multiple chains in the simulation.) For the comparison of the predicted
and the observed distribution, we use the Kullback-Leibler divergence [34]. The KL divergence
measures a discrepancy between two distributions and thus has been widely used as a measure of
comparing different distributions in the context of many statistical inferences such as model estimation,
model selection, and classification. The KL divergence of the discrete distribution of p given a known
distribution q, Dxy.(p||q), is defined as follows:

D(plle) = L) log ]

H(p,q) — H(p). (11)
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Regarding the goodness of fit test, the KL divergence measures how close the distribution of actual
data p(x) is to the candidate model of probability distribution g(x). A lower KL divergence implies
that it is more likely that the observed distribution of p(x) comes from the presumed model g(x).

Using the KL as a metric, we set up a likelihood function for a lower KL divergence to have
a higher likelihood in the function. Any monotonically decreasing function of Dxy, can be a candidate.
However, the KL divergence itself is actually a good approximation to the log-likelihood for the
multinomial model as follows:

log[p(X|p)] = —n * Dk (X/nl|p), (12)

where X = (X3, X, ..., Xi) is the random variable that represents the number of times the outcome k
occurs, p = (p1, P2, -, Px) is the probability of outcome k, and 7 is the total number of observations.
Since we have the coarse-grained bins of observed distribution of ¢, which can be interpreted as
a particular realization of multinomial distribution, we can think of the frequency of each outcome as
a sample of a multinomial model with the predicted probability of { from Equation (10). Therefore,
denoting the coarse-grained bin of { as p({) and remembering that p is the maximum entropy
distribution, the log-likelihood function becomes:

log[p(u, T, B,x|p)] = —n* Dk (p({)1P(0)) (13)
4.2. Result

We evaluate log[p (1, T, B, x|p)] in Equation (14) using a sequence of random samples from the
posterior distribution obtained from the Metropolis-Hastings (MH) algorithm, one of Markov Chain
Monte Carlo (MCMC) methods. We use 50,000 iterations and 3 chains to recover the marginal posterior
distributions of parameters p, T, B, x for 7 countries in 8 different years. For all the parameters y, T,
and x, we use uninformative priors (uniform priors). For detailed discussions on the MCMC methods,
see [35-37]. (The result is not greatly sensitive to a wide range of different binning schemes since we
have a large number of data points within a relatively small range —100% and —100%.)

Parameter Estimation

Figure 7 summarizes the recovered coefficients after 25,000 burn-in periods of the simulation
along with 95% credible interval. (All three chains in the simulations are well mixed and properly
converge with R being 1 in all cases. For a detailed discussion on the convergence diagnosis using R,
see [37].)
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Figure 7. Estimated parameters i, T, B, and « along with the 95% credible interval. The year index
represents the beginning year from which the growth rate of { is calculated. For example, the growth
rate in year 2006 is the growth of { between 2006-2007.

The 95% credible interval of the parameters show that the posterior distribution has a very
small standard deviation due to the large sample size. An increase in y and T and a decrease in j
are noticeable during the 2007-2009 financial crisis. x is close to zero with no clear patterns. The
interpretation of this result is discussed in detail in the following sections.

Comparison of Prior and Posterior Distribution: UK 2011

We can visualize the posterior distributions of the parameters using the estimation from the UK
in 2011 as a representative case whose result is more or less the same as other estimations regarding
the shape of posterior distribution in Figure 8.
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Prior/Posterior Distributions: UK_2011
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Figure 8. The posterior distributions of y, T,  and «.

The posterior distributions of all parameters y, T, and x are well recovered and exhibits
a unimodal symmetric distribution with a very small standard deviation.

Predicted p(C), p(A|g), and p(|A): UK 2011

Using the estimated parameters, we can recover the marginal and the conditional distributions:
p(0), p(A|Z), and p(g|A). Figure 9 visualizes the recovered distribution, again using the estimation of
the UK in 2011 as a representative example.

Recovered Distributions: UK_2011
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Figure 9. The recovered distribution of 5({), f(A|{), and §({|A). Distributions are recovered using
the mean value of estimated parameters along with 95% credible interval expressed as the scattered
gray points.

The first panel in Figure 9 represents the recovered marginal distribution of , ({), along with
the observed one, /(7). The black line is fi({) recovered from the mean value of estimated parameters,
while the green line is p({). The visual inspection shows that the model satisfactorily recovers the
observed distribution. The informational performance of the fitted distribution based on the Soofi ID
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shows that f({) explains 99.6% of the informational content of p({). (A detailed discussion on the
Soofi ID and the informational performance of all the fitted distributions can be found in Appendix.)
The second panel shows the recovered conditional distribution of { on the adoption decisions, §({|A).
P(C]A = a) is skewed to the right while §({|A = a) is skewed to the left, implying that the former
has a higher expected value of {. This confirms the initial model assumption that the conditional
expectation of { on adoption, E((|A = a), is greater than conditional expectation of { on non-adoption,
E({|A = a) constrained by 6. The final panel displays the recovered quantal response function,
the conditional distribution of the adoption decisions on ¢, f(A|{). A substantial degree of uncertainty
exists in adopting a new technology as is shown by the fact that the recovered link function is far from
the step function.

4.3. Discussion of the Estimated Parameters, u, T, B and x

The posterior estimation of y, T, f and x for seven countries over eight years summarized in
Figure 7 exhibits four important patterns.

First, the estimated p sharply increases during the financial crisis 2007-2009 in all countries.
As we discussed before, u represents the location parameter of the quantal response function that
determines the indifference point between adoption and non-adoption. A positive y means that
a positive premium on the potential rate of cost reduction is required for the firm to adopt a new
technology with a higher than 50% probability. A sharp increase in y during the financial crisis
demonstrates that the firms became more reluctant to adopt a new technology and needed a higher
premium to do so. This point can be more clearly demonstrated by taking the difference between the
recovered y and the observed mean of { summarized as follows:

Figure 10 shows that, before the financial crisis in 2006, y is almost equal to (or slightly smaller
than) the average ¢ in all countries, implying that the firms did not need an additional premium on the
rate of cost reduction above the social average to adopt a new technology. During the financial crisis,
however, i — { sharply increases and turns positive, requiring higher than the average premium for
the firms to adopt a new technology with a higher than 50% probability.

N
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Figure 10. The difference between the recovered # and the observed mean of {, y — (.

Second, the estimated T also increases during the crisis period. The parameter T is the shape
parameter of the quantal response function that determines the spread of the function. The higher
T is, the more spread out the response function becomes, making the probability of adoption and
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non-adoption less distinguishable. In economic terms, the spread of the function is interpreted as
a degree of the bounded rationality of the economic agent and therefore quantifies how uncertain the
economic agent is about her decision. In this regard, an increase in T in 2007-2009 can be explained in
terms of a higher degree of uncertainty in adopting a new technology during the crisis. This implies
that the firms more (or less) frequently adopted those technologies that adversely (or favorably)
affected the cost efficiency, incurring more economic losses than other periods.

Third, § decreases during the crisis period. In the maximum entropy program, f is the Lagrangian
multiplier of the § constraint that limits the impact of adoption on the rate of cost reduction. The larger
the § is, the smaller the §, and therefore, the more effective the impact of adoption on the potential
rate of cost reductions. The fact that 8 was lower during the financial crisis suggests that the market
effectiveness was lower during the market turmoil than other periods, and therefore, the technological
progress of the firms didn’t effectively impact the factor-price on the market.

Fourth, the skewness parameter « is close to zero and has no clear patterns in most countries,
except for Germany and France which have seen a drop in « during the crisis. In the maximum entropy
program, x is the Lagrangian multiplier of the mean constraint 1. The fact that x is close to zero means
that the distributions of  have been relatively symmetric on the whole.

5. Discussion

From the statistical inference perspective, the initial set-up of our model in terms of the joint
distribution of { and A is ill-posed due to the fact that the variable A is not observable. The MEP can
provide a systematic solution to this problem of limited data [38,39]. The advantage of the MEP method
comes from its core inferential logic that the maximum entropy distribution implies the most likely
state of the system, regardless of data availability. With adequate economic theories as constraints,
the MEP derives the “prior distribution of data”, with some unknown parameters. This predicted
distribution can be fitted to the observed data in the way that minimizes the model’s informational
loss (the KL divergence). Recovered unknown parameters can be used to infer the unobservable
variables, that is, in our case, the adoption decision A. This enables us to recover latent distributions
involving unobservable variable, such as p(A|{) and p({|A), providing a rich picture of the system of
economic dynamics.

Another important aspect of our statistical model of technical progress is that it is fundamentally
different from the conventional Walrasian equilibrium models. Both models assume that the social
outcome is a result of a micro-behavior of the economic agent. However, unlike the “representative
agent” in the Walrasian equilibrium model, our model does not assume that the agents are identical.
The “typical agent” in our model has a quantal response function with a non-zero behavior temperature
as a behavioral rule. Even with the same payoff function, the quantal response makes possible a wide
range of heterogenous behaviors. (The statistical model of technical progress is not a single behavioral
model but a whole class of different behavioral models. This is because it inherently abstracts from
any behavioral assumptions but still predicts the heterogeneity of the economic results due to the
non-zero behavior temperature T of the quantal response function.) Also, in the Walrasian equilibrium
model, the economic agent is inherently atomistic in the sense that she does not make any impact on
the aggregate economic outcome. Our model relaxes this assumption and allows a positive degree of
interaction so that the typical agent exerts an impact on the aggregate outcome.

6. Conclusions

This paper has developed a QRSE model of induced technical change with the binary action
variable (adoption or non-adoption of a new technology) and the outcome variable (the rate of cost
reduction). Constraints are put on the interactions of the action- and outcome-based ITC model.
The impact of cost reduction on the adoption is modeled using the payoff function of the firm, which
assumes that higher rates of cost reduction yield higher payoffs with a positive degree of uncertainty
in the decision process. The impact of the adoption of new technology on the rate of cost reduction
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is formulated utilizing the idea of the economic impact of input-saving technical progress on the
factor-price ratio.

The principle of maximum entropy is then applied to find the statistical equilibrium of { and A
given four parameters, y, T, B and « of the model. The recovered joint distribution of { and A, which
implies the marginal distribution of {, is compared to the observed distribution of { using the relative
entropy, to set up a likelihood function for unknown parameters. Using the uniform prior distribution,
the posterior distributions of the parameters are estimated using the MCMC simulation whose 95%
credible intervals are used to recover relevant distributions of our interest, that is, the marginal
distribution of g, p(Z), and the conditional distributions, p(A|{) and p(Z|A).

Recovered parameters and distributions imply some interesting features in the patterns of firms’
technical progress in the seven advanced OECD countries. During the financial crisis in 2007-2009,
the firms became more reluctant to adopt a new technology and needed a higher premium on the
potential rate of cost reduction to do so, had a higher degree of uncertainty in adopting a new
technology, and the technological progress didn’t effectively impact the factor-price on the market.
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Appendix A. Summary Statistics of the Frequency Distributions of , x, and {

The following Table A1 summarizes the mean of -, x, k,and ¢. kis defined as y — x and represents
the change in capital intensity L/K.

Table Al. The mean of v, x, k and { of 7 different countries averaged from 2006-2013.

Country UK GER FRA ITA SPA POR SWE

v (%) 098 043 115 -080 -1.02 065 110
x(%)  —622 —113 -189 -338 —657 -—443 -2.12
k (%) 720 156 304 258 555 508 322
(%) —210 -008 033 —149 -246 -091 —0.24

The summary statistics show that there has been a labor-saving technical change between 2006
and 2013 in all but Italy and Spain, as is demonstrated by the positive 7y and the negative x. The capital
intensity has dramatically increased during this period. Except for France, { is shown to be negative
implying that firms in those countries have, on average, failed to reduce costs. This unfavorable
situation is caused by relatively low (or even negative) growth rate of labor productivities along with
a fairly large decrease in the growth rate of capital productivity, especially during the financial crisis in
2007-2009 that adversely affected the firm’s revenue.

Appendix B. Soofi ID Index

Soofi et al. [40] and Soofi and Retzer [41] develop information distinguishability (ID), in which the
actual distribution f(x) is compared against the maximum entropy distribution of x as the candidate
modle f*(x). The ID index is defined by:

ID(f : f716) = 1 — exp[=Dxr(f| f*[6)], (A1)

where f is the actual data distribution and f* is the maximum entropy distribution of x with
the corresponding parameters 6. The ID index is a normalized measure so 0 < IDf|f*|0) < 1.
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As the KL divergence, a smaller value of ID index implies that the actual distribution is similar
to the maximum entropy distribution. When ID(f|f*[0) ~ 0, f and f* are approximately same
Soofi et al. [40]. Finally, different distributions fi(x|6), f2(x|6),..., fu(x|6) are ID distinguishable if
ID(f1]|f*|0) # ID(f2l f*0) #, ..., # IDful| f*|0) (Soofi, 1995). The following Table A2 summarizes
the Soofi ID index of all the fitted distributions of ()

Table A2. The Soofi ID index of all the fitted distributions of §[{] for all 7 countries over 8 years.

Year UK GER FRA ITA'  SPA POR SWE

2006 0.006 0.069 0.043 0.006 0.010 0.010 0.006
2007 0.020 0.056 0.060 0.008 0.010 0.007 0.011
2008 0.061 0.061 0.029 0.025 0.010 0.009 0.015
2009 0.007 0.050 0.039 0.020 0.003 0.012 0.008
2010 0.007 0.027 0.035 0.008 0.013 0.018 0.015
2011 0.004 0.014 0.019 0.004 0.003 0.007 0.007
2012 0.008 0.017 0.018 0.003 0.002 0.009 0.004
2013 0.005 0.015 0.027 0.004 0.005 0.008 0.008
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