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Abstract: There is an important urgency to detect cancer at early stages to treat it, to improve the
patients’ lifespans, and even to cure it. In this work, we determined the entropic contributions of genes
in cancer networks. We detected sudden changes in entropy values in melanoma, hepatocellular
carcinoma, pancreatic cancer, and squamous lung cell carcinoma associated to transitions from
healthy controls to cancer. We also identified the most relevant genes involved in carcinogenic process
of the four types of cancer with the help of entropic changes in local networks. Their corresponding
proteins could be used as potential targets for treatments and as biomarkers of cancer.
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1. Introduction

Cancer is a generic term given to a collection of related diseases that can arise in every part of
the organism. Typically, there is an increased division rate, dysregulation in growth and the capacity
to spread into surrounding tissues and eventually on distant tissues. The latter process is known as
metastasis, and is the main cause of death by cancer [1,2]. Entropy can be defined as the measure of
the average uncertainty of a single random variable in bits, whereas the differential entropy is the
entropy of a continuous random variable with an important characteristic that it only depends on the
probability density of the random variable [3]. Unlike discrete entropy, the differential entropy can
be negative [3]. Differential entropy can be conceived as the logarithm of the equivalent side length
of the smallest set that contains most of the probability. Hence, low entropy implies that the random
variable is confined to a small effective volume and high entropy indicates that the random variable is
widely dispersed [3]. Entropy can be used as a descriptive and comprehensive measure of multivariate
variability especially when data are non-Gaussian, since it can capture higher-order statistics and
information content of the data [4].

Liver cancer is one of the main causes of cancer-related deaths worldwide [5]. Hepatocellular
carcinoma (HCC) is the most common type of primary liver cancer and the third most common cause
of cancer-related deaths [6,7]. Its incidence and mortality continue to rise, chronic viral hepatitis and
cirrhosis being some risk factors. Early screening has a survival benefit for patients. Available methods
for HCC screening are radiographic, but unfortunately diagnosis is often made at advanced states
of the disease, when effectiveness of treatment has poor prognosis. Sorafenib is the recommended
treatment with patients in advanced stages, but due to its side effects it is difficult for the patient to
tolerate it [8]. It is a disease with 10 to 20% recurrence even in patients with liver transplantation,
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which is the most successful treatment [6]. There was a previous work in which entropy was used to
detect an early warning in HCC, where the transition occurs at a very early stage of HCC [9].

Pancreatic cancer is one of the deadliest types of cancer. It was reported as the fourth cause of
death cancer-related in developed countries in 2012. The GLOBOCAN estimations of new cases were
94,700 and 92,800 and estimated deaths were 93,100 and 91,300, in males and females, respectively.
In 2015 for ductal adenocarcinoma, the most common type of pancreatic cancer, 367,000 new cases
were diagnosed, and 359,000 patients died that same year. A pancreatic adenoma is followed by
a neoplasm which leads to a carcinoma [10]. For diagnosis, there is currently no proper biomarker
with enough specificity and sensitivity, yet the detection of the earliest stages of pancreatic cancer are
urgently needed to improve the outcomes of resection, which is so far, the best treatment. Surgery is
the only option for cure but only 10–15% of the newly diagnosed patients are eligible [11]. Due to the
resistance of pancreatic cancer to therapy, even with resection, most of the patients will relapse and
eventually succumb to the disease [12].

Lung cancer has the highest mortality rate. The rate of survival of patients with lung cancer
is less than 5% after five years, and it tends to metastasize, thereby early diagnosis is important.
Squamous cell carcinoma represents approximately 30% of all the cases [13,14]. Usually the stages
of carcinogenesis are: squamous metaplasia → dysplasia → carcinoma in situ → squamous cell
carcinoma of lung [15,16]. Squamous cell carcinoma (SCC) of the lung is the most common histologic
subtype of non-small cell lung cancer (NSCLC). It accounts for 400,000 new cases annually worldwide,
with cigarette smoking as the principal risk factor. For advanced stages, the standard care consists
of a platinum-based doublet as a palliative systemic therapy [17]. Diagnosis is made by histological
analysis of small biopsies or cytological specimens as fine needle aspirates or bronchial brushings.
There are new promising therapies that improve patient’s survival [14].

Melanoma is only one among various dermatological cancers, but it is the principal cause of
death due to skin cancer, accounting for approximately 80%, and with an increasing incidence in
the last years with sun exposure as the main risk factor [18,19]. All melanomas originate from
melanocytes which represents a minority of the cell population within the basilar epidermis, but it
can also be found in hair follicles and other tissues. Melanocytes provide the pigment melanin to
their neighboring keratinocytes. Pigment production is stimulated by UV radiation-induced DNA
damage to keratinocytes [20]. The gold standard for diagnosis is histopathological assessment [19].
There is an ideal model of melanoma carcinogenesis ranging from benign naevi→ dysplastic naevi→
melanoma in situ→ invasive melanoma [20].

Teschendorff et al. [21] proposed signaling entropy as a novel approach for analyzing and
interpreting omics data, such as discriminating cells according to their differentiation potential and
cancer status. In other works, some driver genes were found to be associated with reductions in
network entropy [9,21,22]. More recently, Brehme et al. [23] carried out an analysis in chronic myeloid
leukemia using entropy dynamics and separated the progression stages. They revealed an important
difference in the chronic phase (CP) which allowed to separate it into two phases: “early” from
“late” CP [23]. That same year Park et al. [24], using an entropy-based distance metric, were able to
successfully measure the intratumor heterogeneity and propose it as a useful tool to characterize it at
the RNA level using transcriptome and network information.

Cancer research has a wide variety of approaches, mainly for therapeutics usage, ranging from
analysis of massive data, such as the genome or transcriptome, to more detailed analyses as of single
genes or proteins that are involved in cancer hallmarks [25]. A major challenge is the opportune
detection of the early stages of the disease, which is the most desirable scenario, with better options for
patients treatment and an improved outcome as seen in pancreatic cancer and lung cancer, where cancer
is commonly detected in the last stages of the disease [12–14]. Finding new therapeutics targets are
important due to cancer resistance to therapies and to have more repertoires of targets that could be
modulated by immunotherapy, miRNAs therapy, gene therapy, or other treatments [26,27].
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In general, cancer progression can be divided into three states [9]: a normal state, a pre-disease
state (or a critical state), and a disease state. In the normal state, the disease is under control (immune
system) and dynamically it has high resilience and robustness to perturbations. The pre-disease state
is defined as the limit of the normal state, which occurs before the imminent phase transition point is
reached, but it has low resilience and robustness due to its dynamical structure [9]. The disease state
represents a seriously deteriorated stage possibly with high resilience and robustness, where the system
usually finds it difficult to recover or return to the normal state even after treatment, which contrasts
with the pre-disease state. Therefore, it is crucial to detect the pre-disease state to prevent qualitative
deterioration and to further elucidate its molecular mechanism. In cancer, it is a daunting task to
predict a pre-disease state because the state of the system may change little before the bifurcation
point or the critical transition is reached. There may be slight differences between the normal and
pre-disease. The detection of early-warning signals can involve a myriad of genetic factors. There are
leading networks in critical transitions, which make the first move from a normal state to a disease
state [9]. The leading network is the first subnetwork that breaks down the limit of a normal state to
move into a disease state, which means that they are clearly related to the causal or driving genes in
a disease network, in contrast to the differential gene expression that results from the disease. Therefore,
identifying the leading networks during a critical transition can signal the emergence of a pre-disease
state to make the early diagnosis on the disease, and help to disentangle the mechanisms of disease
initiation and progression at the network level. The leading networks are dynamical signals that herald
the pre-disease state, rather than the disease state detected by the traditional static biomarkers.

Herein, we contend that multivariate entropy is a useful filter for detecting driver genes. Therefore,
we calculated the multivariate entropy of the gene expression profiles in four types of cancer, to wit,
pancreatic cancer, melanoma, HCC, and squamous cell carcinoma of the lung. For these cancers,
we also constructed their corresponding protein-protein interaction (PPI) networks considering the
disease stages. We calculated the multivariate entropy for the local networks of PPI from which we
estimated the average entropy of PPI networks. In general, the reliable identification of local leading
networks and pre-disease stages is not easy to achieve with noisy data and a small number of samples.
The identification of biomarkers and the critical states may be inaccurate. In this work, we validated
our proposed biomarkers using different statistical tests, such as double filter for the differentially
gene expression, from which we selected the genes for constructing the local networks. The Wilcoxon
rank sum test was used to test the statistical differences in the average network entropy between
the pre-disease and diseased states with the normal state. We searched the biological function of
those genes whose entropy changed and some of them are already considered potential therapeutic
targets, for example see [28]. With our analyses, we also found new potential targets whose biological
functions are relevant to the normal cell function. We successfully identified the most relevant genes
involved in the carcinogenic processes of the four types of cancer with the help of entropic changes in
local networks. Their corresponding proteins could be used as potential targets for treatments and as
biomarkers of cancer.

2. Materials and Methods

Four series of raw transcriptomic data of the carcinogenesis process were retrieved from the Gene
Expression Omnibus (GEO) of the National Center for Biotechnology Information (NCBI). The first
one: hepatocellular carcinoma with GEO accession: GSE6764, which has 75 tissue samples (platform:
Affymetrix Human Genome U133 Plus 2.0 Array [29]). The second: melanoma, GEO accession: GSE4587,
with 18 samples (platform: Affymetrix Human Genome U133 Plus 2.0 Array [30]). The third: pancreatic
cancer, GEO accession: GSE19650, with 22 samples (platform: Affymetrix Human Genome U133 Plus 2.0
Array [31]). The fourth: squamous cell carcinoma of the lung, GEO accession: GSE33479, with 122 samples
(platform: Agilent-014850 Whole Human Genome Microarray 4 × 44 K G4112F).

We used the R software with Limma package [32] according to its manual and the Bioconductor
Manual to preprocess and process all the transcriptomic data. Only melanoma and squamous cell
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carcinoma of the lung were retrieved preprocessed (background corrected, normalized) from GEO.
The Limma package was used for differentially gene expression analysis obtaining the respective
adjusted p-value for False Discovery Rate (FDR) [32,33]. Differential gene expression analysis was
made between each stage and the normal one. Fold changes were also calculated, and we used
a double filter to select the differentially expressed genes. Criteria consist in selecting genes with
an adjusted p-value < 0.05 and Fold Change > 1.5 [32–35]. To create the networks of Protein-Protein
interactions (PPIs) of each cancer, we used the APID database [36] which provides protein interaction
data for a wide variety of species with a controlled quality using PPI found by experimental evidence.
We used data set from quality level 1 (all known interactions). Herein, we used the Homo sapiens data
which were processed and cleaned using the Cytoscape Software version 3.2 [37]. Cleanup consisted
in the deletion of data of other species based on its taxonomic tag, and in the deletion of duplicated
edges and nodes. The proteins retrieved from the database were the ones detected by the double
filter applied to the differentially gene expression but due to the lack of information of the Human
interactome, we only retrieved at least 50% of the proteins coded by the genes detected by the double
filter analysis. Then, we obtained the first neighbors for each node in the network using Rcy3 [38]
which allows a connection between R and Cytoscape. The result was used to create the local networks
of each node (protein). We tested the hypothesis that the distribution of expression levels across all the
selected genes for the four cancers followed a normal or a log-normal distribution (Appendix A) [39].
The density function of the multivariate normal distribution is given by [3,38]:

f (x) =
1

|2πΣ|1/2 exp{−1
2
(x− µ)′Σ−1(x− µ)}, (1)

where x is a random vector, µ is the mean vector, and Σ is the covariance matrix.
In each stage, the local networks data were matched with their respective gene expression of each

sample to create matrices of local networks where the genes expression were the rows and each column
a sample. For each local network matrix, a covariance matrix was calculated and then we applied
Equation (2) to obtain the multivariate entropy of each local network. Each sample is a set of vectors
X1, X2 and so on. The expression level of the genes are elements of the vectors.

We also group nodes (proteins) to create subnetworks. Based on the maximum and minimum
calculated entropy values of the healthy states, we established the limit from where a preset range was
applied as follows: HCC in ranges of 10 units resulting in 11 subnetworks, Melanoma in ranges of three
units resulting in eight subnetworks, Pancreatic in ranges of five units resulting in nine subnetworks,
Squamous cell lung carcinoma in ranges of 10 units resulting in 19 subnetworks. The starting point
was the 0 unit. This healthy-generated groups were kept in the four types of cancer resulting in that
each successive stage has the same groups with same nodes with a unique variation in their entropy
values. To calculate the entropy for each local network, we consider the entropy of multivariate normal
distribution given by [3,40]:

h(X1 , X2, . . . , Xn) = h(Nn(µ, K)) =
1
2

log2 (2πe)n|κ|, (2)

where |κ| is the determinant of the covariance matrix; X is the random variable (set of vectors); n is the
size of the covariance matrix.

Entropy of a local network is calculated with Equation (3), where a single value is calculated
from the data with all genes within the same local network, and colored rectangles (Supplementary
Materials) represent the entropy change for the local network.

The average network entropy, H(t) is given by:

H(t) = − 1
n

n

∑
i=1

hi(t), (3)
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where n is the number of nodes in the network (differentially expressed genes) and hi(t) is the entropy
of the local network i. Equation (3) is the same as the one used in [9], but with a negative sign to obtain
positive values of entropy and to have units of information in bits.

Gene expression entropies (Figure 2, Tables 1–4) were calculated using all selected genes by the
double filter to create a single matrix for every stage in each cancer, without using the local networks
data. The level expression of the genes are elements of the vectors. From the matrix, a covariance
matrix was calculated and then Equation (2) was applied to obtain the gene expression entropies.

For each entropy calculation, the following number of samples in each stage were used: HCC:
seven samples; melanoma: two samples; pancreatic cancer: three samples; squamous cell lung cancer:
12 samples. The identification was made by looking at the color changes in the nodes. Colors represent
a range of entropy values, so if a node has a change in color from one to another we record it.

2.1. Statistical Analysis of Local Network Entropy

Wilcoxon Rank Sum test was used to compare the results of local network entropy in each stage
of the carcinogenic process versus its respective control for the four types of cancers (see Appendix A).
Calculations were made with the R package. This probe is a non-parametric statistical test to compare
two population medians, and it allows to determine if two probes have significant differences.

2.2. Local Networks

Multivariate entropy of gene expression profiles is influenced only by gene expression (Figure 2).
Multivariate entropy of local networks of PPIs is also influenced by gene expression with the addition
of another level of complexity: the PPIs of each node. Entropy values of local networks will be
influenced by which nodes constitute the local network and their respective gene expression values
(Figure 1)
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Figure 1. Graph of basic network with seven nodes. (a) A local network of node 1 (red) consists of its
first neighbors (yellow) and node 1; (b) Local network of node 5 (red) is constituted by its first, and in
this case, only neighbor node 2 (yellow) and node 5 itself.

3. Results

Herein we illustrate how entropy changes throughout the distinct stages of the carcinogenesis
process in the four types of cancer. We used Equation (2) to obtain the global change in entropy using
the gene expression of the selected genes by the double filter criteria. We found that each cancer stage
displays a characteristic entropic value when compared with pre-cancerous stages.

We observe that the last part of the carcinogenesis processes, the gene expression possesses
the largest positive entropy than all previous stages with the only exception of melanoma in situ.
The latter could be ascribed to different pathways and inherent heterogeneities among the different
regions of the body where biological carcinogenesis of melanoma ensues (Figure 2 and Tables 1–4) [20].
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In Figure 2a we observed variations in entropy values throughout all carcinogenic process of Melanoma,
with the most evident change occurring at in situ stage in which its entropy value reaches a minimum.
This change can be used as a first cancer early warning. Notice in Figure 2b that in HCC carcinogenic
process the entropy values in pre-cancerous stages were decreasing until a sudden change in the
transition point from a pre-cancerous to cancer stage. This change is in agreement with a first
cancer early warning [9]. In Figure 2c we observe for pancreatic cancer that entropy increases as
the carcinogenic process progresses. A sudden change occurs between intraductal papillary-mucinous
adenoma and intraductal papillary-mucinous neoplasm stages that are not cancer stages and therefore
we need to be careful to talk about a cancer early warning. In Figure 2d we observe that for squamous
cell lung carcinoma, entropy is increasing gradually in the precancerous stages. The last stages
correspond to cancer and they appear to have a greater change in entropy with an obvious change in
entropy between carcinoma in situ and the squamous cell carcinoma of the lung. The change between
severe dysplasia and carcinoma in situ could be a cancer early warning.
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Figure 2. Gene expression-entropy of four types of cancer. Scale of the axes vary depending upon the
type of cancer and sample size. (a) Melanoma carcinogenesis gene expression-entropy. Each point in the
graph denote a stage during carcinogenic process the last four points denote cancer and the previous
are pre-cancerous stage. The meanings of the abbreviated labels are given in Table 1. (b) Hepatocellular
carcinoma carcinogenesis gene expression-entropy. Each point in the graph denote a stage during
carcinogenic process the last four points denote cancer and the previous are pre-cancerous stage.
The labels abbreviations are given in Table 2. (c) Pancreatic carcinogenesis gene expression-entropy.
Each point in the graph denote a stage during carcinogenic process the last point denote cancer and the
previous are pre-cancerous stage. The label abbreviation meanings are given in Table 3. (d) Squamous
cell lung carcinoma carcinogenesis gene expression-entropy. Each point in the graph denote a stage
during carcinogenic process the two points denote cancer and the previous are pre-cancerous stage.
The label abbreviation meanings are given in Table 4.
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Table 1. Melanoma carcinogenesis process and their respective entropy values.

Abbreviation Stage Entropy Value

NS Normal skin 5.5685
BN Benign nevi 5.2100

AN2 Atypical nevi 5.2303
In situ (INS) Melanoma in situ 5.0595

VGP VGP melanoma
Vertical growth phase melanoma 5.8874

MGP MGP melanoma
Metastatic growth phase melanoma 5.9169

LN Lymph node metastasis 5.9612

Table 2. Hepatocellular carcinoma carcinogenesis process and their respective entropy values.

Abbreviation Stage Entropy Value

NT Normal skin 11.4778
LGDLT Low grade dysplasia 10.8693
HGDLT High grade dysplasia 10.7351
VEHC Very early hepatocellular carcinoma 15.0311
EHC Early hepatocellular carcinoma 15.6988
AHC Advanced hepatocellular carcinoma 16.9940

VAHC Very advanced hepatocellular carcinoma 16.6807

Table 3. Pancreatic carcinogenesis process and their respective entropy values.

Abbreviation Stage Entropy Value

NS Normal main pancreatic duct 5.5868
IPMA Intraductal papillary-mucinous adenoma 5.6022

IOIPMN Intraductal papillary-mucinous neoplasm 6.1912
IPMC intraductal papillary-mucinous carcinoma 6.3856

Table 4. Squamous carcinogenesis process and their respective entropy values.

Abbreviation Stage Entropy Value

NS Normal 23.2530
HYP Hyperplasia 23.8010

META Metaplasia 24.2762
MILD DYS Mild dysplasia 24.5936
MOD DYS Moderate dysplasia 24.9167
SEV DYS Severe dysplasia 25.5035

C IN SITU Carcinoma in situ 26.6175
SQ Squamous cell carcinoma 29.9367

To find out which genes had major changes in every stage and how they are related between
them, we constructed a protein-protein network for each carcinogenic process and assigned their
respective local entropies for each stage. Then we calculated the average network entropy using the
local entropy values and built groups based in health controls and for each stage of the carcinogenic
process. The PPIs networks of melanoma are displayed in Figure 3. The PPIs networks with detail
of melanoma, HCC, pancreatic cancer and squamous cell carcinoma of the lung are displayed in
Supplementary Materials (Figures S1–S26) The entropy values were ranked and graded by colors.
Notice that color variations in each group correspond to variations in entropy.

The calculated network entropy of PPIs and the entropy values calculated from expression data
are positive (Figures 2 and 4). The average network entropy of local networks of melanoma and HCC
exhibit a concave pattern in its entropy values of only gene expression, although the magnitudes are
greater for HCC than for melanoma possibly due to the number of samples in each case. The interesting
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behaviors of the calculated average network entropy are seen in Figure 4c,d. In Figure 4c of the
pancreatic carcinogenic process, we can identify an early warning due to a sudden change observed
between the non-cancer to cancer stage which is statistically significant by Wilcoxon rank sum test with
continuity correction (p-value = 4.537 × 10−7, see Appendix A), albeit this was not observed with its
entropy values from only gene expression. Something similar occurs with Figure 2d, in which there is
a smooth tendency of increasing entropy as the process progresses, but this pattern is not the same with
the one observed in Figure 3d. In this case, there is an evident variation among stages with three major
changes in metaplasia with an increased entropy value, carcinoma in situ stage with a slight decrease
compared with SQ in which entropy decreases drastically and this change is statistically significant
(calculated p-value = 0.0001274, see Appendix A). The melanoma carcinogenic process (Figure 3a)
also denotes variations. There is an important change, melanoma in situ stage increases its entropy
and the following stages decrease it and these changes are statistically significant (p = 2.2 × 10−16,
see Appendix A). No statistically significant changes for HCC were found (not shown). Dunnett’s
test were applied for each cancer with no statistically significant results (Appendix A, Tables A5–A8).
For these cases, the average network entropy is useful as a first observation, whereas the most important
data come from the local network entropy. Local network entropy values permit us to dissect each
cancer to visualize the most important variations at each stage.
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Figure 4. Average network entropy by local network of four types of cancer. Scale of the axes vary
according to the type of cancer and sample size. (a) Melanoma carcinogenesis average network entropy by
local networks. Graph shows entropy values in each stage. Each point in the graph denotes a stage during
carcinogenic process the last four points denote cancer and the previous are pre-cancerous stage. The label
abbreviation meanings are given in Table 5 with their respective value for each stage. (b) Hepatocellular
carcinoma carcinogenesis average network entropy by local networks. Graph shows entropy values
in each stage. Each point in the graph denotes a stage during carcinogenic process the last four points
denote cancer and the previous are pre-cancerous stage. The meanings of the label abbreviations are
in given in Table 6 with their respective value for each stage. (c) Pancreatic carcinogenesis average
network entropy by local networks. Graph shows entropy values in each stage. Each point in the graph
denotes a stage during the carcinogenic process. The last point denotes cancer and the previous points
are pre-cancerous stages. The abbreviation meanings are given in Table 7 with their respective value for
each stage. (d) Squamous cell lung carcinoma average network entropy by local networks. Graph shows
entropy values in each stage. Each point in the graph denotes a stage during carcinogenic process the last
two points denote cancer and the previous are pre-cancerous stage. The abbreviation meanings are given
in Table 8 with their respective values for each stage. Some descriptive statistics as the interquartile range,
standard error and median about average network entropy are found in Appendix A (Tables A1–A4).
Some characteristics of local networks of each stage, as the number of local networks and size of them
between groups, are found in Appendix B (Tables A13–A16).

Table 5. Melanoma carcinogenesis process and their respective average network entropy values
from PPIs.

Abbreviation Stage Entropy Value

NS Normal skin 1.3677
BN Benign nevi 1.6061

AN2 Atypical nevi 1.5287
INS Melanoma in situ 1.9190

VGP VGP melanoma
Vertical growth phase melanoma 0.7308

MGP MGP melanoma
Metastatic growth phase melanoma 0.6339

LN Lymph node metastasis 0.7081

Table 6. Hepatocellular carcinogenesis process and their respective average network entropy values
from PPIs.

Abbreviation Stage Entropy Value

NT Normal skin 65.7023
LGDLT Low grade 65.7600
HGDLT High grade 65.7916
VEHC Very early HCC 63.7020
EHC Early HCC 63.7023
AHC Advanced HCC 63.1783

VAHC Very advanced HCC 63.2960
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Table 7. Pancreatic cancer carcinogenesis process and their respective average network entropy values
from PPIs.

Abbreviation Stage Entropy Value

NS Normal main pancreatic duct 9.5664
IPMA Intraductal papillary-mucinous adenoma 9.5835

IOIPMN Intraductal papillary-mucinous neoplasm 9.5720
IPMC Intraductal papillary-mucinous carcinoma 9.0398

Table 8. Squamous cell lung carcinoma carcinogenesis process and their respective average network
entropy values from PPIs.

Abbreviation Stage Entropy Value

NS Normal 166.9220
HYP Hyperplasia 167.3054

META Metaplasia 169.7816
MILD DYS Mild dysplasia 167.0286
MOD DYS Moderate dysplasia 167.7428
SEV DYS Severe dysplasia 167.3106

C IN SITU Carcinoma in situ 166.0658
SQ Squamous cell carcinoma 160.9167

Some genes like CYP2C9, FDX1, MUT, VAMP4, IL33, EMP2, DENND4A have drastic changes in
its entropy during the transition from atypical nevi to melanoma in situ, as observed in Figure S10
and S11 (see Supplementary Materials). In the case of IL33, which is implicated in maturation of Th2
cell and the activation of MPK signaling pathway through IL1RL1/ST2 receptor and this pathway
improves cell proliferation [41]. Previous studies tried to associate this protein with cancer promotion,
but different results were found [28]. CYP2C9 polymorphisms were associated with colorectal cancer
risk [42] and may influence breast cancer [43]. EMP2 is a protein implicated in progression and survival
in endometrial cancer, and recently it was proposed as a possible oncoprotein [44]. We highlight that
there are not studies in cancer for FDX1, MULT, VAMP4 and DENND4A genes or its protein products.

We found some genes in the transition of HGDLT to VECH in HCC like SOX6, ASPH, UBAP2L,
CEP41. SOX6 encodes a transcription factor with a key role in developmental processes and it has been
associated to HCC progression by its decreased progression [45]. UBAP2L was associated with the
metastatic ability in some HCC cell lines via SNAIL1 [46]. Recently ASPH was suggested as a potential
biomarker in gliomas [47]. There are no studies of the role of CEP41 in cancer. In pancreatic cancer,
the transition between IOIPMN to IPMC includes the following genes: FAR1, CEACAM1, HCCS.
CEACAM1 has 11 different splice variants, as reported in some studies in vivo, and restoration of its
expression abolishes oncogenicity of tumor cell lines, but when it is expressed de novo it increases
the risk of metastasis [48] CEACAM1 has also been proposed as a potential biomarker for breast
cancer [49]. There are no studies for HCCS and FAR1 in cancer. In the transition of squamous severe
dysplasia to carcinoma in situ, the genes UBET2 PIH1D2, KIF23 showed a change in their entropy.
KIF23 is a protein essential for cytokinesis in Rho-mediated signaling. Its overexpression is associated
with lung cancer cell growth and has been suggested as a novel therapeutic target for patients with
advanced lung cancer and primary lung tumors [50]. A recent study showed that a knockdown of
UBET2 induced an inhibition in the progression of gastric cancer in vivo and in vitro via WNT signal
pathway [51]. There are no studies of PIH1D2 in cancer. A summary of the proposed genes for each
cancer is shown in Table 9.
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Table 9. Proposed genes as potential biomarkers or therapeutic targets.

Cancer Proposed Genes

Melanoma FDX1, MUT, VAMP4, DENND4A
HCC CEP41

Pancreatic cancer FAR1, HCCS
Squamous cell carcinoma of the lung PIH1D2

4. Discussion

In this work, we have succeeded in the identification of the most relevant genes involved in
carcinogenic processes of four types of cancer with the help of entropic changes in local networks.
We are validating the use of multivariate entropy by testing that the distributions of gene expressions
can follow either a normal distribution (SCC of the lung and melanoma) or a log-normal distribution
(HCC and pancreatic cancer) (Appendix A).

We found that cancer entropic values from the average network entropy were lower than the
observed values in healthy controls, which agrees with previous analysis [21,22]. The entropic values
of the networks at the final stages for all examined cancers fully comply with the latter observation.
However, not all pre-advanced cancer stages followed this behavior as we observed in melanoma in
situ where entropy is higher than the control. Overall, entropy values correlate to each cancer stage.
Interestingly, entropy values from only gene expression have a different behavior than those from the
PPIs. In some cases, they could look like a mirror image of each other as is the case of HCC, but this
is not always the case as was observed in pancreatic cancer or squamous cell carcinoma of the lung.
As we mentioned previously, the differential entropy can be negative [3].

Our analysis of the carcinogenic processes allowed us to identify initial stages of the four types
of cancer at which entropy changed with respect the control. A similar early warning measured
with entropy for the average network was observed in HCC but this change was not statistically
significant [9]. In pancreatic cancer, however, we found that the sudden change in average network
entropy is statistically significant.

We also characterized each stage by local network entropy of its genes, which permitted to
identify the most important genes in each stage and the ones in the transition between them.
We illustrated the transitions from pre-cancer to cancer stage in which some of the found genes have
been previously reported and even proposed to be early biomarkers in cancer by experiments in vivo
and/or in vitro [47,49]. We also proposed new genes as biomarkers and as potential therapeutic targets
(Table 1) that have not been previously reported: for melanoma: FDX1 (essential for the synthesis
of various steroid hormones [41]), MUT (involved in degradation of several amino acids, odd-chain
fatty acids and cholesterol via propionyl-CoA to the tricarboxylic acid cycle [41]), VAMP4 (involved
in the pathway that functions to remove an inhibitor of calcium-triggered exocytosis during the
maturation of secretory granules [41]), DENND4A (promotes the exchange of GDP to GTP, converting
inactive GDP-bound Rab proteins into their active GTP-bound form [41]); for HCC: CEP41 (required
during ciliogenesis for tubulin glutamylation in cilium [41]); for pancreatic cancer: FAR1 (catalyzes the
reduction of saturated and unsaturated C16 or C18 fatty acyl-CoA to fatty alcohols [41]) and HCCS
(stress-activated component of a protein kinase signal transduction cascade and regulates the JNK
and p38 pathways [41]); for squamous cell carcinoma of the lung: PIH1D2 (exhibits a Ral GTPase
binging which means a selectively interacting and non-covalently with Ral protein [41]). Our proposed
genes as potential biomarkers or therapeutic targets for melanoma and pancreatic cancer must be
taken with caution due to their small sample sizes. Due to its biological relevance, we hope that our
results of local networks strongly inspire further experimental work for testing the proposed genes as
biomarkers and/or therapeutic targets. In the Supplementary Materials, we provide entropic values
for all the local networks of genes from healthy stage to all stages of cancer. This work was focused
only in protein coding genes and the PPIs of its products, that represent less than 1.5% of the human



Entropy 2018, 20, 154 12 of 27

genome [52]. There is a wide field of cancer research such as non-coding-DNA/RNA, single nucleotide
polymorphisms, copy number variations, and epigenetic factors such as methylation and acetylation,
that could lead us to a better understanding of the dynamics of cancer diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/20/3/154/s1.
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Figure A3. Squamous carcinogenesis process boxplot. The graph shows the comparison of the
different stages vs. the control with boxplot and a p-value corresponding to the Wilcoxon rank sum
test. (a) Hyperplasia; (b) Metaplasia; (c) Mild displasia; (d) Moderate displasia; (e) Severe Dysplasia;
(f) Carcinoma in situ; (g) Squamous cell carcinoma.

Appendix A.1. Descriptive Statistics for the Average Network Entropy of Each Stage in the Four Types
of Cancer

Statistics estimations were made using the R software and we used the following packages:
bootstrap, plotrix, dplyr [53–55].
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Table A1. Melanoma statistics.

Stage Mean Standard
Error MAD Median IQR Jack.se When

Applied to Mean
Jack.se When

Applied to Variance

Normal −1.367775 0.2259220 2.022601 4.154535 9.776100 0.225922 2.814388
BN −1.606108 0.2303059 2.001127 4.019503 9.047087 0.2303059 2.896202

AN2 −1.528727 0.2292635 1.941641 4.050469 9.248341 0.2292635 2.849997
INS −1.919017 0.2262065 2.086082 3.455508 10.95625 0.2262065 2.813802
VGP −0.7308951 0.2282546 1.690730 4.886908 8.654485 0.2282546 2.815323
MGP −0.6339521 0.2299159 1.659544 5.048833 8.677472 0.2299159 2.873484
LN −0.7081158 0.2259220 2.022601 4.154535 9.77610 0.2281064 2.805363

MAD: Median Absolute Deviation, IQR: Interquartile Range. Jack.se: Jackknife standard error.

Table A2. Pancreatic cancer statistics.

Stage Mean Standard
Error MAD Median IQR Jack.se When

Applied to Mean
Jack.se When

Applied to Variance

Normal −9.566407 0.4283494 3.899366 2.901261 25.45503 0.4283494 8.116081
IPMA −9.583562 0.4229802 4.222622 2.726233 25.45141 0.4229802 7.979798

IOIPMN −9.572038 0.4243606 4.743738 2.520672 26.37048 0.4243606 7.967539
IPMC −9.039864 0.4288906 4.647821 3.350183 26.11237 0.4288906 8.078527

MAD: Median Absolute Deviation, IQR: Interquartile Range. Jack.se: Jackknife standard error.

Table A3. Squamous cell carcinoma statistics.

Stage Mean Standard
Error MAD Median IQR Jack.se When

Applied to Mean
Jack.se When

Applied to Variance

NS −166.9220 2.07917 37.68617 −189.2606 67.45387 2.07917 242.6845
HYP −167.3055 2.07897 35.41448 −190.7849 65.29746 2.07897 244.6484

META −169.7816 2.075519 3538473 −192.9719 64.74367 2.075519 247.9728
MILD DYS −167.0286 2.078943 37.16981 −189.2085 65.54929 2.078943 245.2105
MOD DYS −167.7429 2.083012 34.75794 −191.3746 64.21930 2.083012 248.3033
SEV DYS −167.3107 2.082539 35.95474 −189.9894 65.61071 2.082539 247.5942

C IN SITU −166.0658 2.079962 36.71084 −188.7635 64.23117 2.079962 247.5762
SQ −160.9168 2.05378 36.48999 −182.8355 63.88627 2.05378 238.1753

MAD: Median Absolute Deviation, IQR: Interquartile Range. Jack.se: Jackknife standard error.

Table A4. HCC statistics.

Stage Mean Standard
Error MAD Median IQR Jack.se When

Applied to Mean
Jack.se When

Applied to Variance

NT −45.54143 1.322529 37.53280 −51.37492 62.92547 1.908006 74.42024
LGDLT −45.58139 1.319797 37.67159 −51.74393 62.86078 1.904064 74.35039
HGDLT −45.60330 1.319819 37.25316 −5189218 63.02723 1.904096 74.39116
VEHC −44.15488 1.353999 39.67826 −50351675 64.91867 1.953408 77.8041
EHC −44.15512 1.353269 38.7171 −51.31032 64.92842 1.952355 77.72415
AHC −43.79192 1.377034 40.60674 −50.27078 67.11002 1.98664 80.5827

VAHC −43.87345 1.370975 40.65539 −50.52407 66.22477 1.977898 79.51231

MAD: Median Absolute Deviation, IQR: Interquartile Range. Jack.se: Jackknife standard error.

Appendix A.2. Dunnett’s Test for the Mean

Dunnett’s test was applied to compare the means of each stage vs. the control for the four types
of cancer and effect size is also reported. No significant statistical results were found.

Cohen’s formula was used in the calculation of effect size:

d = M1 −M2/spooled

where:

M1 −M2 is the difference between the group mean (M)
M1 is the mean of the control group
M2 is the mean of either group that is not the control



Entropy 2018, 20, 154 15 of 27

s is the pooled standard deviation:

spooled =

√
(SD2

1 + SD2
2)

2

where:

SD1 is the standard deviation of the control group
SD2 is the mean of either group that is not the control

Table A5. Melanoma Dunnett Contrasts and effect size.

Hypotheses t-Value Pr(>|t|) Effect Size

Normal-BN −0.738 0.947 −0.0233
Normal-AN2 −0.499 0.992 −0.0158
Normal-INS −1.707 0.333 −0.0544
Normal-VGP 1.973 0.202 0.0626
Normal-MGP 2.273 0.105 0.07191
Normal-LN 2.043 0.175 0.0649

Table A6. Pancreatic cancer Dunnett Contrasts and effect size.

Hypotheses t-Value Pr(>|t|) Effect Size

Normal-IPMA −0.028 1.000 −0.000915
Normal-IOIPMN −0.009 1.000 −0.000299

Normal-IPMC 0.874 0.713 0.027897

Table A7. Squamous cell carcinoma of the lung Dunnett Contrasts and effect size.

Hypotheses t-Value Pr(>|t|) Effect Size

Normal-HYP −0.131 1.000 −0.00629
Normal-META −0.974 0.873 −0.04697
Normal-MILD

DYS −0.036 1.000 −0.00175

Normal-MOD DYS −0.280 1.000 −0.01346
Normal-SEV DYS −0.132 1.000 −0.00638
Normal-C IN SITU 0.292 1.000 0.01404

Normal-SQ 2.045 0.193 0.09915

Table A8. HCC Dunnett Contrasts and effect size.

Hypotheses t-Value Pr(>|t|) Effect Size

Normal-LGDLT −0.021 1.000 −0.00124
Normal-HGDLT −0.033 1.000 −0.00192
Normal-VEHC −0.729 0.950 0.04268
Normal-EHC 0.729 0.950 0.04269
Normal-AHC 0.919 0.868 0.05339

Normal-VAHC 0.877 0.890 0.05102

Appendix A.3. Goodness of Fit to Test Log-Normal Distribution for Pancreatic Cancer and HCC

Gene expression data were tested for a log-normal distribution or a normal distribution.
The following results are only for one sample of each stage in the four types of cancer. The other
samples render similar results with significant approximations to the tested distributions.

In pancreatic cancer and HCC Kolmogorov-Smirnov test was made to probe the log-
normal distribution.

H0: The sample follows a log-normal distribution
Ha: The sample does not follow a log-normal distribution
If Dn < Dnα then the data is a good fit with the log-normal distribution.
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In the plots, there is a very good fit with the log normal distribution.

α = 0.05 for an n > 35; Dn,α =

√
−0.5 ln( α

2 )√
n ; Dn,α = 1.358

55.25 = 0.024; n is the number of genes used.

Table A9. Kolmogorov-Smirnov test for Pancreatic cancer.

Cancer Stage Kolmogorov-Smirnov
Statistic (Calculated Dn Value)

Normal 0.03062797
IPMA 0.04904261

IOIPMN 0.04815737
IPMC 0.05123668

Since Dn < Dnα we conclude by Kolmogorov-Smirnov that the data does not fit a log-normal
distribution, but it is a good aproximation as seen by all plots and the near D values.
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Figure A5. Hepatocellular carcinoma goodness of fit test plots part 1. Plots of goodness fits test
for a log-normal distribution is showed in each incise for gene expression data. Histogram, Q-Q
plot, CDFs and P-P plots are common plots to test a fitness of distribution. It can be seen that each
stage fit well for a log normal distribution. (a) Normal stage; (b) LGDLT stage; (c) HGDLT stage;
(d) VEHC stage.
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Table A10. Kolmogorov-Smirnov test for HCC.

Cancer Stage Kolmogorov-Smirnov
Statistic (Calculated Dn Value)

Normal 0.05043655
LGDLT 0.05035987
HGDLT 0.05266466
VEHC 0.04894896
EHC 0.04728102
AHC 0.04770404

VAHC 0.04946804
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Since Dn < Dnα we conclude that the data is a good fit with the log-normal distribution.
In melanoma and squamous cell carcinoma of the lung, the Kolmogorov-Smirnov test was made

to probe the normal distribution.

H0: The sample follows a normal distribution
Ha: The sample does not follow a normal distribution

If Dn < Dnα it implies that the data is a good fit with the normal distribution.
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Figure A6. Hepatocellular carcinoma goodness of fit test plot part 2. Plots of goodness fits test for
a log-normal distribution is showed in each incise for gene expression data. Histogram, Q-Q plot,
CDFs and P-P plots are common plots to test a fitness of distribution. It can be seen that each stage fit
well for a log normal distribution. (a) EHC; (b) AHC; (c) VAHC.

Dn,α =
1.358
44.78

= 0.03032



Entropy 2018, 20, 154 19 of 27

Table A11. Kolmogorov-Smirnov test for Melanoma.

Cancer stage Kolmogorov-Smirnov Statistic
(Calculated Dn Value)

NS 0.02327633
BN 0.03602832

AN2 0.02572476
INS 0.02299426
VGP 0.02791794
MGP 0.03271799
LN 0.03189103

Since Dn < Dnα we conclude that the data is a good fit with the normal distribution except for BN
which is a good approximation.
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Figure A7. Melanoma goodness of fit test plot part 1. Plots of goodness fits test for a log-normal
distribution is showed in each incise for gene expression data. Histogram, Q-Q plot, CDFs and P-P
plots are common plots to test a fitness of distribution. It can be seen that each stage fit well for a log
normal distribution. (a) Normal stage; (b) BN stage; (c) AN2 stage; (d) INS stage.



Entropy 2018, 20, 154 20 of 27
Entropy 2018, 20, x FOR PEER REVIEW  20 of 27 

 

 

Figure A8. Melanoma goodness of fit test plot part 2. Plots of goodness fits test for a log-normal 
distribution is showed in each incise for gene expression data. Histogram, Q-Q plot, CDFs and P-P 
plots are common plots to test a fitness of distribution. It can be seen that each stage fit well for a log 
normal distribution. (a) VGP stage; (b) MGP stage; (c) LN stage. 

Figure A8. Melanoma goodness of fit test plot part 2. Plots of goodness fits test for a log-normal
distribution is showed in each incise for gene expression data. Histogram, Q-Q plot, CDFs and P-P
plots are common plots to test a fitness of distribution. It can be seen that each stage fit well for a log
normal distribution. (a) VGP stage; (b) MGP stage; (c) LN stage.
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Figure A9. Squamous cell carcinoma of the lung goodness of fit test plot part 1. Plots of goodness fits
test for a log-normal distribution is showed in each incise for gene expression data. Histogram, Q-Q
plot, CDFs and P-P plots are common plots to test a fitness of distribution. It can be seen that each
stage fit well for a log normal distribution. (a) Normal stage; (b) HYP stage; (c) META stage; (d) MILD
DYS stage.
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Figure A10. Squamous cell carcinoma of the lung goodness of fit test plot part 2. Plots of goodness
fits test for a log-normal distribution is showed in each incise for gene expression data. Histogram,
Q-Q plot, CDFs and P-P plots are common plots to test a fitness of distribution. It can be seen that each
stage fit well for a log normal distribution. (a) MOD DYS stage; (b) SEV DYS stage; (c) C IN SITU stage;
(d) SQ stage.

Dn,α =
1.358
29.32

= 0.04631
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Table A12. Kolmogorov-Smirnov test for Squamous cell carcinoma.

Cancer Stage Kolmogorov-Smirnov Statistic
(Calculated Dn Value)

NS 0.0451448
HYP 0.04257946

META 0.03065325
MILD DYS 0.03673821
MOD DYS 0.02808452
SEV DYS 0.04279729

C IN SITU 0.03382777
SQ 0.04313791

Since Dn < Dnα we conclude that the data is a good fit with the normal distribution.

Appendix B. Method to Calculate the Determinant of a Matrix, Tables about the Statistics of
Local Networks for Each Cancer, and a Glossary of Terms

Appendix B.1. Calculation of the Determinant of the Covariance Matrix

A covariance matrix of X is a square k×k matrix whose generic (i,j)-th entry is equal to the
covariance between xi and xj The diagonal entries are equal to the variances of the individual
components of X (see equation below). Assuming two samples, the 2× 2 covariance matrix is given by:

k =

[
Var[X1] Cov[X1, X2]

Cov[X2, X1] Var[X2]

]

To calculate the determinant of the covariance matrix, we have:

|κ| =
[

1 0.3
0.3 1

]

|κ|= (1× 1)− (0.3× 0.3)

|κ|= 0.91

where | | denotes the determinant of the matrix.
The following tables summarize some descriptors of the local networks for each group in each cancer.

Table A13. Melanoma local networks and size distribution.

Group * Number of Local
Networks Size Distribution of Local Networks **

1 8 8:2

2 61 61:2

3 258 258:2

4 181 181:2

5 3 5:3

6 30 29:2, 1:4

7 546 201:3, 130: 4, 65:5, 41:6, 30:8, 27: 7, 13:10, 9:9, 9:11, 7:12, 2:13, 2:14, 2;15, 2:16,
2:19, 1:17, 1:20, 1:21, 1:22

8 925

106:3, 100:4, 104:5, 85:6, 73:7, 63:8, 46: 9, 51:10, 34:11, 25:12, 15:13, 18:16, 14:17,
15:18, 11: 19, 8:20, 7:21, 13:22, 12:23, 6:24, 4:25, 5: 26, 4:27, 2:28, 4:29, 4:30, 4:31,
3:32, 7:33, 4:35, 2: 36, 3:37, 4:38, 3:39, 1:40, 4:41, 2:42, 2:43, 2:44, 1:46, 1:48, 2:50,
2:52, 1:55, 1:62, 2:63, 2:35, 1:66, 1:70, 1: 73, 1:75, 1:90, 1:110, 1:118, 1:162, 1:171

* Group count start from the group with the minimum entropy values. ** First number correspond to the number of
local networks; second number corresponds to the size of the local networks, e.g., Group 6 has 29 local networks
with 2 nodes and 1 local network with 4 nodes.
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Table A14. HCC local networks and size distribution.

Group * Number of Local
Networks Size Distribution of Local Networks **

1 9 9:2

2 68 68:2

3 102 11:3, 91:2

4 91 91:2

5 42 31:4, 11:3

6 43 1:5, 42:4

7 47 47:5

8 31 31:6

9 47 16:7, 31:6

10 34 4:9, 16:8, 14:7

11 106 1:83, 1:63, 1:55, 1:54, 1:50, 1:43, 1:40, 1:38, 1:32, 1:30, 1:29, 1:26, 2:25, 3:23, 1:22,
2:21, 3:20, 3:19, 4:18, 7:17, 5:16, 3:15, 6:14, 4:13, 8:12, 7:11, 12:10, 8:9, 16:8

* Group counts start from the group with the minimum entropy value. ** First number corresponds to the number
of local networks; second number corresponds to the size of the local networks, e.g., Group 1 has 9 local networks
with 2 nodes.

Table A15. Pancreatic local networks and size distribution.

Group * Number of Local
Networks Size Distribution of Local Networks **

1 87 87:2

2 341 341:2

3 26 1:3, 25:2

4 17 17:3

5 267 267:3

6 10 10:2

7 22 2:5, 20:4

8 1170

203:4, 150:5, 138:6, 104:7, 82:8, 72:9, 63:10, 45:11, 38:12, 33:13, 32:14, 19:15, 17:19,
13:20, 12:17, 9:26, 9:25, 9:21, 9:18, 8:29, 8:24, 8:23, 6:22, 5:33, 4:30, 4:28, 4:27, 3:51,
3:47, 3:43, 3:36, 3:32, 2:79, 2:62, 2:55, 2:53, 2:49, 2:41, 2:37, 2:35, 2:34, 1:168, 1:128,
1:89, 1:83, 1:78, 1:77, 1:69, 1:66, 1: 63, 1:61, 1:54, 1:42, 1:39, 1:38, 1:31

9 5 1:40, 1:19, 1:10, 1:7, 1:4

* Group counts start from the group with the minimum entropy value. ** First number corresponds to the number
of local networks; second number corresponds to the size of the local networks, e.g., Group 3 has 1 local network
with 3 nodes and 25 local networks with 2 nodes.

Table A16. Squamous cell carcinoma local networks and size distribution.

Group * Number of Local
Networks Size Distribution of Local Networks **

1 16 16:2
2 117 2:3, 115:2
3 174 16:3, 158:2
4 143 126:3, 17:2
5 77 36:4, 41:3
6 67 1:5, 66:4
7 49 48:5, 1:4
8 33 24:6, 9:5
9 33 2:7, 26:6
10 32 31:7, 1:6
11 29 11: 8, 2:7
12 13 1: 9, 12:8
13 11 11:9
14 11 11:10
15 7 7:11
16 4 1:11, 3:12
17 3 3:12
18 28 1: 24, 2:23, 1:21, 1:18, 5:17, 1:16, 4:15, 6:14, 7:13
19 12 1: 57, 1:56, 1:37, 1:36, 1:35, 1:33, 1:29, 2:24, 1:22, 1:18, 1:16, 1:14

* Group count start from the group with the minimum entropy values. ** First number corresponds to the number
of local networks. Second number corresponds to size of the local networks, e.g., Group 12 has 1 local network with
9 nodes and 12 local networks with 8 nodes.
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Appendix B.2. Glossary

Sample—It is the gene expression levels coming from one individual.
Network—All the nodes from the APID PPI data that represents the selected genes from the differential
expression analysis for each stage in each type of cancer.
Subnetwork—A group of local networks binned together based on similarity of Multivariate Normal
entropy in the normal group.
Local network—It is one node of the network plus its immediate neighbors based on the APID PPI data.

References

1. WHO. Cancer. Available online: http://www.who.int/mediacentre/factsheets/fs297/en/ (accessed on
26 October 2017).

2. What Is Cancer? Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer
(accessed on 26 October 2017).

3. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA,
2006; ISBN 978-0-471-24195-9.

4. Chen, B.; Wang, J.; Zhao, H.; Principe, J. Insights into Entropy as a Measure of Multivariate Variability.
Entropy 2016, 18, 196. [CrossRef]

5. Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012: Global
Cancer Statistics, 2012. CA. Cancer J. Clin. 2015, 65, 87–108. [CrossRef] [PubMed]

6. Waller, L.P.; Deshpande, V.; Pyrsopoulos, N. Hepatocellular carcinoma: A comprehensive review. World J.
Hepatol. 2015, 7, 2648–2663. [CrossRef] [PubMed]

7. Raza, A. Hepatocellular carcinoma review: Current treatment, and evidence-based medicine. World J.
Gastroenterol. 2014, 20, 4115. [CrossRef] [PubMed]

8. Balogh, J.; Victor, D.; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, M.; Monsour, H.
Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma 2016, 3, 41–53. [CrossRef] [PubMed]

9. Liu, R.; Li, M.; Liu, Z.-P.; Wu, J.; Chen, L.; Aihara, K. Identifying critical transitions and their leading
biomolecular networks in complex diseases. Sci. Rep. 2012, 2, 813. [CrossRef] [PubMed]

10. Yabar, C.S.; Winter, J.M. Pancreatic Cancer. Gastroenterol. Clin. N. Am. 2016, 45, 429–445. [CrossRef] [PubMed]
11. Makohon-Moore, A.; Iacobuzio-Donahue, C.A. Pancreatic cancer biology and genetics from an evolutionary

perspective. Nat. Rev. Cancer 2016, 16, 553–565. [CrossRef] [PubMed]
12. Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.D.; Biankin, A.V.; Neale, R.E.; Tempero, M.; Tuveson, D.A.;

Hruban, R.H.; et al. Pancreatic cancer. Nat. Rev. Dis. Primer 2016, 2, 16022. [CrossRef] [PubMed]
13. Heist, R.S.; Sequist, L.V.; Engelman, J.A. Genetic Changes in Squamous Cell Lung Cancer: A Review. J. Thorac.

Oncol. 2012, 7, 924–933. [CrossRef] [PubMed]
14. Derman, B.A.; Mileham, K.F.; Bonomi, P.D.; Batus, M.; Fidler, M.J. Treatment of advanced squamous cell

carcinoma of the lung: A review. Transl. Lung Cancer Res. 2015, 4, 524–532. [CrossRef] [PubMed]
15. Drilon, A.; Rekhtman, N.; Ladanyi, M.; Paik, P. Squamous-cell carcinomas of the lung: Emerging biology,

controversies, and the promise of targeted therapy. Lancet Oncol. 2012, 13, e418–e426. [CrossRef]
16. Goodwin, J.; Neugent, M.L.; Lee, S.Y.; Choe, J.H.; Choi, H.; Jenkins, D.M.R.; Ruthenborg, R.J.; Robinson, M.W.;

Jeong, J.Y.; Wake, M.; et al. The distinct metabolic phenotype of lung squamous cell carcinoma defines
selective vulnerability to glycolytic inhibition. Nat. Commun. 2017, 8, 15503. [CrossRef] [PubMed]

17. Gandara, D.R.; Hammerman, P.S.; Sos, M.L.; Lara, P.N.; Hirsch, F.R. Squamous Cell Lung Cancer: From
Tumor Genomics to Cancer Therapeutics. Clin. Cancer Res. 2015, 21, 2236–2243. [CrossRef] [PubMed]

18. Miller, A.J.; Mihm, M.C. Melanoma. N. Engl. J. Med. 2006, 355, 51–65. [CrossRef] [PubMed]
19. Schadendorf, D.; Fisher, D.E.; Garbe, C.; Gershenwald, J.E.; Grob, J.-J.; Halpern, A.; Herlyn, M.; Marchetti, M.A.;

McArthur, G.; Ribas, A.; et al. Melanoma. Nat. Rev. Dis. Primer 2015, 15003. [CrossRef] [PubMed]
20. Shain, A.H.; Bastian, B.C. From melanocytes to melanomas. Nat. Rev. Cancer 2016, 16, 345–358. [CrossRef]

[PubMed]
21. Teschendorff, A.E.; Sollich, P.; Kuehn, R. Signalling entropy: A novel network-theoretical framework for

systems analysis and interpretation of functional omic data. Methods 2014, 67, 282–293. [CrossRef] [PubMed]

http://www.who.int/mediacentre/factsheets/fs297/en/
https://www.cancer.gov/about-cancer/understanding/what-is-cancer
http://dx.doi.org/10.3390/e18050196
http://dx.doi.org/10.3322/caac.21262
http://www.ncbi.nlm.nih.gov/pubmed/25651787
http://dx.doi.org/10.4254/wjh.v7.i26.2648
http://www.ncbi.nlm.nih.gov/pubmed/26609342
http://dx.doi.org/10.3748/wjg.v20.i15.4115
http://www.ncbi.nlm.nih.gov/pubmed/24764650
http://dx.doi.org/10.2147/JHC.S61146
http://www.ncbi.nlm.nih.gov/pubmed/27785449
http://dx.doi.org/10.1038/srep00813
http://www.ncbi.nlm.nih.gov/pubmed/23230504
http://dx.doi.org/10.1016/j.gtc.2016.04.003
http://www.ncbi.nlm.nih.gov/pubmed/27546841
http://dx.doi.org/10.1038/nrc.2016.66
http://www.ncbi.nlm.nih.gov/pubmed/27444064
http://dx.doi.org/10.1038/nrdp.2016.22
http://www.ncbi.nlm.nih.gov/pubmed/27158978
http://dx.doi.org/10.1097/JTO.0b013e31824cc334
http://www.ncbi.nlm.nih.gov/pubmed/22722794
http://dx.doi.org/10.3978/j.issn.2218-6751.2015.06.07
http://www.ncbi.nlm.nih.gov/pubmed/26629421
http://dx.doi.org/10.1016/S1470-2045(12)70291-7
http://dx.doi.org/10.1038/ncomms15503
http://www.ncbi.nlm.nih.gov/pubmed/28548087
http://dx.doi.org/10.1158/1078-0432.CCR-14-3039
http://www.ncbi.nlm.nih.gov/pubmed/25979930
http://dx.doi.org/10.1056/NEJMra052166
http://www.ncbi.nlm.nih.gov/pubmed/16822996
http://dx.doi.org/10.1038/nrdp.2015.3
http://www.ncbi.nlm.nih.gov/pubmed/27188223
http://dx.doi.org/10.1038/nrc.2016.37
http://www.ncbi.nlm.nih.gov/pubmed/27125352
http://dx.doi.org/10.1016/j.ymeth.2014.03.013
http://www.ncbi.nlm.nih.gov/pubmed/24675401


Entropy 2018, 20, 154 26 of 27

22. West, J.; Bianconi, G.; Severini, S.; Teschendorff, A.E. Differential network entropy reveals cancer system
hallmarks. Sci. Rep. 2012, 2. [CrossRef] [PubMed]

23. Brehme, M.; Koschmieder, S.; Montazeri, M.; Copland, M.; Oehler, V.G.; Radich, J.P.; Brümmendorf, T.H.;
Schuppert, A. Combined Population Dynamics and Entropy Modelling Supports Patient Stratification in
Chronic Myeloid Leukemia. Sci. Rep. 2016, 6. [CrossRef] [PubMed]

24. Park, Y.; Lim, S.; Nam, J.-W.; Kim, S. Measuring intratumor heterogeneity by network entropy using RNA-seq
data. Sci. Rep. 2016, 6. [CrossRef] [PubMed]

25. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [CrossRef]
[PubMed]

26. Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation,
CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [CrossRef] [PubMed]

27. Sridharan, K.; Gogtay, N.J. Therapeutic nucleic acids: Current clinical status: Therapeutic nucleic acids. Br. J.
Clin. Pharmacol. 2016, 82, 659–672. [CrossRef] [PubMed]

28. Wasmer, M.-H.; Krebs, P. The Role of IL-33-Dependent Inflammation in the Tumor Microenvironment.
Front. Immunol. 2017, 7. [CrossRef] [PubMed]

29. Wurmbach, E.; Chen, Y.; Khitrov, G.; Zhang, W.; Roayaie, S.; Schwartz, M.; Fiel, I.; Thung, S.; Mazzaferro, V.;
Bruix, J.; et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma.
Hepatology 2007, 45, 938–947. [CrossRef] [PubMed]

30. Smith, A.P.; Hoek, K.; Becker, D. Whole-genome expression profiling of the melanoma progression pathway
reveals marked molecular differences between nevi/melanoma in situ and advanced-stage melanomas.
Cancer Biol. Ther. 2005, 4, 1018–1029. [CrossRef] [PubMed]

31. Hiraoka, N.; Yamazaki–Itoh, R.; Ino, Y.; Mizuguchi, Y.; Yamada, T.; Hirohashi, S.; Kanai, Y. CXCL17 and
ICAM2 Are Associated With a Potential Anti-Tumor Immune Response in Early Intraepithelial Stages of
Human Pancreatic Carcinogenesis. Gastroenterology 2011, 140, 310–321.e4. [CrossRef] [PubMed]

32. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]
[PubMed]

33. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300.

34. Wright, S.P. Adjusted P-Values for Simultaneous Inference. Biometrics 1992, 48, 1005. [CrossRef]
35. R & Bioconductor—Manuals. Available online: http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual

(accessed on 29 October 2017).
36. Alonso-López, D.; Gutiérrez, M.A.; Lopes, K.P.; Prieto, C.; Santamaría, R.; De Las Rivas, J. APID interactomes:

Providing proteome-based interactomes with controlled quality for multiple species and derived networks.
Nucleic Acids Res. 2016, 44, W529–W535. [CrossRef] [PubMed]

37. Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks.
Genome Res. 2003, 13, 2498–2504. [CrossRef] [PubMed]

38. Shannon, P.T.; Grimes, M.; Kutlu, B.; Bot, J.J.; Galas, D.J. RCytoscape: Tools for exploratory network analysis.
BMC Bioinform. 2013, 14, 217. [CrossRef] [PubMed]

39. Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015,
64. [CrossRef]

40. Ahmed, N.A.; Gokhale, D.V. Entropy expressions and their estimators for multivariate distributions.
IEEE Trans. Inf. Theory 1989, 35, 688–692. [CrossRef]

41. UniProt. Available online: http://www.uniprot.org/ (accessed on 29 October 2017).
42. Martínez, C.; García-Martín, E.; Ladero, J.M.; Sastre, J.; Garcia-Gamito, F.; Diaz-Rubio, M.; Agúndez, J.A.

Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis
2001, 22, 1323–1326. [CrossRef] [PubMed]

43. Jernström, H.; Bågeman, E.; Rose, C.; Jönsson, P.-E.; Ingvar, C. CYP2C8 and CYP2C9 polymorphisms in
relation to tumour characteristics and early breast cancer related events among 652 breast cancer patients.
Br. J. Cancer 2009, 101, 1817–1823. [CrossRef] [PubMed]

44. Kiyohara, M.H.; Dillard, C.; Tsui, J.; Kim, S.R.; Lu, J.; Sachdev, D.; Goodglick, L.; Tong, M.; Torous, V.F.;
Aryasomayajula, C.; et al. EMP2 is a novel therapeutic target for endometrial cancer stem cells. Oncogene
2017, 36, 5793–5807. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep00802
http://www.ncbi.nlm.nih.gov/pubmed/23150773
http://dx.doi.org/10.1038/srep24057
http://www.ncbi.nlm.nih.gov/pubmed/27048866
http://dx.doi.org/10.1038/srep37767
http://www.ncbi.nlm.nih.gov/pubmed/27883053
http://dx.doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://dx.doi.org/10.1038/nrclinonc.2016.25
http://www.ncbi.nlm.nih.gov/pubmed/26977780
http://dx.doi.org/10.1111/bcp.12987
http://www.ncbi.nlm.nih.gov/pubmed/27111518
http://dx.doi.org/10.3389/fimmu.2016.00682
http://www.ncbi.nlm.nih.gov/pubmed/28119694
http://dx.doi.org/10.1002/hep.21622
http://www.ncbi.nlm.nih.gov/pubmed/17393520
http://dx.doi.org/10.4161/cbt.4.9.2165
http://www.ncbi.nlm.nih.gov/pubmed/16251803
http://dx.doi.org/10.1053/j.gastro.2010.10.009
http://www.ncbi.nlm.nih.gov/pubmed/20955708
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.2307/2532694
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://dx.doi.org/10.1093/nar/gkw363
http://www.ncbi.nlm.nih.gov/pubmed/27131791
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://dx.doi.org/10.1186/1471-2105-14-217
http://www.ncbi.nlm.nih.gov/pubmed/23837656
http://dx.doi.org/10.18637/jss.v064.i04
http://dx.doi.org/10.1109/18.30996
http://www.uniprot.org/
http://dx.doi.org/10.1093/carcin/22.8.1323
http://www.ncbi.nlm.nih.gov/pubmed/11470765
http://dx.doi.org/10.1038/sj.bjc.6605428
http://www.ncbi.nlm.nih.gov/pubmed/19935798
http://dx.doi.org/10.1038/onc.2017.142
http://www.ncbi.nlm.nih.gov/pubmed/28604744


Entropy 2018, 20, 154 27 of 27

45. Guo, X.; Yang, M.; Gu, H.; Zhao, J.; Zou, L. Decreased expression of SOX6 confers a poor prognosis in
hepatocellular carcinoma. Cancer Epidemiol. 2013, 37, 732–736. [CrossRef] [PubMed]

46. Ye, T.; Xu, J.; Du, L.; Mo, W.; Liang, Y.; Xia, J. Downregulation of UBAP2L inhibits the epithelial-mesenchymal
transition via SNAIL1 regulation in hepatocellular carcinoma cells. Cell. Physiol. Biochem. 2017, 41, 1584–1595.
[CrossRef] [PubMed]

47. Sturla, L.-M.; Tong, M.; Hebda, N.; Gao, J.; Thomas, J.-M.; Olsen, M.; de la Monte, S.M. Aspartate-β-hydroxylase
(ASPH): A potential therapeutic target in human malignant gliomas. Heliyon 2016, 2, e00203. [CrossRef]
[PubMed]

48. Fiori, V.; Magnani, M.; Cianfriglia, M. The expression and modulation of CEACAM1 and tumor cell
transformation. Ann. DellIstituto Super. Sanità 2012, 48, 161–171. [CrossRef]

49. Yang, C.; He, P.; Liu, Y.; He, Y.; Yang, C.; Du, Y.; Zhou, M.; Wang, W.; Zhang, G.; Wu, M.; Gao, F. Assay of
serum CEACAM1 as a potential biomarker for breast cancer. Clin. Chim. Acta 2015, 450, 277–281. [CrossRef]
[PubMed]

50. Kato, T.; Wada, H.; Patel, P.; Hu, H.; Lee, D.; Ujiie, H.; Hirohashi, K.; Nakajima, T.; Sato, M.; Kaji, M.; et al.
Overexpression of KIF23 predicts clinical outcome in primary lung cancer patients. Lung Cancer 2016, 92,
53–61. [CrossRef] [PubMed]

51. Luo, C.; Yao, Y.; Yu, Z.; Zhou, H.; Guo, L.; Zhang, J.; Cao, H.; Zhang, G.; Li, Y.; Jiao, Z. UBE2T knockdown
inhibits gastric cancer progression. Oncotarget 2017. [CrossRef] [PubMed]

52. Gregory, T.R. Synergy between sequence and size in Large-scale genomics. Nat. Rev. Genet. 2005, 6, 699–708.
[CrossRef] [PubMed]

53. Lemon, J.; Bolker, B.; Oom, S.; Klein, E.; Rowlingson, B.; Wickham, H.; Tyagi, A.; Eterradossi, O.; Grothendieck, G.;
Toews, M.; et al. plotrix: Various Plotting Functions. 2017. Available online: https://cran.r-project.org/web/
packages/plotrix/plotrix.pdf (accessed on 24 February 2017).

54. Wickham, H.; Francois, R.; Henry, L.; Müller, K. RStudio dplyr: A Grammar of Data Manipulation. 2017.
Available online: https://cran.r-project.org/web/packages/dplyr/index.html (accessed on 24 February 2017).

55. Tibshirani, R.; Leisch, F. Bootstrap: Functions for the Book “An Introduction to the Bootstrap”. 2017. Available
online: https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf (accessed on 24 February 2017).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.canep.2013.05.002
http://www.ncbi.nlm.nih.gov/pubmed/23731550
http://dx.doi.org/10.1159/000470824
http://www.ncbi.nlm.nih.gov/pubmed/28334716
http://dx.doi.org/10.1016/j.heliyon.2016.e00203
http://www.ncbi.nlm.nih.gov/pubmed/27981247
http://dx.doi.org/10.4415/ANN_12_02_09
http://dx.doi.org/10.1016/j.cca.2015.09.005
http://www.ncbi.nlm.nih.gov/pubmed/26343926
http://dx.doi.org/10.1016/j.lungcan.2015.11.018
http://www.ncbi.nlm.nih.gov/pubmed/26775597
http://dx.doi.org/10.18632/oncotarget.15947
http://www.ncbi.nlm.nih.gov/pubmed/28427240
http://dx.doi.org/10.1038/nrg1674
http://www.ncbi.nlm.nih.gov/pubmed/16151375
https://cran.r-project.org/web/packages/plotrix/plotrix.pdf
https://cran.r-project.org/web/packages/plotrix/plotrix.pdf
https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/web/packages/bootstrap/bootstrap.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Statistical Analysis of Local Network Entropy 
	Local Networks 

	Results 
	Discussion 
	Statistical Analyses 
	Descriptive Statistics for the Average Network Entropy of Each Stage in the Four Types of Cancer 
	Dunnett’s Test for the Mean 
	Goodness of Fit to Test Log-Normal Distribution for Pancreatic Cancer and HCC 

	Method to Calculate the Determinant of a Matrix, Tables about the Statistics of Local Networks for Each Cancer, and a Glossary of Terms 
	Calculation of the Determinant of the Covariance Matrix 
	Glossary 

	References

