
entropy

Article

Uncertainty Relation Based on Wigner–Yanase–Dyson
Skew Information with Quantum Memory

Jun Li 1 and Shao-Ming Fei 1,2,*
1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China; lijunnl123@163.com
2 Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany
* Correspondence: feishm@cnu.edu.com

Received: 2 January 2018; Accepted: 15 February 2018; Published: 20 February 2018

Abstract: We present uncertainty relations based on Wigner–Yanase–Dyson skew information with
quantum memory. Uncertainty inequalities both in product and summation forms are derived. It is
shown that the lower bounds contain two terms: one characterizes the degree of compatibility of
two measurements, and the other is the quantum correlation between the measured system and the
quantum memory. Detailed examples are given for product, separable and entangled states.
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1. Introduction

The uncertainty principle is an essential feature of quantum mechanics, characterizing the
experimental measurement incompatibility of non-commuting quantum mechanical observables
in the preparation of quantum states. Heisenberg first introduced variance-based uncertainty [1].
Later, Robertson [2] proposed the well-known formula of the uncertainty relation, V(ρ, R)V(ρ, S) ≥
1
4 |Trρ[R, S]|2, for arbitrary observables R and S, where [R, S] = RS− SR and V(ρ, R) is the standard
deviation of R. Schrödinger gave a further improved uncertainty relation [3]:

V(ρ, R)V(ρ, S) ≥ 1
4
|〈[R, S]〉|2 + |1

2
〈{R, S}〉 − 〈R〉〈S〉|2

where 〈R〉 = Tr(ρR), and {R, S} = RS + SR is the anti-commutator. Since then many kinds of
uncertainty relations have been presented [4–11]. In addition to the uncertainty of the standard
deviation, entropy can be used to quantify uncertainties [12]. The first entropic uncertainty relation
was given by Deutsch [13] and was then improved by Maassen and Uffink [14]:

H(R) + H(S) ≥ log2
1
c

where R = {|uj〉}, and S = {|vk〉} are two orthonormal bases on d-dimensional Hilbert space H,
and H(R) = −Σj pjlogpj (H(S) = −Σkqklogqk) is the Shannon entropy of the probability distribution
pj = 〈uj|ρ|uj〉 (qk = 〈vk|ρ|vk〉) for state ρ of H. The number c is the largest overlap among all
cjk = |〈uj|vk〉|2 between the projective measurements R and S. Berta et al. [15] bridged the gap
between cryptographic scenarios and the uncertainty principle and derived this landmark uncertainty
relation for measurements R and S in the presence of quantum memory B:

H(R|B) + H(R|B) ≥ log2
1
c
+ H(A|B)

where H(R|B) = H(ρRB) − H(ρB) is the conditional entropy with ρRB = Σj(|uj〉〈uj| ⊗
I)ρAB(|uj〉〈uj| ⊗ I) (similarly for H(S|B)), and d is the dimension of the subsystem A. The term
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H(A|B) = H(ρAB)− H(ρB) appearing on the right-hand side is related to the entanglement between
the measured particle A and the quantum memory B. The bound of Berta et al. has been further
improved [16–18]. Moreover, there are also some uncertainty relations given by the generalized
entropies, such as the Rényi entropy [19–21] and the Tsallis entropy [22–24], and even more general
entropies such as the (h, Φ) entropies [25]. These uncertainty relations not only manifest the physical
implications of the quantum world but also play roles in entanglement detection [26,27], quantum
spin squeezing [28,29] and quantum metrology [30,31].

In [32], an uncertainty relation based on Wigner–Yanase skew information I(ρ, H) has been
obtained with quantum memory, where I(ρ, H) = 1

2 Tr[(i[
√

ρ, H])2] = Tr(ρH2) − Tr(
√

ρH
√

ρH)

quantifies the degree of non-commutativity between a quantum state ρ and an observable H, which is
reduced to the variance V(ρ, H) when ρ is a pure state. In fact, the Wigner–Yanase skew information
I(ρ, H) is generalized to Wigner–Yanase–Dyson skew information Iα(ρ, H), α ∈ [0, 1] (see [33]):

Iα(ρ, H) = 1
2 Tr[(i[ρα, H])(i[ρ1−α, H])]

= Tr(ρH2)− Tr(ρα Hρ1−α H) α ∈ [0, 1]
(1)

Here the Wigner–Yanase–Dyson skew information Iα(ρ, H) reduces to the Wigner–Yanase skew
information I(ρ, H) when α = 1

2 . The Wigner–Yanase–Dyson skew information Iα(ρ, H) reduces to the
standard deviation V(ρ, H) when ρ is a pure state.

The convexity of Iα(ρ, H) with respect to ρ has been proven by Lieb in [34]. In [35], Kenjiro
introduced another quantity:

Jα(ρ, H) = 1
2 Tr[({ρα, H0})({ρ1−α, H0})]

= Tr(ρH2
0) + Tr(ρα H0ρ1−α H0) α ∈ [0, 1]

(2)

where H0 = H − Tr(ρH)I with I being the identity operator.
For a quantum state ρ and observables R, S and 0 ≤ α ≤ 1, the following inequality holds [35]:

Uα(ρ, R)Uα(ρ, S) ≥ α(1− α)|Trρ[R, S]|2 (3)

where Uα(ρ, R) =
√

Iα(ρ, R)Jα(ρ, R) can be regarded as a kind of measure for quantum uncertainty,
in the sense given by [35]. For a pure state, a standard deviation-based relation is recovered from
Equation (3). When α = 1

2 , it is reduced to the result of [36].
Inspired by the works [32,35], in this paper, we study the uncertainty relations based on

Wigner–Yanase–Dyson skew information in the presence of quantum memory, which generalize
the results in [32] to the case of Wigner–Yanase–Dyson skew information, and the results in [35], which
generalize to the case with the presence of quantum memory. We present uncertainty inequalities both
in product and summation forms, and show that the lower bounds contain two terms: one concerns
the compatibility of two measurement observables, and the other concerns the quantum correlations
between the measured system and the quantum memory. We compare the lower bounds for product,
separable and entangled states by detailed examples.

2. Results

Let φk = |φk〉〈φk| and ψk = |ψk〉〈ψk| be the rank 1 spectral projectors of two non-degenerate
observables R and S with the eigenvectors |φk〉 and |ψk〉, respectively. Similarly to [32], we define

UNα(ρ, φ) = ∑
k

Uα(ρ, φk) = ∑
k

√
Iα(ρ, φk)Jα(ρ, φk) as the uncertainty of ρ associated to the projective

measurement {φk}, and Uα(ρ, ψ) to {ψk}.
Let ρAB be a bipartite state on HA⊗HB, where HA and HB denote the Hilbert space of subsystems

A and B, respectively. Let V be any orthogonal basis space on HA and |φk〉 be an orthogonal basis
of HA. We define a quantum correlation of ρAB as
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D̃α(ρAB) = min
V

∑
k
[Iα(ρAB, φk ⊗ IB)− Iα(ρA, φk)] (4)

where the minimum is taken over all the orthogonal bases on HA, ρA = TrBρAB.
For any bipartite state ρAB and any observable XA on HA, we have Iα(ρAB, XA⊗ IB) ≥ Iα(ρA, XA),

which follows from Corollary 1.3 in [34] and Lemma 2 in [37]. Therefore, D̃α(ρAB) ≥ 0. Furthermore,
D̃α(ρAB) = 0 when ρAB is a classical quantum correlated state, which follows from the proof in
Theorem 1 of [38]. D̃α(ρAB) has a measurement on subsystem A, which gives an explicit physical
meaning: it is the minimal difference of incompatibility of the projective measurement on the bipartite
state ρAB and on the local reduced state ρA. D̃α(ρAB) quantifies the quantum correlations between the
subsystems A and B. We have the following.

Theorem 1. Let ρAB be a bipartite quantum state on HA ⊗ HB and {φk} and {ψk} be two sets of rank 1
projective measurements on HA. Then

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I) ≥∑
k

L2
α,ρA

(φk, ψk) + D̃2
α(ρAB) (5)

where Lα,ρA(φk, ψk) = α(1− α) |TrρA [φk ,ψk ]|2√
Jα(ρA ,φk)·Jα(ρA ,ψk)

.

Proof of Theorem 1. By definition, we have

UNα(ρAB, φ⊗ I)UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) ·∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) ·∑
k

Iα(ρAB, ψk ⊗ I)

= [∑
k
(Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)) + ∑

k
Iα(ρA, φk)]

·[∑
k
(Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)) + ∑

k
Iα(ρA, ψk)]

≥ [D̃α(ρAB) + ∑
k

Iα(ρA, φk)] · [D̃α(ρAB) + ∑
k

Iα(ρA, ψk)]

≥ D̃2
α(ρAB) + ∑

k
Iα(ρA, φk)Iα(ρA, ψk)

≥ D̃2
α(ρAB) + ∑

k

α2(1− α)2|TrρA[φk, ψk]|4
Jα(ρA, φk)Jα(ρA, ψk)

, D̃2
α(ρAB) + ∑

k
L2

α,ρA
(φk, ψk)

(6)

where the first inequality is due to Jα(ρ, H) ≥ Iα(ρ, H) [35], and the last inequality follows from
Equation (3).

Theorem 1 gives a product form of the uncertainty relation. Comparing the results (Equation (3))
without quantum memory with those (Equation (5)) with quantum memory, one finds that if the
observables A and B satisfy [A, B] = 0, the bound is trivial in Equation (3), while in Equation (5), even
if the projective measurements φk and ψk satisfy [φk, ψk] = 0, that is, Lα,ρA(φk, ψk) = 0, D̃α(ρAB) may
still not be trivial because of correlations between the system and the quantum memory.

Corresponding to the product form of the uncertainty relation, we can also derive the sum form
of the uncertainty relation:
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Theorem 2. Let ρAB be a quantum state on HA ⊗ HB and {φk} and {ψk} be two sets of rank 1 projective
measurements on HA. Then

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I) ≥ 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB) (7)

Proof of Theorem 2. By definition and taking into account the fact that Jα(ρ, H) ≥ Iα(ρ, H) [35],
we have

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

= ∑
k

√
Iα(ρAB, φk ⊗ I) · Jα(ρAB, φk ⊗ I) + ∑

k

√
Iα(ρAB, ψk ⊗ I) · Jα(ρAB, ψk ⊗ I)

≥∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I)

While

∑
k

Iα(ρAB, φk ⊗ I) + ∑
k

Iα(ρAB, ψk ⊗ I)

= ∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + ∑
k
[Iα(ρAB, φk ⊗ I)− Iα(ρA, φk)]

+ ∑
k
[Iα(ρAB, ψk ⊗ I)− Iα(ρA, ψk)]

≥∑
k

Iα(ρA, φk) + ∑
k

Iα(ρA, ψk) + 2D̃α(ρAB)

where the inequality follows from Equation (4). By using the inequality a + b ≥ 2
√

ab for positive
a = Iα(ρA, φk) and b = Iα(ρA, ψk), we further obtain

UNα(ρAB, φ⊗ I) + UNα(ρAB, ψ⊗ I)

≥ 2 ∑
k

√
Iα(ρA, φk) · Iα(ρA, ψk) + 2D̃α(ρAB)

≥ 2 ∑
k

α(1− α)
|TrρA[φk, ψk]|2√

Jα(ρA, φk) · Jα(ρA, ψk)
+ 2D̃α(ρAB)

, 2 ∑
k

Lα,ρA(φk, ψk) + 2D̃α(ρAB)

(8)

where the second inequality follows from Equation (3).

We note that Equation (7) reduces to an inequality that agrees with the result of [32] when α = 1
2 .

Theorem 2 is a generalization of the theorem in [32].
From Theorems 1 and 2, we obtain uncertainty relations in the form of the product and sum of

skew information, which are different from the uncertainty of [39], which only deals with the single
partite state. However, we treat the bipartite case with quantum memory B. It is shown that the lower
bound contains two terms: one is the quantum correlation D̃α(ρAB), and the other is ∑

k
Lα,ρA(φk, ψk),

which characterizes the degree of compatibility of the two measurements, just as for the meaning of
log2

1
c in the entropy uncertainty relation [15].

Example 1. We consider the 2-qubit Werner state ρ = 2−p
6 I + 2p−1

6 V, where p ∈ [−1, 1] and V = ∑
kl
|kl〉〈lk|.

Let the Pauli matrices σx and σz be the two observables and {|ψk〉} and {|ϕk〉} be the eigenvectors of σx and
σz, respectively, which satisfy |〈ψi|ϕj〉|2 = 1

2 , i, j = 1, 2. For all k, we have TrρA[ψk, ϕk] = 0, that is,
Lα,ρA(ψk, ϕk) = 0. The values of the left- and right-hand sides of Equation (5) are given by
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4(
2− p

12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

× (
4 + p

12
+

(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and

(
2− p

6
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

12
)2

respectively; see Figure 1a for the uncertainty relations with different values of α.

(a) (b)

Figure 1. The y-axis shows the uncertainty and its lower bounds. (a) Blue (red) solid line for the value
of the left (right)-hand side of Equation (5) with α = 0.2; black dotted (red dot-dashed) line represents
the value of the left (right)-hand side of Equation (5) with α = 0.5. (b) Red solid (black dotted) line
represents the value of the left (right)-hand side of Equation (7) with α = 0.2; blue solid (green dotted)
line represents the value of the left (right)-hand side of Equation (7) with α = 0.5, which corresponds to
Figure 1 in [32].

Similarly, we can obtain the values of the left- and right-hand sides of Equation (7):

4

√
(

2− p
12
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

×
√
(

4 + p
12

+
(3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

24
)

and
2− p

3
− (3− 3p)α(1 + p)1−α + (1 + p)α(3− 3p)1−α

6
respectively; see Figure 1b.

Here we see explicitly that, just as for the Shannon entropy, Rényi entropy, Tsallis entropy,
(h, Φ) entropies and Wigner–Yanase skew information, the Wigner–Yanase–Dyson skew information
characterizes a special kind of information of a system or measurement outcomes, which needs to
satisfy certain restrictions for given measurements and correlations between the system and the
memory. Different α parameter values give rise to different kinds of information. From Figure 1, we
see that for a given state and measurements, the differences between the left- and right-hand sides
of the inequalities given by Equation (5) or (7) vary with the parameter α. Moreover, the degree
of compatibility of the two measurements, Lα,ρA(φk, ψk), vanishes for α = 0 or 1, which is a fact in
accordance with Equation (3), the case without quantum memory. For p = 1/2, the state ρ is maximally
mixed. In this case, both sides of the inequalities given by Equations (5) and (7) vanish for any α.
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Example 2. Consider a separable bipartite state, ρAB = 1
2 [|+〉〈+| ⊗ |0〉〈0| + |−〉〈−| ⊗ |1〉〈1|], where

|+〉 = 1√
2
(|0〉+ |1〉), |−〉 = 1√

2
(|0〉 − |1〉).

We still choose σx and σz to be the two observables. By calculation we obtain the following: For product
states |+〉〈+| ⊗ |0〉〈0| and |−〉〈−| ⊗ |1〉〈1|, both the left- and right-hand sides of Equation (5) are zero, and
the right-hand side of Equation (7) is zero. For the separable bipartite state ρAB, the left- and right-hand sides of
Equation (5) are 1

2 and 0, respectively. Both the left- and right-hand sides of Equation (7) are zero.

Example 3. For the Werner state ρAB
w = (1− p) I

4 + p|ϕ〉〈ϕ|, where |ϕ〉 = 1√
2
(|00〉+ |11〉) is the Bell state,

p ∈ [0, 1], and the state is separable when p ≤ 1
3 .

We have the values of the left- and right-hand sides of Equation (5), respectively:

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

× (
3− p

8
+

(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)

and

4(
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16
)2

See Figure 2a for a comparison with different values of α.

(a) (b)

Figure 2. The y-axis shows the uncertainty and the lower bounds. (a) Blue (red) solid line is the value
of the left (right)-hand side of Equation (5) for α = 0.2; black (blue-green) solid line represents the value
of the left (right)-hand side of Equation (5) for α = 0.5. (b) Blue (red) solid line represents value of the
left (right)-hand side of Equation (7) for α = 0.2; black (blue-green) solid line represents the value of
the left (right)-hand side of Equation (7) for α = 0.5 .

We can also obtain the values of the left- and right-hand sides of Equation (7):

4

√
1 + p

8
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16

×
√

3− p
8

+
(1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

16

and
1 + p

2
− (1− p)α(1 + 3p)1−α + (1− p)1−α(1 + 3p)α

4
respectively; see Figure 2b.
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Moreover, when ρAB
w is separable, namely, p ≤ 1

3 , the differences between the left- and right-hand sides of
the inequalities are smaller than those of the entangled states. Figure 3 shows the differences for different values
of p.

(a) (b)

Figure 3. The y-axis shows the uncertainty and its lower bound; (a) p = 0.2 (ρAB
w is a separable state):

blue solid line represents the value of the left-hand side of Equation (5), and the line (very near the
x-axis) marked by triangles represents the corresponding lower bound; p = 0.5 (ρAB

w is an entangled
state): the black (red) solid line represents the value of the left (right)-hand side of Equation (5). (b)
Blue (red) solid line represents the value of the left (right)-hand side of Equation (7) for p = 0.2; black
solid (red dashed) line represents the value of the left (right)-hand side of Equation (7) for p = 0.5.

3. Conclusions

We have investigated the uncertainty relations both in product and summation forms in terms of
the Wigner–Yanase–Dyson skew information with quantum memory. It has been shown that the lower
bounds contain two terms: one is the quantum correlation D̃α(ρAB), and the other is ∑

k
Lα,ρA(φk, ψk),

which characterizes the degree of compatibility of the two measurements. By detailed examples, we
have compared the lower bounds for product, separable and entangled states.
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