
entropy

Article

Application of Multiscale Entropy in Assessing
Plantar Skin Blood Flow Dynamics in Diabetics
with Peripheral Neuropathy

Fuyuan Liao 1, Gladys L. Y. Cheing 2, Weiyan Ren 3,4, Sanjiv Jain 5 and Yih-Kuen Jan 3,4,* ID

1 Department of Biomedical Engineering, Xi’an Technological University, Xi’an 710021, China;
liaofuyuan1024@163.com

2 Department of Rehabilitation Sciences, the Hong Kong Polytechnic University, Hong Kong 999077, China;
gladys.cheing@polyu.edu.hk

3 Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at
Urbana-Champaign, 1206 South Fourth Street, MC-588, Champaign, IL 61820, USA; renweiyan03@163.com

4 Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical
Engineering, Beihang University, Beijing 100083, China

5 Department of Physical Medicine and Rehabilitation, Carle Hospital, Urbana, IL 61801, USA;
sanjiv.jain@carle.com

* Correspondence: yjan@illinois.edu; Tel.: +1-217-300-7253

Received: 22 January 2018; Accepted: 12 February 2018; Published: 15 February 2018

Abstract: Diabetic foot ulcer (DFU) is a common complication of diabetes mellitus, while tissue
ischemia caused by impaired vasodilatory response to plantar pressure is thought to be a major factor
of the development of DFUs, which has been assessed using various measures of skin blood flow
(SBF) in the time or frequency domain. These measures, however, are incapable of characterizing
nonlinear dynamics of SBF, which is an indicator of pathologic alterations of microcirculation in the
diabetic foot. This study recruited 18 type 2 diabetics with peripheral neuropathy and eight healthy
controls. SBF at the first metatarsal head in response to locally applied pressure and heating was
measured using laser Doppler flowmetry. A multiscale entropy algorithm was utilized to quantify
the regularity degree of the SBF responses. The results showed that during reactive hyperemia
and thermally induced biphasic response, the regularity degree of SBF in diabetics underwent only
small changes compared to baseline and significantly differed from that in controls at multiple scales
(p < 0.05). On the other hand, the transition of regularity degree of SBF in diabetics distinctively
differed from that in controls (p < 0.05). These findings indicated that multiscale entropy could
provide a more comprehensive assessment of impaired microvascular reactivity in the diabetic foot
compared to other entropy measures based on only a single scale, which strengthens the use of
plantar SBF dynamics to assess the risk for DFU.
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1. Introduction

Diabetic foot ulcer (DFU) is a common complication of diabetes mellitus [1,2] and a major cause
of hospitalization and non-traumatic lower-extremity amputations among people with diabetes [3].
The yearly and lifetime incidences of DFU are estimated to be about 2% and 15–25%, respectively [1],
and the amputation rates in diabetics were reported to be 10–30 times higher than in the non-diabetic
population [4,5]. Since treatment of DFUs is challenging and its economic burden is high [1,2],
prevention of DFUs is highly important and has been recognized as a priority of diabetes healthcare [2].

The formation and development of DFUs involve a number of risk factors, among which
peripheral neuropathy and peripheral arterial disease are crucial factors [1,2]. Diabetic peripheral
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neuropathy induces a series of pathologic alterations in the foot such as a loss of protective sensation for
detecting mechanical stresses and/or trauma, foot deformities may result in elevated plantar pressure,
and dryness of the skin that contributes to skin breakdown [6]. These alterations increase the risk of
trauma and subsequent ulceration [6]. Also, it has been found that the majority of foot ulcers involve
tissue ischemia [3], which is thought to be a major factor of the development of DFUs [6]. In the diabetic
foot, impaired vasodilatory response to repetitive plantar pressure during walking is a main cause of
plantar tissue ischemia [7], while impaired vasodilatory response to elevated temperature of the foot
can aggravate tissue ischemia, because elevated skin temperature increases the metabolic demands
of local cells and tissues, thus requiring an increase in skin blood flow (SBF) to meet the metabolic
demands. Therefore, quantification of SBF responses to loading pressure and thermal stresses may be
a reasonable way to assess the risk of DFU [7,8].

Traditionally, SBF response to mechanical stress is quantified using time-domain parameters such
as normalized mean blood flow (divided by basal blood flow) during mechanical stress and measures
of hyperemia [7,9]; SBF response to local heating is quantified using normalized first peak, nadir,
and second peak (divided by basal blood flow) [7,9]. Moreover, wavelet-based spectral analysis has
been utilized to investigate the underlying mechanisms of the responses [7]. It has been found that
blood flow oscillations (BFO) in the human skin contain six characteristic frequency components in the
frequency interval 0.005–2 Hz [10,11]. Two components with higher frequencies are originated from
cardiac activity (0.4–2 Hz) and respiration (0.15–0.4 Hz), respectively. The other four components are
associated with the myogenic activity of vascular smooth muscle (0.05–0.15 Hz), the neurogenic activity
of the vessel wall (0.02–0.05 Hz), nitric oxide-related endothelia activity (0.0095–2 Hz), and nitric
oxide-independent endothelia activity (0.005–0.0095 Hz), respectively. Jan et al. [7] investigated SBF
responses at the first metatarsal head of diabetics induced by pressure loading and local heating,
and showed an attenuated myogenic component during reactive hyperemia and attenuated metabolic,
neurogenic, and myogenic components in response to local heating compared to healthy controls.

Although time-domain parameters provide direct features of the SBF responses, and wavelet
analysis provides a mean for characterizing the state of the regulatory mechanisms of SBF during the
responses, they are unable to characterize the nonlinear features of BFO [12], which are the structural
features of BFO, e.g., complexity and self-similarity, rather than the magnitude of variability. There is
evidence that altered nonlinear properties of physiological signals are an indicator of pathologic
changes in the physiologic system [8,13–15]. In our previous study [8], we utilized a modified sample
entropy method [13] to quantify the regularity degree of SBF in diabetics, and showed promising
results. However, because we used a fixed parameter, i.e., the time delay between neighboring data
points of the sequences to be compared, we were unable to gain insight into how the regularity degree
of BFO changed with time scales, which is likely associated with the homogeneity degree of the
combination of characteristic frequency components. Therefore, the objective of the current study was
to investigate the regularity degree of SBF responses at the first metatarsal head of diabetics induced by
loading pressure and thermal stress at multiple scales and how regularity degree changed at various
scales. We hypothesized that the transition of regularity degree of BFO could reflect microvascular
dysfunction in diabetics.

2. Methods

2.1. Participants and Data Collection

Eighteen people with type 2 diabetes and peripheral neuropathy (13 men and 5 women) and
eight healthy controls (four men and four women) were recruited into this study. The demographic
data of participants and experimental protocols were presented in our previous publication [8]. Briefly,
the diabetic subjects had a mean age (standard deviation, SD) of 48.5 (9.4) years, body mass index (BMI)
of 28.3 (7.1) kg/m2, duration of diabetes of 15.2 (5.1) years, and HbA1c level of 7.8 (0.9) %. Each of them
suffered from peripheral neuropathy and had a history of foot ulcers. The healthy controls had a mean age
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(SD) of 21.8 (2.4) years and BMI of 25.8 (3.3) kg/m2. This study was approved by a university institutional
review board (IRB #14707).

The experiments were conducted in a research laboratory with the room temperature being
maintained at 24 ± 2 ◦C. Prior to any test, the subject was acclimated to the room temperature
for at least 30 min. Then, the subject lay in a supine position and underwent two experiments.
The first experiment was aimed to examine SBF response to locally applied pressure at the first
metatarsal head. SBF and skin temperature were measured with a sampling rate of 32 Hz using
a Laser Doppler flowmetry (PeriFlux 5001, Perimed, Ardmore, PA, USA), and a probe with heating
function (Probe 415–242, Perimed). This protocol included a 10-min basal measurement, followed by
a 3-min period during which a 300 mmHg pressure was applied to the probe via a computer-controlled
indenter [7], and a 17-min recovery period. Figure 1A shows SBF responses in a diabetic subject and
a healthy control; Figure 1C shows normalized SBF during the loading period and normalized peak
hyperemia in two groups.

The second protocol was aimed to examine SBF at the first metatarsal head in response to local
heating. This protocol included a 10-min basal measurement, a 30-min heating period during which
the skin was heated to 42 ◦C in 2 min and the temperature was maintained at that level, followed by
a recovery period lasting 10 min. Figure 1B shows SBF responses in a diabetic subject and a healthy
control. This response was quantified using three indices: first peak (P1), nadir, and second peak
(P2) divided by basal blood flow. Because SBF exhibited a plateau during the later period of heating
(Figure 1B), the mean value of SBF during the last 10 min was defined as P2. Figure 1D shows the
results of normalized P1, nadir, and P2 in two groups.

Figure 1. (A,B) Skin blood flow (SBF) responses to a loading pressure of 300 mmHg (A) and local heating
(B) at the first metatarsal head of a diabetic subject and a healthy control. pu, perfusion unit. (C) Normalized
SBF (divided by basal SBF) during the loading period and normalized peak hyperemia in two groups.
(D) Normalized SBF during P1, nadir, and P2 in two groups. Data are represented as mean ± standard
error. The differences in SBF between two groups were examined using Mann–Whitney U tests.
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2.2. Sample Entropy and Its Derivatives

Sample entropy (Es(m, r, N)) is defined as the negative natural logarithm of the conditional
probability that two sequences of m points within a tolerance r remain within the tolerance at the
next point [16]. A smaller (larger) value of Es indicates a higher degree of regularity (irregularity).
It has been demonstrated that Es depends on the relationship between the frequency of the dominant
oscillations and the sampling rate [13]. Oversampling may lead to misleading results, i.e., the obtained
Es value does not reflect the regularity degree of the dominant oscillations [13]. To address this problem,
we recently developed a modified sample entropy algorithm [13]. Its procedures are presented briefly
as follows. Figure 2 illustrates a main procedure of the algorithm.

Figure 2. Illustration of a main procedure for calculating the modified sample entropy (EMS) in the case
of m = 2, τ = 12, and r = 0.2× SD (the standard deviation of the series). (A) For a m-component template
sequence xτ

m(i) = {x(1), x(13)}, i.e., i = 1, there are four sequences xτ
m(j) = {x(19,x(31)), {x(20),x(32)},

{x(21),x(33)}, and {x(27),x(39)}, i.e., j = 19, 20, 21, and 27, satisfying d[xτ
m(i), xτ

m(j)] < r, |j− i|> τ .
This procedure is repeated for the next template vector xτ

m(i) = {x(2),x(14)}, i.e., i = 2, and so
on. The dotted horizontal lines around data points x(1) and x(13) represent x(1)±r and x(13)±r,
respectively. (B) The above procedure is repeated for all (m + 1)-component sequences xτ

m+1(i),
e.g., {x(1), x(13),x(25)}.

For a time series {x(i), i = 1, . . . , N}, consider the m-point sequences:

xτ
m(i) = {x(i + kτ), 0 ≤ k ≤ m− 1}, 1 ≤ i ≤ N −mτ, (1)

where τ is a lag. The condition 1 ≤ i ≤ N−mτ ensures that xτ
m+1(i) exits for i = N−mτ. The distance

between two sequences xτ
m(i) and xτ

m(j) is defined as

d[xτ
m(i), xτ

m(j)] = max{|x(i + kτ)− x(j + kτ)|, 0 ≤ k ≤ m− 1}, |j− i|> τ . (2)

For a given sequence xτ
m(i), let ni be the number of xτ

m(j) satisfying |j− i|> τ and nm
i (r) the numbers

of xτ
m(j) satisfying d[xτ

m(i), xτ
m(j)] < r, |j− i|> τ , where r is a tolerance, usually being set to be
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proportional to the SD of the time series. The constraint condition |j− i|> τ is aimed to reduce
influence of the correlation on entropy estimation [13]. Thus, Cm

i (r) = nm
i (r)/ni represents the

probability that any sequence xτ
m(j) is within r of xτ

m(i), and Cm(r) = ∑N−mτ
i=1 Cm

i /(N−mτ) represents
the probability that any two sequences xτ

m(i) and xτ
m(j) are within r. Likewise, Cm+1(r) represents the

probability that any two sequences xτ
m+1(i) and xτ

m+1(j) are within r. The modified sample entropy is
defined as:

Ems(m, r, τ) = limN→∞ − ln
Cm+1(r)

Cm(r)
, (3)

which is estimated by:

Ems(m, r, τ, N) = − ln
Cm+1(r)

Cm(r)
. (4)

In our previous study [13], we tested Ems using simulated time series and SBF data. The results
indicated that Ems yielded consistent values for various sampling rates, but Es cannot [13].

Another representative derivative of Es is the fuzzy entropy E f (m, n, σ, N) [17], which differs
from Es in two aspects. First, when calculating the distance between two sequences xm(i) and xm(j),
they are converted to have zero means. Second, the similarity between two sequences is quantified
using an exponential function exp(−(dm

ij )
n/σ), where dm

ij is the distance between them. It was reported
that E f is more robust than Es when applying to short time series [17]. We tested the performance of E f
and Es using sinusoidal signals with frequencies of 0.1, 0.3, and 1 Hz, respectively, and examined how
they changed with increasing values of r (or σ). The frequencies of the sinusoidal signals are roughly
equal to the central frequencies of myogenic, respiratory, and cardiac components of BFO, respectively;
their length is equal to that of SBF signals during the pressure loading period (3 min, 5760 points).
The parameters m= 2, n= 2 were used. The later was selected using an approach recommended by
the authors who proposed E f [17]. The results showed that E f yielded very small values for 0.3 Hz
and especially 0.1 Hz sinusoidal signals (Figure 3B). This suggests that when applied to SBF signals,
E f may be unable to reflect altered dynamics of the low-frequency components of BFO, e.g., metabolic
(~0.01 Hz), neurogenic (~0.03 Hz), and myogenic (~0.1 Hz) components.

Figure 3. Es(m, r, N) (A) and E f (m, n, σ, N) (B) of 0.1, 0.3, and 1 Hz sinusoidal signals sampled at a rate
of 32 Hz. The parameters m = 2, n = 2, and N = 5760 were used. The parameter n = 2 was selected
using an approach recommended by the authors who proposed E f [17].

2.3. Multi-Scale Entropy

Despite Es being widely used to assess the complexity of time series, it is actually a measure of
regularity, and this is the case for its various derivatives. Currently, complexity has not been well
defined [18], and it is intuitively associated with “meaningful structural richness” [19]. A major problem
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of Es and its derivatives is that they yield the highest values for white noise, which is unpredictable
but without structural complexity, and they may also yield higher values for physiological signals in
health condition and lower values in pathological conditions [8,13]. In this context, several multiscale
entropy (MSE) methods were introduced to quantify the regularity degree of a time series at multiple
scales [20–22]. The first MSE method was proposed by Costa et al. [20], in which the original time series
is divided into non-overlapping segments, and a new series is constructed using the average of each
segment with its order being preserved. Then, Es is computed for each new series. This method, however,
has been found to have several limitations. First, the procedure for constructing new series is similar to
applying a low-pass filter to the original time series followed by a downsampling procedure. It has been
found that the frequency response of the low-pass filter shows side lobes in the stop band, which lead
to aliasing during the downsampling and thus produce artifacts [22]. Second, the SD of the new series
likely decreases with increasing scales, whereas in the MSE algorithm, a constant tolerance (a constant
proportion of the SD of the original time series) is used for all scales, resulting in decreasing entropy
values with increasing scales. Finally, the length of the new series decreases rapidly with increasing scales,
impeding reliable estimations of the entropy at large scales. The drawbacks of the MSE method and
several improved algorithms have been discussed in Reference [23].

Recently, a technique called reshape scale (RS) method was proposed to construct new time series
from the original one [21]. Its main procedures are as follows. For a time series {x(i), i = 1, . . . , N}
and a scale factor τ, a new time series is constructed as:

y(τ) = {b1, b2, . . . , bτ}, (5)

where bi = {x(i), x(i + τ), . . . , x(i + kτ)}, i = 1, 2, . . . , τ, and k is the maximal integer satisfying
i + kτ ≤ N. Note that the length of y(τ) is also N and when τ = 1, it retrieves the original time series.
Thus, a combination of the RS method and Es (or E f ) is a multiscale entropy method (denoted as RS-Es

and RS-E f , respectively). Figure 4 illustrates the relationships among the aforementioned entropy
methods. Also, Ems(m, r, τ, N) is a multiscale entropy method when τ takes multiple values. The RS
method is essentially similar to the first procedure of the Ems(m, r, τ, N) algorithm (Equation (1)).
A main difference between them is that in the RS method the segment bi, i = 1, 2, . . . , τ, can be
randomly appended to other segments.

Figure 4. A flow diagram illustrating the relationships among the aforementioned entropy methods.
RS, the reshape scale method [21].

We tested the performance of three MSE methods, i.e., RS-Es, RS-E f ), and Ems, using SBF signals.
The following parameters were selected: m=2; for RS-Es, r was 0.2 × SD of the constructed signal;
for Ems, r was 0.2 × SD of the original signal; for RS-E f , by using an approach recommended by
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the authors who proposed E f [17], we selected n= 2 and σ being 0.2 × SD of the constructed signal.
The results showed that Es was almost identical to Ems at each scale, both of which monotonically
increased at the scales from 1 to around 10 and then reach a plateau. The values of E f showed a similar
trend but were much smaller than Es and Ems. Figure 5A shows an example of the testing results.
Further, we performed the following tests. For a given SBF signal, we computed Es, E f , and Ems for
20 phase-randomized surrogate data sets at each scale. When computing Es and E f , surrogate data
were generated from the new signal constructed by using the RS method, whereas when computing
Ems, surrogate data were generated from the original signal. The results showed that each of RS-Es,
RS-E f , and Ems for surrogate data showed similar trend compared to that for the real data (Figure 5A).
However, RS-E f yielded smaller differences between surrogate data and real data compared to RS-Es

and Ems. A possible reason is that E f is insensitive to structural changes of low-frequency components
(see Figure 3B) caused by the phase randomization procedure. These testing results suggest that RS-E f
has no superiority over RS-Es or Ems for assessing the complexity of BFO.

Figure 5. (A) Results of RS-Es, RS-E f , and Ems of a SBF signal from a diabetic subject (Figure 1A, 1–10 min).
The following parameters were used: m = 2; r = 0.2 × SD (the generated signal at scale τ ) for Es(m, r, N);
r = 0.2 × SD (the original signal) for Ems(m, r, τ, N); n = 2; σ = 0.2× SD (the generated signal at scale τ ).
The results of surrogate tests are presented as means ± standard errors. surEs, surEs, and surEms refer to
Es, E f , and Ems of phase-randomized surrogate data, respectively. For RS-Es and RS-E f , 20 surrogate data
sets were generated from the new signal at scale τ; for Ems, 20 surrogate data sets were also generated
from the original signal for each scale τ. (B) Relative wavelet amplitudes (Ar) of the metabolic, neurogenic,
myogenic, respiratory, and cardiac frequencies of the generated signal at each scale τ using the RS method.

2.4. Multi-Scale Entropy of SBF Data

The above testing results (Figure 5A) indicate that Ems was almost identical to RS-Es and much
larger than E f at each scale, while the transitions of Ems and RS-Es with increasing scales were similar
to that of E f . Therefore, we applied Ems to the SBF data collected from 18 diabetic patients and eight
healthy controls. For the loading protocol, Ems was calculated for three segments of the SBF signal:
baseline (1–10 min), loading period (11–13 min), and reactive hyperemia (a 5-min period following
the peak hyperemia [8]); for the heating protocol, Ems was calculated for three segments of the SBF
signal: baseline (1–10 min), P1 (a 5-min period following the beginning of the increase in SBF), and P2
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(the last 10-min segment of the heating period). To eliminate the influences of possible ascending
and/or descending trends as well as noise on Ems, each data segment was filtered by decomposing
it using the ensemble empirical mode decomposition method [24] and reconstructing a new signal
from the intrinsic mode functions with frequencies between 0.0095 and 2 Hz [8]. Then Ems(m, r, τ, N)

was computed for the filtered data at the scales from τ= 1 to 20. The parameters m= 2, r= 0.2 × SD
were used.

2.5. Relative Wavelet Amplitude of BFO at Multiple Scales

To understand the underlying mechanisms responsible for the transition of Ems, we applied
wavelet analysis to the signals constructed from the original one using the RS method. For a constructed
signal at scale τ, y(τ) = {y(i), i = 1, . . . , N} (Equation (5)), its continuous wavelet transform was
defined as w(s, t) =

∫ +∞
−∞ ψs,t(u)y(u)du, where ψs,t =

1√
s ψ( u−t

s ), ψ(u) is the mother wavelet function,
s is the scale corresponding to the central frequency of ψs,t, and t is time. In this study, we used
the Morlet wavelet ψ(u) = π−1/4e−iω0ue−u2/2 as the mother wavelet function, for which s is the
reciprocal of the central frequency of ψs,t when ω0 = 2π. Then we calculated the average amplitudes
of the wavelet transform over time and over the frequency interval of five frequency components:
metabolic (0.0095–2 Hz), neurogenic (0.02–0.05 Hz), myogenic (0.05–0.15 Hz), respiratory (0.15–0.4 Hz),
and cardiac (0.4–2 Hz) components. Finally, the averaged wavelet amplitudes of the five frequency
components were normalized (divided) by that of the frequency interval 0.0095–2 Hz to yield relative
wavelet amplitudes (Ar). Figure 3B shows the Ar values of the five frequency components of the SBF
signal for calculating Ems. A prominent feature of the changes in Ar was that Ar of the metabolic and
cardiac components show persistent decrease and increase with increasing scales, respectively.

2.6. Statistical Analysis

The differences in multiscale entropy Ems and relative wavelet amplitude Ar between two groups were
examined using Mann–Whitney U test; the within-group differences in these measures were examined
using Wilcoxon signed-rank test. These tests were performed using SPSS 16 (SPSS, Chicago, IL, USA).

3. Results

A common feature of the multiscale entropy, Ems, was that it rose with increasing scales at
small scales and then reached a plateau (Figures 6 and 7). Applied pressure resulted in a significant
increase in Ems at all scales in diabetics (p < 0.01, Figure 6C) but not in controls (p > 0.05, Figure 6A).
During reactive hyperemia, Ems in diabetics showed little change compared to baseline (Figure 6C),
whereas in controls it showed a significantly decrease at the scales τ= 3 to 7 and τ= 10 to 20 (Figure 6A).
Compared to controls, Ems in diabetics was significantly lower at the scales τ= 1 to 8 and τ= 14 to
16 during baseline (p < 0.05, Figure 7A,B), but was significantly higher at the scales τ= 13 to 18 during
reactive hyperemia (p < 0.05, Figure 7E).

During thermally induced biphasic response, Ems in diabetics showed only small changes at all
scales (Figure 6D), whereas in controls it significantly decreased at the scales τ= 1 to 7 and τ= 16 to
18 during P1 and at the scales τ= 1 to 7 during P2 (p < 0.05, Figure 6B). Compared to controls, Ems in
diabetics was significantly lower at the scales τ= 1 to 4 and τ= 8 to 12 during P1 (p < 0.05, Figure 7D)
and at all scales during P2 (p < 0.05, Figure 7F).

Figure 8 shows the mean values of Ar of the characteristic frequency components at multiple
scales in two groups. A prominent feature was that Ar of the metabolic component declined at small
scales during baseline and the SBF responses except for thermally induced first peak (Figure 8A,B),
while Ar of cardiac component initially underwent a transient decrease followed by a sustained
increase (Figure 8I,J). During thermally induced first peak, Ar of metabolic component at small scales
showed a pronounced increase followed by a substantial decrease (Figure 8B), while Ar of neurogenic
component exhibited similar changes but at larger scales (Figure 8D).
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Figure 6. Within-group comparisons of Ems(m, r, τ, N). Data are represented as means ± standard
errors. (A) In controls, comparison of Ems between hyperemia period and baseline yielded p < 0.05 at
τ =1 to 7 and τ =16 to 18. (B) In controls, comparison of Ems between P1 and baseline yielded p < 0.05 at
τ = 1 to 7 and τ =16 to 18, while comparison of Ems between P2 and baseline yielded p < 0.05 at τ =1 to
7. (C) In diabetics, comparison of Ems between the pressure period and baseline yielded p < 0.01 at all
scales. (D) In diabetics, Ems(m, r, τ, N) yielded similar values during three periods of heating protocol.

Figure 7. Cont.
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Figure 7. Comparisons of Ems(m, r, τ, N) between two groups. Data are represented as means± standard
errors. (A) During the baseline period of the pressure loading protocol, Ems in diabetics was significantly
lower (p < 0.05) at the scales τ = 1 to 8 and τ = 14 to 16. (B) During the baseline period of the local heating
protocol, Ems in diabetics was significantly lower (p < 0.05) at all scales. (C) During the loading pressure
period, there was no significant difference between two groups. (E) During hyperemia, Ems in diabetics
was significantly higher at τ = 13 to 18. (D) During P1, Ems in diabetics was significantly lower (p < 0.05)
at τ = 1 to 4 and τ = 8 to 12. (F) During P2, Ems in diabetics was significantly lower (p < 0.05) at all scales.

Figure 8. Relative wavelet amplitudes (Ar) of metabolic (A,B), neurogenic (C,D), myogenic (E,F),
respiratory (G,H), and cardiac (I,J) components of blood flow oscillations (BFO) at multiple scales in
response to loading pressure (left panels) and local heating (right panels). Data are represented as
mean values in two groups. CB, CP, CH, CP1, and CP2 refer to baseline, loading pressure, hyperemia,
first peak, and second peak periods in controls, respectively; DB, DP, DH, DP1, and DP2 refer to the
same periods in diabetics.
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4. Discussion

The main findings of this study are as follows. First, during reactive hyperemia and the biphasic
response induced by local heating, Ems in diabetics showed only small changes compared to baseline
but in controls it underwent significant changes (Figure 6). As a consequence, Ems in diabetics
significantly differed from that in controls at multiple scales (Figure 7). Second, during baseline
and the SBF responses except for the pressure loading period, Ems at small scales exhibited different
transitions between two groups (Figure 7). These findings indicated that multiscale entropy could
provide a more comprehensive assessment of SBF dynamics compared to entropy measures on a single
scale. Since the SBF data were recorded from the first metatarsal head, one of the most common sites
of DFU, our findings support the use of nonlinear measures of SBF responses induced by mechanical
and thermal stresses to assess the risk of DFU.

In this study, we utilized a modified sample entropy algorithm [13] for computing multiscale
entropy of BFO by varying the lag between neighboring data points of the sequences to be compared.
We have demonstrated that this method yielded almost identical entropy values compared to the RS-Es

method (Figure 5A), which is a combination of sample entropy [16], and a method for generating new
signals from the original one, called reshape scale (RS) method [21]. We have also demonstrated that
RS-E f has no superiority over Ems for assessing the complexity of BFO. Since computing E f is very
time consuming, this measure may be more suitable for short series data, e.g., RR interval series.

A common feature of Ems of BFO was that it showed a rise with increasing scales at small scales,
possibly including a rapid rise followed by a slow rise, and then reached a plateau (Figures 6 and 7).
To get an insight of the underlying mechanisms for this phenomenon, we calculated the relative wavelet
amplitudes (Ar) of the characteristic frequency components of BFO and examined how they changed
with increasing scales. A prominent feature of changes in Ar was that Ar of metabolic component
deceased with increasing scales during baseline and the SBF responses except for thermally induced
first peak (Figure 8A,B), while Ar of the cardiac component initially showed a transient decrease and
then underwent a sustained increase (Figure 8I,J). Therefore, we speculate that Ems of BFO reflects
the homogeneity degree of the combination of the characteristic frequency components. Thus an
augmentation of any frequency component, e.g., metabolic or cardiac components, will contribute to
lowering Ems. In this sense, any entropy measures on a single scale, e.g., sample entropy, only reflect the
homogeneity degree of a specific combination of the characteristic frequency components. For instance,
sample entropy (τ= 1) reflects the regularity degree of BFO where metabolic component and possibly
cardiac component play a dominant role (Figure 8). In our previous study [8], because we used a fixed
parameter τ= 12, we observed a significant influence of cardiac component on Ems during the thermally
induced second peak.

Our results showed that during baseline and the SBF responses except for the pressure loading
period, Ems in diabetics significantly differed from that in controls at multiple scales (Figure 7). Also,
the transition of Ems in diabetics was different from that in controls. For instance, during baseline,
Ems in diabetics showed a fairly rapid increase at the scales from τ= 1 to around 8 (Figure 7A,B),
while in controls Ems showed a rapid increase at the scales from τ= 1 to 3, followed by a slow rise at
the scales from τ= 3 to around 8 (Figure 7A,B). This distinct difference was partially due to different
changes in Ar of the metabolic component between two groups. As shown in Figure 8A,B, in diabetics
Ar of the metabolic component decayed slowly at small scales, whereas in controls it decayed rapidly.

The association between Ems of BFO and Ar of the characteristic frequency components can
also be observed during the SBF responses. However, it should be kept in mind that Ems is a global
measure of the structural properties of BFO, and may be influenced by all frequency components
and the interactions among them [8]. Ems could reveal some global features of BFO that cannot be
distinctively reflect by Ar and vice versa. For example, we observed significantly higher values of Ems

in diabetics at the scales from τ= 6 to 9 and from τ= 12 to 18 during reactive hyperemia (Figure 7C),
but Ar of each frequency component in diabetics was similar to that in controls (Figure 8, left panels).
In contrast, during the thermally induced first peak, Ems in diabetics showed only small changes
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compared to baseline (Figure 6D), but the Ar of each frequency component showed pronounced
changes (Figure 8, right panels). Therefore, Ems and wavelet analysis could be mutually complementary
in assessing SBF responses.

There are several limitations of this study. The sample size was small, which might impede the
power of the statistical analysis. We did not have an age, sex, or BMI matched control. Factors such as
age, sex, and BMI may affect our results. Since ageing can lead to altered dynamics of skin BFO [12,13],
we focused on examining whether age significantly contributed to the results observed in this study.
For example, we observed a significant increase in Ems during the pressure loading period compared
to baseline in diabetics (Figure 6C) but not in controls (Figure 6A) and a significant decrease in Ems

during hyperemia compared to baseline in controls (Figure 6A), but not in diabetics (Figure 6C).
We thus examined whether the changes in Ems (denoted as ∆Ems) were related to age. Figure 9 shows
the results in the case of τ= 6. On one hand, ∆Ems was significantly different between two groups
(p < 0.05 for pressure loading period and p < 0.001 for hyperemia). On the other hand, although ∆Ems

exhibited an increasing trend with age in both groups, the increasing rate (the slop of the fitting line) in
diabetic group is much smaller than that in control group (Figure 9A,B). In particular, ∆Ems in diabetic
group during hyperemia was almost independent of age (Figure 9B). These results suggested that the
significant difference in ∆Ems between two groups was mainly attributed to impaired microvascular
reactivity in the diabetic foot and that age has a marginal effect on BFO dynamics compared to diabetes.
Future studies may follow up the development of DFU in a larger sample size with matched controls
to validate our findings.

Figure 9. (A) Examination of the effect of age on changes in Ems during the pressure loading period
compared to baseline (denoted as ∆Ems, scale factor τ = 6). ∆Ems was significantly larger in diabetics
than in controls (p < 0.05). (B) Examination of the effect of age on ∆Ems (τ = 6) during hyperemia.
The absolute value of ∆Ems was significantly larger in controls (p < 0.001).

5. Conclusions

The present study indicated that during reactive hyperemia and the biphasic response induced
by local heating, the regularity degree of SBF at the first metatarsal head of diabetics underwent only
small changes compared to baseline, and significantly differed from that in healthy controls at multiple
scales. On the other hand, the regularity degree of SBF in the diabetic foot displays distinctively
different transitions compared to controls. This study suggests that multiscale entropy could provide
a more comprehensive assessment of impaired microvascular reactivity in the diabetic foot compared
to any entropy measures on a single scale and may be used to assess the risk for DFU.
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