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Abstract: This paper considers the problem of testing for parameter change in random coefficient
integer-valued autoregressive models. To overcome some size distortions of the existing estimate-based
cumulative sum (CUSUM) test, we suggest estimating function-based test and residual-based CUSUM
test. More specifically, we employ the estimating function of the conditional least squares estimator.
Under the regularity conditions and the null hypothesis, we derive their limiting distributions,
respectively. Simulation results demonstrate the validity of the proposed tests. A real data analysis is
performed on the polio incidence data.
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1. Introduction

In recent years, time series of counts are widely observed in real-world applications, for instance,
the monthly number of people with a certain disease, the number of transactions per minute of some
stock, the number of accidents per a day and so on. Among the existing models for analyzing those
data sets, autoregressive moving average (ARMA)-type models based on a thinning operator, referred
to as integer-valued ARMA models, are still popular since ARMA-type models provide a convenient
way to transfer the classical ARMA recursion to discrete-valued time series (cf. Fokianos [1]). Reviews
for these models are given by McKenzie [2], Weiß [3], Scotto et al. [4] and references cited therein.

As is addressed in Kang and Lee [5], integer-valued time series, particularly in epidemiology, often
undergo a significant change as a result of changes in the quality of health care and the state of patients’
health. It is well known that such a change can affect the statistical inference undesirably and ignoring
a parameter change can lead to a false conclusion. Thus, the change point detection has attracted a lot
of attention. In the field of integer-valued time series, Fokianos and Fried [6,7] investigated a testing
procedure for the detection of intervention effects in linear and log-linear Poisson autoregressive
(AR) models. Szabó [8] proposed the test for a change in several crucial parameters of integer-valued
autoregressive (INAR) (p) models. Kang and Lee [5,9] constructed the estimate-based cumulative sum
(CUSUM) tests for parameter change in random coefficient integer-valued autoregressive (RCINAR)
models and Poisson AR models, respectively. More recently, Pap and Szabó [10] developed change
detection methods for INAR(p) processes in general and provided the results available under the
alternative hypothesis. Doukhan and Kengne [11] proposed two tests based on the likelihood of the
observations in a general class of Poisson AR models. Hudecová et al. [12–15] studied methods for
detecting structural changes in INAR and Poisson AR models incorporating the empirical probability
generating function and Kang and Song [16] constructed the score test in Poisson AR models.

This study is concerned with change point problem in RCINAR models. The random coefficient
setting reflects that the autoregressive coefficient may vary randomly over time due to environmental
factors (cf. Zheng et al. [17], Leonenko et al. [18] and Gomes and Canto e Castro [19]). As aforementioned,
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Kang and Lee [9] developed the estimate-based CUSUM test in RCINAR models. Here, they
constructed the test statistics based on the differences θ̂k − θ̂n to detect a change in parameter θ,
where θ̂k denotes the estimator based on {X1, · · · , Xk}. Their test statistic is very intuitive, but it
has a drawback in that it produces severe size distortions especially when true parameter lies near
the boundary of parameter space. This motivates us to consider alternative methods. In this paper,
we propose an estimating function (EF)-based test and residual-based CUSUM test.

The EF-based test is constructed using the partial sum of estimating function and may be referred
to as Z-process method as in Negri and Nishiyama [20]. Score test for parameter change is an example
of the EF-based test. Indeed, the score test has been studied by several authors. See, for example,
Horváth and Parzen [21], Berkes et al. [22], and Song and Kang [23]. Residual-based CUSUM test has
been used popularly due to its ease of implementation. Because the residuals can avoid dependence
structure in time series observations, it usually produces stable sizes. See, for example, Lee et al. [24],
Kulperger and Yu [25], Kang and Lee [5] and so on. In this study, we use the conditional least squares
estimator (CLSE) to estimate the RCINAR models. Hence, our EF-based test is proposed using the EF
of the CLSE. For residual-based test, we define residual of RCINAR model as the difference between
the observation and its conditional expectation, and then construct CUSUM test.

This paper is organized as follows. In Section 2, we review the CLSE for RCINAR models and
its asymptotic properties. In Section 3, we present the EF-based test and residual-based CUSUM test
and derive their limiting null distributions. In Section 4, we perform a simulation study to see the
finite sample performance. In Section 5, we apply our tests to the polio incidence data for illustration.
Section 6 concludes the paper. All the proofs for the results in Section 3 are provided in the Appendix.

2. CLSE for RCINAR Models

First, the thinning operator is defined as follows: Let X be an integer-valued random variable
and φ ∈ [0, 1], then the thinning operator “◦” takes the form φ ◦ X = ∑X

i=1 Bi where {Bi} is an i.i.d.
Bernoulli random sequence with mean φ that is independent of X (cf. Steutal and Van Harn [26]).
With this operator, the RCINAR model is defined by

Xt = φt ◦ Xt−1 + Zt, t ≥ 1, (1)

where {φt} is an i.i.d. sequence with range [0, 1), {Zt} is an i.i.d. sequence with range N0 = N∪ {0}
that is independent of {φt} and the counting sequences {Bi} involved in φt ◦ Xt−1 for t ≥ 1 are
mutually independent and independent of {Zt}. Note that, conditioned on Xt−1 and φt, φt ◦ Xt−1

follows a binomial distribution with parameters Xt−1 and φt. Assume that E(φ2
t ) < ∞ and E(Z4

t ) < ∞.
According to Proposition 2.2 of Zheng et al. [17], under the assumptions, the Markov chain {Xt} has
a unique stationary distribution. From now on, we suppose that the distribution of the initial value
X0 coincides with this uniquely existing stationary distribution, yielding that the sequence {Xt} is
strictly stationary.

Let θ = (φ, λ)T = (E(φt), E(Zt))T , and denote the true value of θ by θ0 = (φ0, λ0)
T . To estimate

the unknown parameters, we consider the CLSE. Suppose that X0, X1, . . . , Xn from the model (1) are
observed. Then, the CLSE θ̂n is obtained by minimizing the conditional sum of squares

Sn(θ) =
n

∑
t=1

(Xt − E(Xt|Xt−1))
2 =

n

∑
t=1

(Xt − φXt−1 − λ)2 :=
n

∑
t=1

ε2
t (θ)

over R2, and is given by

φ̂n =
n ∑n

t=1 XtXt−1 − (∑n
t=1 Xt−1)(∑n

t=1 Xt)

n ∑n
t=1 X2

t−1 − (∑n
t=1 Xt−1)2
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and

λ̂n =
1
n

(
n

∑
t=1

Xt − φ̂n

n

∑
t=1

Xt−1

)
.

Throughout the paper, we use ∂θ and ∂2
θ to denote ∂/∂θ and ∂2/∂θ∂θT , respectively. The symbol

|| · || denotes the l2 norm for matrices and vectors and E(·) is taken under θ0. The symbols d→ and
p→ denote convergence in distribution and convergence in probability, respectively. The almost sure

convergence is written as “a.s.”.
We define the function g(·, ·) by g(θ, x) = φx + λ, then Sn(θ) can be written in the form ∑n

t=1(Xt−
g(θ, Xt−1))

2. And then, the following result can be established by checking the regularity conditions
in Klimko and Nelson [27].

Theorem 1. We have that θ̂n converges to θ0 almost surely and

√
n(θ̂n − θ0)

d−→ N(0, V−1WV−1)

where V and W are positive definite matrices defined by

V : = E (∂θ g(θ0, X0)∂θT g(θ0, X0)) =

(
E(X2

0) E(X0)

E(X0) 1

)

W : = E
(

u2
1(θ0)∂θ g(θ0, X0)∂θT g(θ0, X0)

)
=

(
E(X2

0(X1 − φ0X0 − λ0)
2) E(X0(X1 − φ0X0 − λ0)

2)

E(X0(X1 − φ0X0 − λ0)
2) E((X1 − φ0X0 − λ0)

2)

)

with u1(θ0) = X1 − E(X1|X0) = X1 − φ0X0 − λ0.

3. Parameter Change Test for RCINAR Models

In this section, we consider the problem of testing the following hypotheses:

H0 : θ does not change over X1, · · · , Xn vs.

H1 : there exists an integer k∗ ∈ {1, · · · , n− 1} such that

θ does not change over X1, · · · , Xk∗ and over Xk∗+1, · · · , Xn but changes over X1, · · · , Xn,

and Z1, · · · , Zk∗ are identically distributed and Zk∗+1, · · · , Zn are identically distributed.

To this end, we employ the EF-based test and residual-based CUSUM test.

3.1. EF-Based Test

First, we consider the EF-based test using the partial sum process of the following estimating function:

∂θSn(θ) =
n

∑
t=1

∂θε2
t (θ) =

n

∑
t=1

2(Xt − φXt−1 − λ)

(
−Xt−1

−1

)
.

As the estimate-based test in Kang and Lee [9] is constructed based on the differences θ̂k − θ̂n,
we construct a test statistic using the differences ∂θSk(θ̂n)− ∂θSn(θ̂n). Noting the fact that ∂θSn(θ̂n) = 0,
we can see that the differences become ∂θSk(θ̂n). Then, the test statistic is proposed as the maximum
value of a function of ∂θSk(θ̂n). To derive its limiting distribution, it is needed to obtain the limiting
distribution of ∂θS[ns](θ̂n) for each s ∈ [0, 1].

By Taylor’s theorem, we have that for each s ∈ [0, 1],

1√
n

∂θS[ns](θ̂n) =
1√
n

∂θS[ns](θ0) +
1
n

∂2
θS[ns](θ

∗
n,s)
√

n(θ̂n − θ0),
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where θ∗n,s is an intermediate point between θ0 and θ̂n and [ns] is the integer part of ns. Here, noting
the fact that ∂2

θS[ns](θ) does not depend on the parameter θ, we have ∂2
θS[ns](θ

∗
n,s) = ∂2

θS[ns](θ0) for all
s ∈ [0, 1]. Thus, we can see that for each s ∈ [0, 1],

1√
n

∂θS[ns](θ̂n) =
1√
n

∂θS[ns](θ0) +
1
n

∂2
θS[ns](θ0)

√
n(θ̂n − θ0). (2)

It follows from (2) and ∂θSn(θ̂n) = 0 that for s = 1,

0 =
1√
n

∂θSn(θ̂n) =
1√
n

∂θSn(θ0) +
1
n

∂2
θSn(θ0)

√
n(θ̂n − θ0).

Let Vn := ∂2
θSn(θ0)/n, then 1

2 Vn → V a.s. by the ergodicity of Xt. The above equation can be
rewritten as

√
n(θ̂n − θ0) = −V−1 1

2
√

n
∂θSn(θ0)−V−1

(
1
2

Vn −V
)√

n(θ̂n − θ0). (3)

Consequently, from (2) and (3), we can write that

1
2
√

n
∂θS[ns](θ̂n) =

1
2
√

n
∂θS[ns](θ0)−

[ns]
n

1
2
√

n
∂θSn(θ0) + In + I In

where

In :=
[ns]

n
1

2
√

n
∂θSn(θ0)−

1
2n

∂2
θS[ns](θ0)V−1 1

2
√

n
∂θSn(θ0),

I In :=
1

2n
∂2

θS[ns](θ0)V−1
(

V − 1
2

Vn

)√
n(θ̂n − θ0).

In fact, it can be verified that

W−
1
2

(
1

2
√

n
∂θS[ns](θ0)−

[ns]
n

1
2
√

n
∂θSn(θ0)

)
w−→ B◦2 (s) in D

(
[0, 1], R2)

where Bo
2 is a 2-dimensional standard Brownian bridge (see Lemma A1 in the Appendix). Here,

D be the function space with respect to the Skorohod topology and the symbol w→ denotes the weak
convergence in function space. Here, W−

1
2 denotes the inverse of the unique positive definite

square root of the positive definite matrix W. Furthermore, In and I In are asymptotically negligible
(see Lemmas A2 and A3 in the Appendix, respectively). Hence, combining the above arguments,
we obtain our first main result.

Theorem 2. Under H0, we have

W−
1
2

1
2
√

n
∂θS[ns](θ̂n)

w−→ Bo
2(s) in D

(
[0, 1], R2) ,

thus

TEF
n := max

1≤k≤n
TEF

n,k = max
1≤k≤n

1
4n

∂θSk(θ̂n)
TŴ−1

n ∂θSk(θ̂n)
d−→ sup

0≤s≤1

∥∥Bo
2(s)

∥∥2
2,

where Ŵn is a consistent estimator of W. We reject H0 if TEF
n is large.
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Remark 1. As a consistent estimator of W, one can consider to use

Ŵn =
1
n


n

∑
t=1

X2
t−1(Xt − φ̂nXt−1 − λ̂n)

2
n

∑
t=1

Xt−1(Xt − φ̂nXt−1 − λ̂n)
2

n

∑
t=1

Xt−1(Xt − φ̂nXt−1 − λ̂n)
2

n

∑
t=1

(Xt − φ̂nXt−1 − λ̂n)
2

 .

3.2. Residual-Based CUSUM Test

Instead of the EF-based test, we consider the test statistic based on the residuals, which may be
defined as the difference between Xt and its conditional expectation (cf. Freeland and McCabe [28]).
For RCINAR models, the residuals are obtained as εt(θ0) = Xt − φ0Xt−1 − λ0. Let Ft be the σ-field
generated by {Xs; s ≤ t}. Since {εt(θ0),Ft, 1 ≤ t ≤ n} forms a sequence of martingale differences,
the invariance principle shows that

max
1≤k≤n

1√
nτ

∣∣∣∣∣ k

∑
t=1

εt(θ0)−
k
n

n

∑
t=1

εt(θ0)

∣∣∣∣∣ d−→ sup
0≤s≤1

|B◦1 (s)|, (4)

where τ2 = Var(ε1(θ0)). This allows us to construct the residual-based CUSUM test. Here, we replace
the residuals with εt(θ̂n) = Xt − φ̂nXt−1− λ̂n, where φ̂n and λ̂n are the CLSE of φ0 and λ0, respectively.
Using the fact that ∑n

t=1 εt(θ̂n) = 0, we propose the test statistic as follows:

max
1≤k≤n

1√
nτ

∣∣∣∣∣ k

∑
t=1

εt(θ̂n)

∣∣∣∣∣ .

From Lemmas A4 and A5, we can see that

max
1≤k≤n

1√
n

∣∣∣∣∣ k

∑
t=1

(εt(θ̂n)− εt(θ0))−
k
n

n

∑
t=1

(εt(θ̂n)− εt(θ0))

∣∣∣∣∣ = oP(1)

and

τ̂2
n :=

1
n

n

∑
t=1

ε2
t (θ̂n)

p−→ τ2,

respectively. Owing to these and (4), we have the second main result.

Theorem 3. Under H0, we have

TR
n := max

1≤k≤n
TR

n,k = max
1≤k≤n

1√
nτ̂n

∣∣∣∣∣ k

∑
t=1

εt(θ̂n)

∣∣∣∣∣ d−→ sup
0≤s≤1

|B◦1 (s)|.

We reject H0 if TR
n is large.

4. Simulation Results

In this section, we evaluate the performance of our tests TEF
n and TR

n . For the comparison purpose,
we additionally perform the estimate-based CUSUM test, TCLS

n , of Kang and Lee [9] given by

TCLS
n := max

1≤k≤n

k2

n
(θ̂k − θ̂n)

TV̂nŴ−1
n V̂n(θ̂k − θ̂n)
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where

V̂n =
1
n


n

∑
t=1

X2
t−1

n

∑
t=1

Xt−1

n

∑
t=1

Xt−1 n

 .

Kang and Lee [9] showed that under H0,

TCLS
n

d−→ sup
0≤s≤1

∥∥Bo
2(s)

∥∥2
2.

We consider the RCINAR model

Xt = φt ◦ Xt−1 + Zt, (5)

where {φt} is an i.i.d. sequence of Beta random variables with parameters (a, b) and {Zt} is an
i.i.d. Poisson sequence with mean λ. Here, we evaluate TEF

n , TR
n and TCLS

n with sample sizes
n = 300, 500, 1000 at the nominal level 0.05: the associated critical values, obtained through Monte
Carlo simulations, are 2.408, 1.353 and 2.408, respectively. For each simulation, the first 1000 initial
observations are discarded to avoid initialization effects. The empirical sizes and powers are calculated
as the proportion of the number of rejections of the null hypothesis based on 1000 repetitions.

In order to calculate empirical sizes, observations are generated from the model (5) with

(b, λ) = (1, 1), (2, 1), (4, 1), (8, 1), (16, 1)

for fixed a = 4. Since the φ varies with a and b, we consider the various combinations of (b, λ) to detect
the change of the parameters φ and λ. Note that φ tends to 1 as b gets close to 1. The empirical sizes are
dotted in Figure 1, where the horizontal dashed lines represent the nominal level 0.05. We can conclude
that the empirical sizes are adequate if the empirical sizes are located near the horizontal dashed lines.
From the figure, it can be seen that none of TEF

n and TR
n has severe size distortions even for the case

that b is close to 1. In contrast, as seen in Kang and Lee [9], TCLS
n shows sever size distortions when b is

close to 1. Although not reported here, we could see that the results for other λ are similar to the case
of λ = 1. Hence, our tests remedy this defect of existing test TCLS

n .
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Figure 1. Plots of empirical powers of TEF
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n and TCLS
n at nominal level 0.05 when λ0 = 1 changes to

λ1 and b = 4 does not change.
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In order to examine the empirical powers, we consider the following alternatives,

H1 : θ changes from θ0 = (φ0, λ0)T to θ1 = (φ1, λ1)T at t = [n/2].

In particular, we consider the two cases:

(i) λ0 = 1 changes to λ1 = 1.2, 1.4, 1.6, 1.8, 2.0 and b = 4 dose not change.
(ii) b0 = 8 changes to b1 = 7, 6 and λ changes in the same way as in (i).

Figures 2–4 show that all the tests produce reasonably good powers and the power increases as
either the distance between θ0 and θ1 or n increases. Overall, our simulation results demonstrate the
validity of TEF

n and TR
n .
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Figure 2. Plots of empirical sizes of TEF
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n at nominal level 0.05.
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Figure 4. Plots of empirical powers of TEF
n , TR

n and TCLS
n at nominal level 0.05 when λ0 = 1 changes to

λ1 and b0 = 8 changes to b1 = 6.

5. Real Data Analysis

In this section, we apply the proposed tests in Section 3 to analyze the monthly counts of
poliomyelitis cases in the US from January 1970 through December 1983, as reported by the Centers
for Disease Control and Prevention. The polio incidence data is one of the most famous data sets in the
context of time series of counts. This data set has been previously studied by many researchers, such
as Zeger [29], Davis et al. [30], Jung and Tremayne [31] and Kang and Lee [5,9]. The data are plotted
in Figure 5 and consist of 168 observations. By investigating the sample ACF and by observing the
spikes, we fit the RCINAR model to the polio incidence data and examine whether a parameter change
exists or not.
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Figure 5. Plot of the number of polio cases in US from January 1970 to December 1983.

In order to test for a change in (φ, λ), TEF
n and TR

n are performed at the nominal level 0.1;
the corresponding critical values are 2.054 and 1.212, respectively (cf. the horizontal lines in Figure 6).
As a result, we obtain TEF

168 = 2.166 and TR
168 = 1.29 indicating rejection of the null hypothesis. Since

both TEF
168,k and TR

168,k have a maximum at k = 35 (cf. Figure 6), the location of the change can be
estimated as November 1972. It is the same result as those of Kang and Lee [5,9].

As we have already seen in Kang and Lee [9], it is revealed that the data in the first period,
from January 1970 through October 1972, follows RCINAR model with
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φ̂ = 0.1551(0.0570), λ̂ = 1.7949(0.1713),

whereas the data in the second period follows RCINAR model with

φ̂ = 0.1760(0.1029), λ̂ = 0.8692(0.1108).

Meanwhile, if the change is ignored and the RCINAR(1) model is fitted to the whole observations,

φ̂ = 0.3021(0.1378), λ̂ = 0.9511(0.1462).

The figures within the parentheses denote the corresponding standard errors.
It can be seen that the estimated parameters in the first period are different from those in the

second period. This indicates that ignoring a parameter change can lead to a false result. Furthermore,
Figure 7 displays the polio series with the horizontal lines indicating the sample means of the first and
second periods, which are 2.95 and 1.15, respectively. It looks quite evident that the series before and
after November 1972 have different levels. Overall, the existence of a change is supported in this data.

Figure 6. Plots of TEF
n,k (a) and TR

n,k (b) with change at k̂ = 35.
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Figure 7. Plot of the number of polio cases with change in November 1972.
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6. Conclusions

In this study, we constructed an estimating function-based test and residual-based CUSUM
test to detect a parameter change in RCINAR models and derived their limiting null distributions.
According to simulation results, the proposed tests produce stable sizes even for the case that true
parameter lies near the boundary of parameter space and reasonably good powers. Additionally,
through a real data analysis, we demonstrated that there exists a parameter change in polio incidence
data, which is consistent with previous research. Therefore, our tests can be useful tools in detecting
for parameter change.

We anticipate that our tests can extend to other types of integer-valued models. Although we
only derived asymptotic null distributions of the proposed tests, the behavior under the alternative,
i.e., the consistency of the tests, is also of great interest. Indeed, there are several studies such as Pap
and Szabó [10], Hudecová et al. [15] and Doukhan and Kengne [11] dealing with the consistency
of each test in time series of counts. As with their studies, we presume that our tests also have the
consistency property based on our simulation results (not reported). We leave these issues as a task for
our future study.

Acknowledgments: The author is deeply grateful to the anonymous referees for carefully examining the paper
and providing valuable comments which improved the paper. The author also thanks Junmo Song for valuable
comments and encouragement.
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Appendix A

In this appendix, we provide proofs for the Theorems 2 and 3 in Section 3.

Lemma A1. Under H0,

1
2
√

n
∂θS[ns](θ0)−

[ns]
n

1
2
√

n
∂θSn(θ0)

w−→W
1
2 B◦2 (s) in D

(
[0, 1], R2).

Proof of Lemma A1. Note that E
(
∂θε2

t (θ0)|Ft−1
)
= 0. Since {∂θε2

t (θ0)} is strictly stationary and
ergodic, it follows from the functional limit theorem for martingales that

1√
n

[ns]

∑
t=1

∂θε2
t (θ0)

w−→
[

E
(

∂θε2
t (θ0)∂θT ε2

t (θ0)
)] 1

2 B2(s) in D
(
[0, 1], R2),

that is,

1
2
√

n
∂θS[ns](θ0)

w−→W
1
2 B2(s) in D

(
[0, 1], R2),

where B2 is a 2-dimensional standard Brownian motion. Furthermore, by the martingale central limit
theorem, we have

1
2
√

n
∂θSn(θ0)

d−→ N(0, W). (A1)

This completes the proof.

Lemma A2. Under H0,

sup
0≤s≤1

∥∥∥ 1
2n

∂2
θS[ns](θ0)V−1 1

2
√

n
∂θSn(θ0)−

[ns]
n

1
2
√

n
∂θSn(θ0)

∥∥∥ = oP(1).
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Proof of Lemma A2. Note that

sup
0≤s≤1

∥∥∥ 1
2n

∂2
θS[ns](θ0)V−1 1

2
√

n
∂θSn(θ0)−

[ns]
n

1
2
√

n
∂θSn(θ0)

∥∥∥
≤
∥∥∥V−1 1

2
√

n
∂θSn(θ0)

∥∥∥ max
1≤k≤n

k
n

∥∥∥ 1
2k

∂2
θSk(θ0)−V

∥∥∥.

Since ‖ 1
2 Vn −V‖ → 0 a.s., it can be shown that

max
1≤k≤

√
n

k
n

∥∥∥ 1
2k

∂2
θSk(θ0)−V

∥∥∥ ≤ 1√
n

sup
n

∥∥∥1
2

Vn −V
∥∥∥ = o(1) a.s.

and

max√
n<k≤n

∥∥∥ 1
2k

∂2
θSk(θ0)−V

∥∥∥ = o(1) a.s.,

which subsequently yield that

max
1≤k≤n

k
n

∥∥∥ 1
2k

∂2
θSk(θ0)−V

∥∥∥ = o(1) a.s.. (A2)

Owing to this and (A1), the lemma is established.

Lemma A3. Under H0,

sup
0≤s≤1

∥∥∥ 1
2n

∂2
θS[ns](θ0)V−1

(
V − 1

2
Vn

)√
n(θ̂n − θ0)

∥∥∥ = oP(1).

Proof of Lemma A3. Due to (A2), we have

sup
0≤s≤1

∥∥∥ 1
2n

∂2
θS[ns](θ0)

∥∥∥ ≤ max
1≤k≤n

k
n

∥∥∥ 1
2k

∂2
θSk(θ0)−V

∥∥∥+ ‖V‖ = OP(1),

together with the facts that ‖ 1
2 Vn−V‖ → 0 a.s. and

√
n(θ̂n− θ0) = OP(1), the lemma is established.

Lemma A4. Under H0,

max
1≤k≤n

1√
n

∣∣∣∣∣ k

∑
t=1

(εt(θ̂n)− εt(θ0))−
k
n

n

∑
t=1

(εt(θ̂n)− εt(θ0))

∣∣∣∣∣ = oP(1).

Proof of Lemma A4. Note that

max
1≤k≤n

1√
n

∣∣∣∣∣ k

∑
t=1

(εt(θ̂n)− εt(θ0))−
k
n

n

∑
t=1

(εt(θ̂n)− εt(θ0))

∣∣∣∣∣
= max

1≤k≤n

1√
n

∣∣∣∣∣ k

∑
t=1

(θ̂n − θ0)
T∂θεt(θ0)−

k
n

n

∑
t=1

(θ̂n − θ0)
T∂θεt(θ0)

∣∣∣∣∣
≤
√

n||θ̂n − θ0|| max
1≤k≤n

k
n

∥∥∥∥∥1
k

k

∑
t=1

∂θεt(θ0)−
1
n

n

∑
t=1

∂θεt(θ0)

∥∥∥∥∥ .

Since ∂θεt(θ0) is ergodic and
√

n||θ̂n − θ0|| = OP(1), the right-hand side of the inequality is oP(1).
This completes the proof.
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Lemma A5. Under H0,

τ̂2
n

p−→ τ2.

Proof of Lemma A5. Note that

|τ̂2
n − τ2| =

∣∣∣ 1
n

n

∑
t=1

ε2
t (θ̂n)− E(ε2

t (θ0))
∣∣∣

≤
∣∣∣ 1
n

n

∑
t=1

ε2
t (θ̂n)−

1
n

n

∑
t=1

ε2
t (θ0)

∣∣∣+ ∣∣∣ 1
n

n

∑
t=1

ε2
t (θ0)− E(ε2

t (θ0))
∣∣∣. (A3)

To deal with the first term of (A3), we note that∣∣∣∣∣
√

1
n

n

∑
t=1

ε2
t (θ̂n)−

√
1
n

n

∑
t=1

ε2
t (θ0)

∣∣∣∣∣ ≤
√

1
n

n

∑
t=1

(εt(θ̂n)− εt(θ0))2

≤
√

1
n
||θ̂n − θ0||2

n

∑
t=1
||∂θεt(θ0)||2.

Owing to E
(
||∂θεt(θ0)||2

)
< ∞ and

√
n||θ̂n − θ0|| = OP(1), the right hand side of the above last

inequality is OP(1/
√

n). Furthermore, it follows from the ergodicity of ε2
t (θ0) that the second term

of (A3) is oP(1), and therefore, the lemma is validated.

References

1. Fokianos, K. Some recent progress in count time series. Statistics 2011, 45, 49–58.
2. McKenzie, E. Discrete variate time series. Stochastic processes: Modelling and simulation. In Handbook of

Statistics; Shanbhag, D.N., Rao, C.R., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2003; Volume 21,
pp. 573–606, ISBN 9780444500137.

3. Weiß, C.H. Thinning operations for modeling time series of counts a survey. AStA Adv. Stat. Anal. 2008,
92, 319–341.

4. Scotto, M.G.; Weiß, C.H.; Gouveia, S. Thinning-based models in the analysis of integer-valued time series:
A review. Stat. Model. 2015, 15, 590–618.

5. Kang, J.; Lee, S. Parameter change test for Poisson autoregressive models. Scand. J. Stat. 2014, 41, 1136–1152.
6. Fokianos, K.; Fried, R. Interventions in INGARCH processes. J. Time Ser. Anal. 2010, 31, 210–225.
7. Fokianos, K.; Fried, R. Interventions in log-linear Poisson Autoregression. Stat. Model. 2012, 12, 299–322.
8. Szabó, T.T. Test statistics for parameter changes in INAR(p) models and a simulation study. Aust. J. Stat.

2011, 40, 265–280.
9. Kang, J.; Lee, S. Parameter change test for random coefficient integer-valued autoregressive processes with

application to polio data analysis. J. Time Ser. Anal. 2009, 30, 239–258.
10. Pap, G.; Szabó, T.T. Change detection in INAR(p) processes against various alternative hypotheses.

Commun. Stat. Theory Methods 2013, 42, 1386–1405.
11. Doukhan, P.; Kengne, W. Inference and testing for structural change in general Poisson autoregressive

models. Electron. J. Stat. 2015, 9, 1267–1314.
12. Hudecová, Š.; Hušková, M.; Meintanis, S.G. Detection of changes in INAR models. In Stochastic Models,

Statistics and Their Applications; Steland, A., Rafajlowicz, E., Szajowski, K., Eds.; Springer: New York, NY,
USA, 2015; pp. 11–18.

13. Hudecová, Š.; Hušková, M.; Meintanis, S.G. Tests for time series of counts based on the probability generating
function. Statistics 2015, 49, 316–337.

14. Hudecová, Š.; Hušková, M.; Meintanis, S.G. Change detection in INARCH time series of counts.
In Nonparametric Statistics; Cao, R., Gonzalez Manteiga, W., Romo, J., Eds.; Springer: New York, NY,
USA, 2016; pp. 47–58.



Entropy 2018, 20, 107 13 of 13

15. Hudecová, Š.; Hušková, M.; Meintanis, S.G. Tests for structural changes in time series of counts. Scand. J. Stat.
2017, 44, 843–865.

16. Kang, J.; Song, J. Score test for parameter change in Poisson autoregressive models. Econ. Lett. 2017, 160, 33–37.
17. Zheng, H.T.; Basawa, I.V.; Datta, S. The first order random coefficient integer-valued autoregressive processes.

J. Stat. Plan. Inference 2007, 173, 212–229.
18. Leonenko, N.N.; Savani, V.; Zhigljavsky, A.A. Autoregressive negative binomial processes. Ann. ISUP 2007,

51, 25–47.
19. Gomes, D.; e Castro, L.C. Generalized integer-valued random coefficient for a first order structure

autoregressive (RCINAR) process. J. Stat. Plan. Inference 2009, 139, 4088–4097.
20. Negri, I.; Nishiyama, Y. Z-process method for change point problems with applications to discretely observed

diffusion processes. Stat. Methods Appl. 2017, 26, 231–250.
21. Horváth, L.; Parzen, E. Limit theorems for Fisher-score change processes. Lect. Notes Monogr. Ser. 1994,

23, 157–169.
22. Berkes, I.; Horváth, L.; Kokoszka, P. Testing for parameter constancy in GARCH(p,q) models.

Stat. Probab. Lett. 2004, 4, 263–273.
23. Song, J.; Kang, J. Parameter change tests for ARMA-GARCH models. Comput. Stat. Data Anal. 2018,

121, 41–56.
24. Lee, S.; Tokutsu, Y.; Maekawa, K. The cusum test for parameter change in regression models with ARCH

errors. J. Jpn. Stat. Soc. 2004, 34, 173–188.
25. Kulperger, R.; Yu, H. High moment partial sum processes of residuals in GARCH models and their

applications. Ann. Stat. 2005, 33, 2395–2422.
26. Steutal, F.; Van Harn, K. Discrete analogues of self decomposability and stability. Ann. Probab. 1979, 7, 893–899.
27. Klimko, L.A.; Nelson, P.I. On conditional least squares estimation for stochastic processes. Ann. Stat. 1978,

6, 629–642.
28. Freeland, R.K.; McCabe, B.P. Analysis of low count time series data by Poisson autoregression. J. Time

Ser. Anal. 2004, 25, 701–722.
29. Zeger, S.L. A regression model for time series of counts. Biometrika 1988, 75, 621–629.
30. Davis, R.A.; Dunsmuir, W.; Wang, Y. On autocorrelation in a Poisson regression model. Biometrika 2000,

87, 491–505.
31. Jung, R.C.; Tremayne, A.R. Useful models for time series of counts or simply wrong ones? AStA Adv.

Stat. Anal. 2011, 95, 59–91.

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	CLSE for RCINAR Models 
	Parameter Change Test for RCINAR Models 
	EF-Based Test
	Residual-Based CUSUM Test

	Simulation Results 
	Real Data Analysis 
	Conclusions
	
	References

