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Abstract: Consider a uniquely ergodic C∗-dynamical system based on a unital *-endomorphism
Φ of a C∗-algebra. We prove the uniform convergence of Cesaro averages 1

n ∑n−1
k=0 λ−nΦ(a) for all

values λ in the unit circle, which are not eigenvalues corresponding to “measurable non-continuous”
eigenfunctions. This result generalizes an analogous one, known in commutative ergodic theory,
which turns out to be a combination of the Wiener–Wintner theorem and the uniformly convergent
ergodic theorem of Krylov and Bogolioubov.

Keywords: ergodic theorems; C∗-dynamical systems

1. Introduction

Motivated by the question of justifying the thermodynamical laws with the microscopic principles
of statistical mechanics (i.e., the so-called ergodic hypothesis), the investigation of the ergodic properties
of classical (i.e., commutative) dynamical systems has a long history.

Indeed, given a classical dynamical system (X, T, µ), where X is a compact space, T : X →
X a continuous map, and finally, µ an invariant probability measure under the natural action of
T, the classical ergodic theory primarily deals with the long time behavior of the Cesaro means
(ergodic averages)

Mn( f ) :=
1
n

n−1

∑
k=0

f ◦ Tk , f ∈ C(X) , n ∈ N ,

of continuous functions, or more generally of any measurable function f w.r.t. the σ-algebra generated
by the µ-measurable sets.

Among the most famous classical ergodic theorems, we mention the Birkhoff individual ergodic
theorem concerning the study of the point-wise limit limn→+∞ Mn( f )(x) and the von Neumann mean
ergodic theorem concerning the limit L2−limn→+∞ Mn( f ), whenever f is square-summable.

The quantity of results obtained in the commutative setting is too huge to summarize an
exhaustive description. However, a standard reference, dealing mainly with the classical case, is [1].
We also mention several unconventional ergodic theorems (e.g., [2]), which play a fundamental role in
number theory.

Most of the known ergodic results concern the so-called W∗-setting, which roughly
speaking involve the functions in the commutative W∗-algebra L∞(X, dµ) = πµ(C(X))′′;
see, e.g., Theorem III.1.2 in [3].

At the same way, also the investigation of the uniform convergence of ergodic averages
(i.e., involving directly continuous functions in the commutative C∗-algebra C(X)) is of great interest.

Among such kind of results, we mention the following one relative to the so-called uniquely
ergodic dynamical systems. The classical dynamical system (X, T) is said to be uniquely ergodic
if there exists a unique probability Radon measure µ, which is invariant under the action of the
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transformation T. It was proven in [4] that (X, T) is uniquely ergodic if and only if, for the Cesaro
average of any f ∈ C(X),

lim
n

1
n

n−1

∑
k=0

f ◦ Tk =
∫

X
f dµ ,

uniformly. In [5], the last result was generalized to averages of the form

lim
n

1
n

n−1

∑
k=0

λ−k f ◦ Tk ,

for certain λ in the unit circle T.
With the impetuous growth of quantum physics, it was natural to address the systematic

investigation of ergodic properties of quantum (i.e., noncommutative) dynamical systems. On the
other hand, the situation in the quantum setting appears rather more complicated than the classical
situation. Typically, one must provide all statements in terms of the dual concept of “functions” instead
of “points”. Therefore, algebras of functions are replaced by general C∗ or W∗-algebras A, and the
action on functions ΦT( f ) := f ◦ T of the transformation T is replaced by that of a positive linear
map Φ : A → A acting directly on elements of A. Concerning some general ergodic properties of
noncommutative dynamical systems, the reader is referred to [6] and the literature cited therein.

The systematic study of some natural generalizations of ergodic properties to the quantum
case has been carried out in the seminal paper [7]. The reader is also referred to [8–11] for some
quantum versions of unconventional (called also “entangled”) ergodic theorems and to [12–14] for
the investigation of the strong ergodic properties of dynamical systems arising from free probability
and generalizing the unique ergodicity. Some natural applications of ergodic results to quantum
probability are also carried out; see [15] and the references cited therein.

The goal of the present note is to provide the quantum generalization of the interesting result
proven in [5] involving the uniform convergence of Cesaro averages relative to uniquely ergodic
quantum dynamical systems “continuous” eigenfunctions. This result can be considered a combination
of the Wiener–Wintner theorem (cf. [16]) and the uniformly convergent ergodic theorem of Krylov and
Bogolioubov (cf. [4]).

More precisely, let (A, Φ, ϕ) be a uniquely ergodic C∗-dynamical system based on a unital
C∗-algebra and a unital ∗-homomorphism Φ : A → A with ϕ ∈ S(A) as the unique invariant
state. Consider the covariant Gelfand–Naimark–Segal representation

(
Hϕ, πϕ, Vϕ,Φ, ξϕ

)
associated

with the state ϕ, together with the peripheral pure-point spectra (see below for the definition) σ
ph
pp (Φ)

and σ
ph
pp (Vϕ,Φ) of Φ and the isometry Vϕ,Φ ∈ B(Hϕ), respectively. We see that σ

ph
pp (Φ) ⊂ σ

ph
pp (Vϕ,Φ),

but in general, they are different. Put for a ∈ A and λ ∈ T,

Ma,λ(n) :=
1
n

n−1

∑
k=0

λ−kΦk(a) , n ∈ N . (1)

We show that, in the norm topology of A (compare with Proposition 3.2 in [7]),

(i) if λ ∈ σ
ph
pp (Φ), then Ma,λ(n) → ϕ(u∗λa)uλ, where uλ ∈ A is a unitary eigenvector

(i.e., a “continuous eigenfunction” in the language of [5]) corresponding to λ, which is uniquely
determined up to a phase-factor;

(ii) if λ ∈ σ
ph
pp (Vϕ,Φ)

c (i.e., λ does not admit any nontrivial “measurable eigenfunction” in the
language of [5]), then Ma,λ(n)→ 0.

We end the paper with some example based on the tensor product, which is however nontrivial, of
an Anzai skew product (cf. [17]) and a uniquely mixing noncommutative dynamical system, for which
the sequence

{
Ma,λ(n)

}
n∈N does not converge for some a ∈ A and λ ∈ σ

ph
pp (Vϕ,Φ)\σ

ph
pp (Φ).
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2. Preliminaries

With T := {λ ∈ C | |λ| = 1}, we denote the unit circle of the complex plane. It is homeomorphic
to the interval [0, 2π) by θ ∈ [0, 2π) 7→ e−ıθ , after identifying the end-points zero and 2π.

A (discrete) C∗-dynamical system is a triplet (A, Φ, ϕ) consisting of a C∗-algebra, a positive map
Φ : A→ A, and a state ϕ ∈ S(A) such that ϕ ◦Φ = ϕ. Consider the Gelfand–Naimark–Segal (GNS for
short) representation

(
Hϕ, πϕ, ξϕ

)
; see, e.g., [3]. If in addition

ϕ
(
Φ(a)∗Φ(a)

)
≤ ϕ(a∗a) , a ∈ A ,

then there exists a unique linear contraction Vϕ,Φ ∈ B(Hϕ) such that Vϕ,Φξϕ = ξϕ and

Vϕ,Φπϕ(a)ξϕ = πϕ(Φ(a))ξϕ , a ∈ A .

The quadruple
(
Hϕ, πϕ, Vϕ,Φ, ξϕ

)
is called the covariant GNS representation associated with the

triplet (A, Φ, ϕ).
If Φ is multiplicative, hence a ∗-homomorphism, then Vϕ,Φ is an isometry with final range

Vϕ,ΦV∗ϕ,Φ, the orthogonal projection onto the subspace πϕ(Φ(A))ξϕ; see, e.g., Lemma 2.1 of [7].
For the C∗-dynamical system (A, Φ, ϕ), the case when A is a unital C∗-algebra with unity

1I ≡ 1IA, and Φ is multiplicative and identity-preserving, i.e., a unital ∗-homomorphism, is of primary
importance. Indeed, denote by AΦ :=

{
a ∈ A | Φ(a) = a

}
the fixed-point subalgebra, and

σ
ph
pp (Φ) :=

{
λ ∈ T | λ is an eigenvalue of Φ

}
the set of the peripheral eigenvalues of Φ (i.e., the peripheral pure-point spectrum), with Aλ the relative
eigenspaces. Obviously, 1I ∈ AΦ = A1.

For ξ ∈ Hϕ and n ∈ Z, consider the sequence

µ̂ξ(n) :=
{ 〈Vn

ϕ,Φξ, ξ〉 if n ≥ 0 ,

〈Vn
ϕ,Φξ, ξ〉 if n < 0 .

Proposition 1. For each ξ ∈ Hϕ, the sequence
{

µ̂ξ(n)
}

n∈Z is positive definite, and therefore, it is the Fourier
transform of a positive bounded Radon measure µξ on the unit circle T.

Proof. Since Φ is multiplicative, Vϕ,Φ is an isometry. Consider its Sz-Nagy dilation (cf. [18])

V =

(
Vϕ,Φ IHϕ

−Vϕ,ΦV∗ϕ,Φ
0 −V∗ϕ,Φ

)

acting on the direct sumHϕ ⊕Hϕ, together with its spectral resolution (e.g., [19])

V =
∫ 2π

0
e−ınθ dE(θ) ,

and finally the vector

ηξ =

(
ξ

0

)
∈ Hϕ ⊕Hϕ .

Notice that

µ̂ξ(n) =
∫ 2π

0
e−ınθ d〈E(θ)ηξ , ηξ〉 ,

and therefore, µ̂ξ(n) is the Fourier transform of the positive bounded Radon measure µξ =

d〈E(θ)ηξ , ηξ〉 on the unit circle.
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Consider the pure-point peripheral spectrum

σ
ph
pp (Vϕ,Φ) :=

{
λ ∈ T | λ is an eigenvalue of Vϕ,Φ

}
of Vϕ,Φ. Denote with Pλ ∈ B(Hϕ) the orthogonal projection onto the eigenspace generated by the

eigenvectors associated with λ ∈ T, with the convention Pλ = 0 if λ /∈ σ
ph
pp (Vϕ,Φ).

With an abuse of language, µξ is the spectral measure of Vϕ,Φ relative to ξ ∈ Hϕ. Therefore,
if λ = e−ıθ ∈ T, then µξ({θ}) = ‖Pλξ‖2.

The C∗-dynamical system (A, Φ) made of a unital C∗-algebra A and an identity-preserving
completely positive map Φ : A→ A is said to be uniquely ergodic if there exists only one invariant
state ϕ for the dynamics induced by Φ. For a uniquely ergodic C∗-dynamical system, we simply write
(A, Φ, ϕ) by pointing out that ϕ ∈ S(A) is the unique invariant state.

From now on, we specialize the situation to the case when Φ is a unital ∗-homomorphism of the
unital C∗-algebra A.

For the sake of completeness, we collect some standard results, which are probably known to
the experts.

Proposition 2. Let the C∗-dynamical system (A, Φ, ϕ) be uniquely ergodic. Then, σ
ph
pp (Φ) is a subgroup

of T, and all corresponding eigenspaces Aλ, λ ∈ σ
ph
pp (Φ), have dimension one and are generated by a single

unitary uλ.

Proof. Since (A, Φ, ϕ) is uniquely ergodic, we have for the ergodic average,

1
n

n−1

∑
k=0

Φk(a) −→ ϕ(a)1I , a ∈ A ,

uniformly, where ϕ is the unique invariant state. Suppose a ∈ AΦ. We get a = 1
n ∑n−1

k=0 Φk(a) −→ ϕ(a)1I,
and thus, a is a multiple of the identity.

Fix now λ ∈ σ
ph
pp (Φ) and a, b ∈ Aλ\{0}. Then, a∗b = α1I and ba∗ = β1I for some numbers α, β.

Suppose α = 0. Since aa∗ is a non-null multiple, say c, of the identity, we have aa∗b = 0, which means
b = 0, a contradiction. At the same way, we verify ba∗ 6= 0. Now, α−1a∗ and β−1a∗ are left and right
inverses of b. This means that b is invertible and b−1 = α−1a∗. At the same way, a is invertible, as well.
Moreover, ab−1 = α−1aa∗ = α−1cI. This means a = α−1cb, that is a is a multiple of b. Since aa∗ = cI,
we argue that Aλ = Cuλ for the unitary uλ = c−1/2a.

Let now λj ∈ σ
ph
pp (Φ) with uλj unitaries in Aλj , j = 1, 2. First, u∗λj

is a unitary eigenvector

corresponding to λ−1
j because Φ is a real map. Second, uλ1 uλ2 is a unitary eigenvector corresponding

to λ1λ2 because Φ is multiplicative.

Corollary 1. Let the C∗-dynamical system (A, Φ, ϕ) be uniquely ergodic. Then, σ
ph
pp (Φ) ⊂ σ

ph
pp (Vϕ,Φ).

Proof. Fix λ ∈ σ
ph
pp (Φ), together with a unitary eigenvector uλ ∈ Aλ, which exists by the

previous proposition. For ηλ := πϕ(uλ)ξϕ ∈ Hϕ, first, we get Vϕ,Φηλ = ληλ, and second,
‖ηλ‖2 = ϕ(u∗λuλ) = 1.

The key-point of our analysis is the following result, which is nothing but the noncommutative
version of Lemma 2.1 in [5].
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Lemma 1. Consider the uniquely ergodic C∗-dynamical system (A, Φ, ϕ), together with a sequence of states
{ωn}n∈N ⊂ S(A). Then, for each a ∈ A and λ = e−ıθ ,

µπϕ(a)ξϕ
({θ})1/2 ≥ lim sup

n

1
n

∣∣∣∣ n−1

∑
k=0

ωn
(
Φk(a)

)
λ−k

∣∣∣∣ .

Proof. With λ = e−ıθ , consider the C∗-tensor product C(T) ⊗ A ≡ C(T;A) together with the
∗-homomorphism Φ̃ : C(T;A)→ C(T;A) given by

Φ̃( f )(s) := Φ
(

f (s + θ)
)

, f ∈ C(T;A) , θ ∈ [0, 2π) .

For {ωn}n∈N ⊂ S(A), let {ω̃n}n∈N ⊂ S(C(T;A)) be the sequence of states given by

ω̃n( f ) :=
(

1
n

n−1

∑
k=0

(δ0 ⊗ωn) ◦ Φ̃k
)
( f )

=

(
1
n

n−1

∑
k=0

δkθ ⊗
(
ωn ◦Φk))( f )

=
1
n

n−1

∑
k=0

ωn
(
Φk( f (kθ))

)
.

Notice that for the function f (s) := aeıs ∈ C(T;A),

ω̃n( f ) =
1
n

n−1

∑
k=0

ωn
(
Φk(a)

)
λ−k .

Let {nj}j∈N ⊂ N be a subsequence such that

lim sup
n

1
n

∣∣∣∣ n−1

∑
k=0

ωn
(
Φk(a)

)
λ−k

∣∣∣∣ = lim
j

1
nj

∣∣∣∣ nj−1

∑
k=0

ωnj

(
Φk(a)

)
λ−k

∣∣∣∣ ,

and consider any ∗-weak limit point ω̃ of the sequence {ω̃nj}j∈N, which exists by the Banach Alaoglu
theorem, see, e.g., [19], Theorem 4.21. By passing to a subsequence if necessary, we get

∣∣ω̃( f )
∣∣ = lim

j

1
nj

∣∣∣∣ nj−1

∑
k=0

ωnj

(
Φk(a)

)
λ−k

∣∣∣∣ .

Let ω ∈ S(A) be the marginal of ω̃ defined on constant functions fa(s) := a by

ω(a) := ω̃( fa) , a ∈ A .

By construction, ω̃ is invariant under Φ̃. Therefore, ω is invariant under Φ, as well, which means
ω = ϕ because (A, Φ, ϕ) is uniquely ergodic.

Let
(
Hω̃ , πω̃ , Vω̃,Φ̃, ξω̃

)
be the covariant GNS representation associated with ω̃. By computing as

in Lemma 2.1 of [5], we then conclude for the spectral measures associated with Vω̃,Φ̃ and Vϕ,Φ,

µπω̃( f )ξω̃
({0}) = µπϕ(a)ξϕ

({θ}) .
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Therefore, with Pconst ∈ B(Hω̃), the orthogonal projection onto the one-dimensional subspace
C1IC(T;A) = C⊗ 1IA,

µπϕ(a)ξϕ
({θ})1/2 =µπω̃( f )ξω̃

({0})1/2 = ‖P1( f )‖ ≥ ‖Pconst( f )‖

=
∣∣ω̃( f )

∣∣ = lim sup
n

1
n

∣∣∣∣ n−1

∑
k=0

ωn
(
Φk(a)

)
λ−k

∣∣∣∣ .

3. The Main Result

The present section is devoted to the following ergodic result we want to prove. Denote with χS
the characteristic function of the subset S ⊂ X by

χS(x) :=

{
1 if x ∈ S ,
0 if x ∈ Sc := X\S .

Theorem 1. Let (A, Φ, ϕ) be a uniquely ergodic C∗-dynamical system. Fix λ ∈ X :=
σ

ph
pp (Φ)

⋃ (
T\σph

pp (Vϕ,Φ)
)

. Then, for each a ∈ A,

lim
n

1
n

n−1

∑
k=0

Φk(a)λ−k = χ
σ

ph
pp (Φ)

(λ)ϕ(u∗λa)uλ ,

uniformly for n→ +∞, where uλ ∈ Aλ is any unitary eigenvalue corresponding to λ ∈ σ
ph
pp (Φ).

Proof. First consider the case λ ∈ σ
ph
pp (Φ), and take a unitary eigenvector uλ ∈ Aλ. Since Φ is

multiplicative, we have

ϕ(u∗λa)uλ = uλ lim
n

(
1
n

n−1

∑
k=0

Φk(u∗λa)
)
= lim

n

(
1
n

n−1

∑
k=0

Φk(a)λ−k
)

.

Let now λ /∈ σ
ph
pp (Vϕ,Φ), and suppose 1

n ∑n−1
k=0 Φk(a)λ−k 9 0 uniformly. Then, there would exist a

sequence of states states {ωn}n∈N ⊂ S(A) such that for λ = e−ıθ , lim supn
1
n

∣∣∣∣∑n−1
k=0 ωn

(
Φk(a)

)
λ−k

∣∣∣∣ > 0.

By Lemma 1,

µπϕ(a)ξϕ
({θ})1/2 ≥ lim sup

n

1
n

∣∣∣∣ n−1

∑
k=0

ωn
(
Φk(a)

)
λ−k

∣∣∣∣ > 0

which contradicts λ /∈ σ
ph
pp (Vϕ,Φ).

We end by constructing simple noncommutative examples for which σ
ph
pp (Φ) ( σ

ph
pp (Vϕ,Φ) by

tensoring a uniquely mixing (see [12]) noncommutative C∗-dynamical system (B, γ, ω) based on
the ∗-automorphism γ : B → B, with some Anzai skew product (cf. [17]) as those described in
Section 3 of [5].

Consider the free group FZ on infinitely many generators {gj}j∈Z, together with the one-step shift
gj 7→ gj+1 acting on the generators. Such a shift induces an action of the group of the integers Z on the
reduced group C∗-algebra C∗red(FZ) generated by all powers of the corresponding ∗-automorphism
γ(λ(gj)) := λ(gj+1),

{
λ(gj)

}
j∈Z ⊂ C∗red(FZ) being the unitary generators of the reduced group

C∗-algebra. Here, we have denoted by "λ" the left regular representation of the discrete group FZ on
`2(FZ). The left regular representation also realises, up to unitary equivalence, the GNS representation
of the reduced group C∗-algebra associated to the canonical trace.
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It was shown in Corollary 3.3 of [12] that the C∗-dynamical system
(
C∗red(FZ), γ

)
is uniquely

mixing, and thus uniquely ergodic with the canonical trace τ as the unique invariant state.
Denote by

(
Hτ , πτ , Vτ,γ, ξτ

)
the GNS covariant representation associated with

(
C∗red(FZ), γ, τ

)
.

In particular, we have σ
ph
pp (Vτ,γ) = {1} (Here, we have denoted by “λ” the left regular representation of

the discrete group FZ on `2(FZ). The left regular representation also realizes, up to unitary equivalence,
the GNS representation of the reduced group C∗-algebra associated with the canonical trace.).

Let (A, α, ϕ) be the tensor product C∗-dynamical system, where

A := C
(
T2; C∗red(FZ)

)
∼ C(T2)⊗ C∗red(FZ) ,

α( f )(s) := γ
(

f (Ts)
)

, s = (s1, s2) ∈ T2 , f ∈ C
(
T2; C∗red(FZ)

)
,

and finally

ϕ( f ) :=
( ∫
⊗τ

)
( f ) =

∫
T2

τ( f (s))d2s/4π2 , f ∈ C
(
T2; C∗red(FZ)

)
.

Here, s = (s1, s2) ∈ [0, 2π)2 ∼ T2, and T(s1, s2) = (Rθs1, h(s1) + s2) is the Anzai skew product
corresponding to the rotation Rθ of the angle θ ∈ [0, 2π) such that θ/2π is irrational, and to the
continuous function h : T→ T.

Proposition 3. If the Anzai skew product T is uniquely ergodic, then the above C∗-dynamical system (A, α, ϕ)

is uniquely ergodic, as well.
In addition, there exist Anzai skew products T such that σpp(α) ( σpp(Vϕ,α), and the limit

lim
n

1
n

n−1

∑
k=0

αk(a)λ−k

fails to exist in the weak topology, for some a ∈ A and λ ∈ σpp(Vϕ,α)\σpp(α).

Proof. Since
(
C∗red(FZ), γ, τ

)
is uniquely mixing and the Anzai skew product (T2, T, d2s/4π2) is

supposed to be uniquely ergodic, by Theorem 3.7 of [20], we argue that (A, α, ϕ) is uniquely ergodic.
Notice that σpp(γ) = {1} = σpp(Vτ,γ). Therefore, by Lemma 4.17 of [21], each eigenvector

ηλ ∈ Hϕ = L2(T2, d2s/4π2;Hτ

)
corresponding to the eigenvalue λ ∈ σpp(Vϕ,α) is of the form uλ(s)ξτ

for some unitary function uλ ∈ L2(T2, d2s/4π2) (i.e., a measurable eigenvector in the language of [5]),
which is an eigenvector of the Anzai skew-product (i.e., uλ(Ts) = λuλ(s)) corresponding to the
same value of λ. If moreover, uλ ∈ C(T2) (i.e., a continuous eigenvector in the language of [5]),
then λ ∈ σpp(βT), βT being the dual action of T on functions: βT( f )(s) = f (Ts). Summarizing,
we have

σpp(βT) = σpp(α) ⊂ σpp(Vϕ,α) = σpp(V∫ ,βT
) .

In order to check the latter assertion, it is enough to consider an Anzai skew product and a
continuous function f ∈ C(T2) as in Proposition 3.1 of [5], such that

lim
n

1
n

n−1

∑
k=0

f (Tkt)λ−k

fails to exist for the point t ∈ T2 and λ ∈ T. Therefore, for the element F(s) := f (s)1IC∗red(FZ)
∈ A and

state ω := δt ⊗ τ ∈ S(A), we get

lim
n

1
n

n−1

∑
k=0

ω(α(F))λ−k = lim
n

1
n

n−1

∑
k=0

f (Tkt)λ−k

which fails to exist.
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4. Conclusions

The possibility to address various generalizations of ergodic results to the quantum case is usually
an improbate task. Concerning the present argument, it was still possible to extend the classical result
mutatis-mutandis to the quantum situation. However, the following (stimulating in the opinion of the
author) problems remain open:

• investigate under which conditions the average (1) still converge, even for λ ∈ σ
ph
pp (Vϕ,Φ)\σ

ph
pp (Φ);

• extend our main result (i.e., Theorem 1) to general positive maps Φ : A → A acting on the
C∗-algebra A;

• provide more complex (i.e., which do not merely come from a tensor product construction)
examples for which the average (1) does not converge for some λ ∈ σ

ph
pp (Vϕ,Φ)\σ

ph
pp (Φ).
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