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Abstract: Deep belief networks (DBNs) of deep learning technology have been successfully used in
many fields. However, the structure of a DBN is difficult to design for different datasets. Hence, a DBN
structure design algorithm based on information entropy and reconstruction error is proposed. Unlike
previous algorithms, we innovatively combine network depth and node number and optimizes them
simultaneously. First, the mathematical model of the structural design problem is established, and
the boundary constraint for node number based on information entropy is derived by introducing the
idea of information compression. Moreover, the optimization objective of the network performance
based on reconstruction error is proposed by deriving the fact that network energy is proportional
to reconstruction error. Finally, the improved simulated annealing (ISA) algorithm is used to adjust
the DBN network layers and nodes simultaneously. Experiments were carried out on three public
datasets (MNIST, Cifar-10 and Cifar-100). The results show that the proposed algorithm can design
its proper structure to different datasets, yielding a trained DBN which has the lowest reconstruction
error and prediction error rate. The proposed algorithm is shown to have the best performance
compared with other algorithms and can be used to assist the setting of DBN structural parameters
for different datasets.

Keywords: deep learning; DBN; artificial intelligence; structure design; information entropy;
reconstruction error; improved simulated annealing algorithm

1. Introduction

A deep belief network (DBN) is a kind of deep artificial neural network (ANN) [1]. An ANN,
which originated from Rosenblatt’s perceptron model, is an information processing network composed
of simple nodes that has nonlinear fitting ability [2]. In 2006 and later, Hinton proposed the DBN [3] and
CD-K [4] algorithms, which has enabled ANNs to develop from a shallow to deep structure, achieving
significant performance improvements. As a typical type of deep network [5], DBNs are widely used
in image processing [6–10], speech recognition [11–13] and nonlinear function prediction [14], yielding
excellent performance. However, DBNs still have many problems worth studying, such as the network
structure design [15–19], selection and improvement of training algorithms [20,21], introduction of
automatic encoders, and implementation of GPU parallel acceleration [22,23]. In particular, the design
of DBN network structures is of high research significance.

The performance of a DBN is closely related to its structure. A simple structure can improve the
convergence speed, but it may lead to problems such as low training precision and large prediction error.
A complex structure can improve the training precision, but it can easily lead to non-convergence or
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over-fitting. In engineering practice, experience or trial-and-error method are often used in traditional
ANN structure design [2,24]. However, because a DBN is deep, with numerous nodes and a complex
structure, it is difficult to find the optimal structure using these methods, and the network performance
can-not be guaranteed. In addition, these approaches do not result in a network that can self-adapt,
which is needed to redesign it for different data sets.

Given the above problems, some researchers have studied DBN structure design. In terms of
network depth, Pan et al. proposed using the correlation inference of network energy, network
performance, and depth [15]. Gao et al. determined the number of DBN layers using the correlation of
hidden layers [16]. But them only analyzed the depth with ignoring the relationship between the number
of nodes and the number of layers. Stathakis designed a fitness function to solve the optimal network
structure by combining the coding and optimization process of genetic algorithm [18]. However, it is
not suitable for the process of unsupervised training. In terms of the number of hidden-layer neurons,
researchers have proposed various strategies such as using the data dimensionality as the number of
nodes [21], using more nodes than the data dimensionality [20], the minimizing the error to determine
the node number, and using a symmetric hidden layer structure [21].

Previous studies have preliminarily discussed the design method for a DBN structure, but they
have only discussed a single aspect of structure, either network depth or the number of nodes. Or, they
did not fully consider the unsupervised training process of the DBN network. In fact, the performance
of a network is determined by both aspects. The two parameters are coupled and hence influence
each other. The optimal value of the depth is related to the node selection strategy, and the optimal
value of the number of nodes is related to the depth optimization strategy. If we combine the depth
decision and the node optimization processes while ignoring the organic correlation between them,
it is difficult to obtain a good network structure. Therefore, to improve the performance of DBN by
changing its structure, we need a DBN structure design algorithm that simultaneously and organically
combines network depth and node number.

Hence, this paper proposes a DBN structural design algorithm based on information entropy
and reconstruction error. The algorithm innovatively combines the network depth and number of
nodes into a unified mathematical model, introduces information entropy and reconstruction error,
and uses the ISA algorithm to solve the optimization problem. First, using information compression
and the distribution characteristics of the sample, a bound on the number of hidden layer neurons
based on information entropy is derived. In addition, the positive correlation between reconstruction
error and network energy is proved, and a model optimization that minimizes the reconstruction error
is constructed. Then, this paper employs the ISA algorithm to solve for the network depth and node
number while training the network. The experimental results show that this algorithm can generate
a network structure that is adapted to different datasets. Moreover, the constructed DBN has lower
reconstruction and root-mean-square errors in training process as well as a low prediction error rate in
test process.

2. Structure Optimization Model of a DBN

The DBN structure is determined by the number of layers and the number of nodes (or neurons)
contained in each layer. Therefore, to adjust the structure, it is essential to automatically solve for
the optimal number of layers and nodes for each data set. From the perspective of mathematical
modeling, this problem can be expressed as an optimization in the solution space formed by all feasible
DBN structures. Therefore, for the general optimization model, the problem can be mathematically
expressed in the framework of an objective function and constraint conditions as follows:

min f (x) x ∈ X
s.t. gi(x) = 0 i = 1, 2, . . .

hj(x) ≤ 0 j = 1, 2, . . .
(1)
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where, f (x) denotes the target function and gi(x) and hj(x) denote equality constraints and inequality
constraints, respectively. For the problem of DBN structure design, this paper derives and proves
two conclusions:

Conclusion 1. The range of the number of hidden-layer neurons is based on the information entropy.

Conclusion 2. The network performance is based on reconstruction error.

Hence, the DBN structure optimization model is constructed as follows:

min R(C) C ∈ C
s.t. Nmin(k) ≤ Nhid(k) ≤ Nmax(k), ∀k ∈ 1 . . . n

D ≤ Dmax

(2)

Here, C represents the DBN structure and C represents the solution space formed by all feasible
DBN structures, R(C) indicates the DBN reconstruction error in structure C, k represents the index of
the restricted Boltzmann machine (RBM) in the DBN from 1 to n, Nhid(k) denotes the number of hidden
layer neurons in the k-th RBM, and Nmin(k) and Nmax(k) represent the minimum and maximum values
of the number of neurons in the hidden layer in the k-th RBM, respectively. Finally, D represents the
depth of the DBN network and Dmax represents the maximum depth of the network that meets the
requirements. The physical meaning of the mathematical model is to find the network structure that
minimizes the reconstruction error on the basis of satisfying the boundary for the number of neurons
and the upper bound of the depth of network. Sections 2.1 and 2.2 of this paper detail the derivation
of Conclusions 1 and 2, respectively.

2.1. Lower Bound of the Number of Hidden Neurons

The DBN consists of multiple layers of neurons, where each two adjacent layers of neurons make
up one RBM, as shown in Figure 1. Each RBM has a bipartite graph structure. According to the input
and output, the neurons are divided into a visible layer and hidden layer. Each neuron only performs
layer interconnection and does not perform intra-layer interconnection. Each layer of neurons can
be used as both a hidden layer for the current RBM and a visible layer for the next RBM. Therefore,
a DBN can be regarded as a deep network in which multiple RBMs are stacked.
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Figure 1. RBM structure in a DBN. 
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dimensionality-reducing feature extraction process [25]. Its purpose is to represent high-dimensional 
input data using a low-dimensional output vector through network mapping. This feature extraction 
process, from the viewpoint of information theory, is an information compression process: 

Figure 1. RBM structure in a DBN.

The process of transferring data from the visible layer to the hidden layer in an RBM is a
dimensionality-reducing feature extraction process [25]. Its purpose is to represent high-dimensional
input data using a low-dimensional output vector through network mapping. This feature extraction
process, from the viewpoint of information theory, is an information compression process: eliminating
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the redundant information in the input and using a smaller number of coded bits to achieve the storage
of information.

Based on the idea of information compression, when determining the number of hidden-layer
nodes, it must be ensured that the maximum amount of information that the hidden layer output
vector can store is greater than or equal to the amount of information carried by the input data of
the visible layer, so that information will be transferred losslessly. Otherwise, information will be
inevitably lost, and this will ultimately reduce the overall network performance. Therefore, this paper
employs the information entropy as the criterion for determining the number of hidden layer nodes.

Information entropy, proposed by Shannon, is a measure of information quantity. In physical
sense, it refers to the uncertainty of the received signal. The formula for calculating the information
entropy of a single character is:

H =
J

∑
i=1

p(i) log
1

p(i)
(3)

where, H is information entropy, J is the number of characters, and p(i) indicates the probability of

receiving character i, where
J

∑
i=1

p(i) = 1.

Equation (3) shows that a larger signal uncertainty leads to a larger amount of information.
Moreover, when all the probability values are equal, the amount of information of the character
is maximized.

Let the number of visual layer nodes be Nviso, the probability that the state of the i-th node in a
layer equals zero be denoted by Pi(0), and the probability that the state is equal to one be denoted by
Pi(1). Then, the information entropy Hviso of the RBM visual layer is calculated by:

Hviso =
Nviso

∑
i=1

[
pi(0) log

1
pi(0)

+ pi(1) log
1

pi(1)

]
(4)

Further, let the number of hidden layer nodes be Nhid, the probability that the state of the i-th
node in the layer equals zero be denoted by p′i(0), the probability that the state is equal to one be
denoted by p′i(1), and the hidden layer’s overall information volume be denoted by Hhid. Because the
state of the hidden layer neurons of DBN can only be zero or one, so the maximum value Hmax

hid of Hhid
is reached at p′i(0) = p′i(1) =

1
2 :

Hmax
hid =

Nhid
∑
i
−p′i(0) log2

(
p′i(0)

)
− p′i(1) log2

(
p′i(1)

)
=

Nhid
∑
i

1
2 log2

(
1
2

)
+ 1

2 log2

(
1
2

)
= Nhid

(5)

Because the maximum amount of information that the hidden layer output vector can store
is greater than or equal to the amount of information carried by the input data of the visible layer,
we obtain:

Hmax
hid ≥ Hviso. (6)

From Equations (5) and (6), we can get:

Nhid ≥ Hviso. (7)

Obviously, Equation (7) gives the lower bound of the number of nodes in the hidden layer as follows:

Nmin(k) = Hviso(k). (8)

To obtain a more reasonable network, the maximum number of neurons in each hidden layer is
defined according to [4,21], which use the same number of neurons for the hidden layers. This paper
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sets the number of nodes for each hidden layer to be no greater than the number of nodes in the input
layer. Let Ni be the number of nodes in the current layer, and N0 be the number of nodes in the input
layer. The value range of the number of nodes is as follows:

Nhid ≤ N0 (9)

From Equation (9), the upper bound of the hidden layer nodes can be obtained as:

Nmax(k) = N0 (10)

From the above analysis, we hence obtain Conclusion 1, and the range of the number of hidden
layer nodes based on information entropy is Hviso ≤ Nhid ≤ N0.

2.2. DBN Performance Measurement Based on Reconstruction Error

To optimize the network structure, we need to introduce an index that can reflect the performance
of DBN. According to [20], we have the following lemma:

Lemma 1. Network energy is an important index for judging the performance of feedback network, and its
numerical value is inversely proportional to the network performance.

Network energy is calculated as:

L =
1
T

T

∑
t=1

[
Nviso

∑
i

Nhid

∑
j

Wijvi(t)hj(t) +
Nviso

∑
i

aivi(t) +
Nhid

∑
j

bjhj(t)

]
(11)

Here, L represents the network energy, T represents the total number of training samples,
W represents the weight matrix, vi(t) represents the value of the i-th visible-layer neurons, hj(t)
represents the value of the j-th hidden-layer neurons, ai represents the bias of the i-th visible-layer
neurons, and bj represents the bias of the j-th hidden-layer neurons. A lower network energy indicates
a better network performance.

Therefore, in theory, network energy can be used as an optimization objective. However,
the computational complexity of network energy is high, which may lead to impractically long
computation times and memory overflow. Hence, in this paper, based on [15], the relationship between
reconstruction error and network energy is derived, and a network performance metric based on
reconstruction error is proposed.

The reconstruction error refers to the difference between the samples obtained by Gibbs sampling
and the original data. The calculation of reconstruction error R is:

R =

T
∑

t=1
ṽ(t)− ṽ0(t)

T
(12)

Here, ṽ0(t) denotes the original data and ṽ(t) denotes the value obtained by Gibbs sampling.
Because the input of samples is stationary processes, when T is large enough:

T
∑

t=1
ṽ(t)

T
= E(ṽ) = ∑

k
pv(k)k (13)

T
∑

t=1
ṽo(t)

T
= E(ṽo) = ∑

k
pv0(k)k (14)
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Here, E(•) denotes the expectation, pv(k) denotes the probability that reconstruction value ṽ
equals k (this is also called posteriori probability), and pv0(k) as the probability that reconstruction
value ṽ0 equals k (this is also called priori probability). Combining Equations (12)–(14), we get:

R = ∑
k

k[pv(k)− pv0(k)] (15)

In RBMs, we use v0 to denote the original data of the visible layer, v to denote the value after
reconstruction, and h to denote the value of hidden layer. For convenience of discussion, the probability
distribution of v is p(v), the probability distribution of v0 is p(v0), and the probability distribution
of h is p(h). According to conditional probability and total probability formula, p(v) is calculated
as follows:

p(v) = ∑
h

p(v|h)p(h)

= ∑
h

p(v|h)∑
v0

p(h|v0)p(v0)

= ∑
h

∑
v0

p(v,h)
p(h)

p(h,v0)
p(v0)

p(v0)

= ∑
h

∑
v0

p(v, h) p(v0,h)
p(h) = ∑

h
∑
v0

p(v, h)p(v0|h)

(16)

Because p(v0) belongs to priori probability, p(v0|h) = p(v0). Equation (15) can be rewritten
as follows:

R = ∑
k

k

[
∑
h

∑
v0

pv,h(k, h)pv0(k)− pv0(k)

]
(17)

Because pv0(k) is only related to the training data and has nothing to do with the network,
the following statement can be obtained from Equation (17):

R ∝ pv,h(k, h) (18)

Combining Equation (11) and the energy-based model of RBM, pv,h(k, h) has the following
relationship with network energy L:

pv,h(k, h) =
eL

Z
(19)

Here Z is a normalized denominator that is determined only by the network parameters.
Therefore, according to Equation (19), we obtain:

pv,h(k, h) ∝ L (20)

Moreover, according to Equations (18) and (19), we have:

R ∝ pv,h(k, h) ∝ L (21)

This demonstrates that the reconstruction error has a positive correlation with the network
energy. The computational complexity of Equations (11) and (17) is shown in Table 1. Obviously,
the computational complexity of the reconstruction error is much lower than that of the network
energy. Therefore, according to Equation (21), we obtain Conclusion 2.

Table 1. Computational complexity of reconstruction error and network energy.

Means Multiplication Quantity Addition Quantity

Reconstruction Error T(VH + 1) TVH − 1
Network Energy T(2VH + V + H) + 1 T(VH + V + H)− 1

Note. V and H represent the number of neurons in all visible layers and hidden layers, respectively.
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3. Structure Design Using ISA

For the optimization model established in the Section 2, a suitable algorithm can be adopted.
The simulated annealing (SA) algorithm has many advantages [26], such as a simple structure, flexibility,
and high efficiency. At the same time, the simulated annealing algorithm has been theoretically proved
to be a global optimization algorithm [27]. Moreover, the network performance oscillation caused by
the DBN structure optimization process is similar to the “heating” and “cooling” procedure of the
SA algorithm, so this algorithm is easily incorporated into DBN structure design. Hence, this section
explains how we employ the SA algorithm to optimize the mathematical model described in Section 2.

The SA algorithm is a general probabilistic search algorithm that simulates the annealing process
of solid matter in physics. It has a fast search speed and excellent globally optimal search ability.
The core concept of SA is to construct a state transition probability matrix and update the current
solution according to the matrix. The probability of a transition from state 1 to state 2 p(1→ 2) is:

p(1→ 2) =

{
1, Y2 < Y1

exp
(
−Y2−Y1

τ

)
, Y2 > Y1

(22)

Here, τ is the “temperature”, which is the artificially set control algorithm iteration rate,
Y1 and Y2 are the internal energies of state 1 and 2, respectively, and the state energy Y is the
optimization objective.

In addition, let τ be gradually reduced in each iteration according to:

τk+1 = ατk (23)

Here, α denotes the descending factor, α < 1, to ensure τ decreases. Obviously, combining
Equations (22) and (23), as the temperature τ gradually decreases, the system state will gradually
converge to a low energy state and eventually reach the lowest point of the internal energy, that is,
the minimum value of the optimization target.

The traditional SA algorithm has some disadvantages, such as sensitive parameters,
poor convergence performance, and a tendency to fall into local optima. Therefore, according to [27],
the global search performance of SA can be improved by adding memory and return search functions.
The improved algorithm is called the ISA algorithm.

In order to study the DBN structure design based on ISA algorithm, two lemmas are introduced.

Lemma 2. the fitting accuracy of the network increases as the number of network layers increases, when the
number of training samples is sufficient [15].

Lemma 3. increasing network depth can improve network performance more effectively than increasing network
width [28].

Combining Conclusions 1 and 2, we obtain the following three Rules.

1. The internal energy of the solution in the ISA algorithm is equal to the reconstruction error of the
RBM at the highest level of the DBN.

From Conclusion 2 and Lemma 2, we obtain that the reconstruction error of the topmost RBM
reflects the upper bound of the performance of the whole network structure, which is the optimization
goal of the model. Hence, we obtain a second rule.

2. The undetermined new solution of the number of nodes in the layer is randomly generated,
and the state update follows Equation (22).

The number of nodes Ni in the layer is randomly generated from the average probability
distribution, where the probability of each value is P = 1

M and M is the total number of possible
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values. Based on Conclusion 1 and Equation (8), the number of neuron nodes in the current layer Ni
and the number of nodes in the next layer Ni−1 have the following relationship:

N0 ≥ Ni ≥ log2(Ni−1) (24)

Hence, we obtain the following equation:

M = N0 − ceil(log2(Ni−1)) (25)

According to the Metropolis rules, if N′i denotes the undetermined new solution, then the
probability of accepting state update Ni → N′i is calculated according to Equation (22), where the
reconstruction error Y2 under N′i is substituted into R′i and the reconstruction error Y1 under Ni is
replaced by Ri. We finally have a third rule.

3. The number of layers increases monotonically from simple to complex.

According to Lemma 3, the effect of the upper layer nodes on performance is much higher than
that of the lower layer nodes, so the complexity of the network structure is gradually improved by a
layer-by-layer approach. The number of nodes in the bottom layer is optimized first then fixed. Then, in
each subsequent iteration, only the number of nodes in the next layer of the network is adjusted.

The pseudocode of the resulting DBN structure design algorithm is shown in Algorithm 1.

Algorithm 1: DBN Structure Design Algorithm via ISA

1: Initialization: set initial temperature τ0, minimum temperature τmin, intra-layer iteration
limit Dmax, network overall iteration limit Gmax, objective function threshold Rend, initial
network depth D = 2 (input layer and output layer), and memory matrix I.

2: For i = 1: Dmax align all the symbols correctly
3: D = D + 1, T = T0

4: Generate Ni from Rule 2, form current network structure C based on Ni, and calculate
the reconstruction error R of C.

5: For j = 1: Gmax

6: The new number of neurons N′ is randomly generated by Rule 2 as the undetermined
solution, the DBN structure C′ formed by N′ is the candidate DBN structure, and the
reconstruction error R′ corresponding to C′ is calculated.

7: If ∆R = R′ − R < 0 or exp(−∆R/T) > rand
8: C = C′, j = 1: Gmax

9: If j ≥ Gmax
1 or T ≤ Tmin or R ≤ Rend

10: Find Cbest in I and search the adjacent domain of Cbest to obtain Cfinal, then go to Step 3.
11: τk+1 = ατk

12: End For
13: If D ≥ Dmax or R ≤ Rend

14: Return the optimal network structure.
15: End For

4. Experiments and Results Analysis

In the evaluation, we refer to the proposed algorithm as the information entropy and
reconstruction error via ISA (IEREISA) method. We compare the similarities and differences in
performance between IEREISA and some common DBN depth and node-number setting methods.
The depth setting methods consist of a fixed method [25], a depth design method based on the
reconstruction error [15], and a depth design method based on the number of correlations [16].
The node setting methods consist of using a fixed number of nodes [15], and an error minimization
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method [25]. Combining these methods, we obtain three comparison algorithms. Moreover, to evaluate
the effect of the ISA algorithm in IEREISA, a DBN structure design algorithm SA is also compared.
The comparison algorithms are as follows:

• Reconstruction Error and Equivalent nodes (REE): The number of neurons in each layer are set
to be equal and the decision to increase the network depth is determined by the value of the
reconstruction error. Moreover, the maximum network depth is set to ensure the convergence of
the algorithm.

• Rate of Correlation and Equivalent nodes (RCE): Similar to REE, the numbers of neurons in each
layer are equal. The value of the cross-correlation coefficient determines whether to increase
the network depth and the maximum network depth is fixed to ensure the convergence of
the algorithm.

• Traversal Search with Constant Layers (TSCL): TSCL obtains the optimal architecture by manually
setting the network depth and then searching for the number of neurons in each layer by traversal,
also called exhaustive search. In the TSCL algorithm, the maximum number of neurons per layer
is fixed to ensure the convergence of the algorithm.

• IERESA: The main idea of the IERESA algorithm is the same as the IEREISA algorithm, except
that the normal SA algorithm is used instead of ISA.

The corresponding DBNs were generated for the above five different structural algorithms, and
experiments were carried out on three public datasets (Cifar-10, Cifar-100, and MNIST) [29]. The results
consist of the following four metrics:

1. Reconstruction error in the unsupervised training process. The unsupervised training pre-adjusts
the weights and bias, and a lower reconstruction error indicates better training, which further
indicates that the structure design algorithm obtains better results.

2. Root-mean-square error (RMSE) in the supervised training process. Supervised training uses the
error back propagation algorithm to fine-tune the weight. A lower RMSE after training indicates
better training and a better network performance.

3. The prediction error rate of the test dataset. The error rate of the test results indicates the
effectiveness of the algorithm.

4. The runtime of the algorithm. When the DBN structure is changed, the new part of the structure
needs to be retrained, which causes the complexity of the algorithm to substantially impact
training time. A higher complexity and larger number of required iterations increases the time
for training. Therefore, runtime, as an indicator of algorithm complexity, can be compared across
different algorithms.

In the experiment, the initialization parameters of the DBN network were set as follows:

(1) The weights W were randomly generated according to the normal distribution N ~ (0, 0.01).
(2) The hidden layer bias c was initialized to be zero.
(3) To control the network scale, Dmax = 10.
(4) The visual layer bias b was produced by the following equation:

M = N0 − ceil(log2(Ni−1)) (25)

where bi is the bias of the i-th neuron and pi is the probability that the neuron will become active.
The remaining DBN initialization parameters are controlled by the input dataset. The DBN initialization
parameters for each specific experiment are listed in Tables 2 and 3 below.

4.1. Cifar-10 Dataset Classification Experiment

This experiment tests the performance of the methods on a high-dimensional input sample.
The public dataset Cifar-10 is a classic experimental dataset in the machine learning, which has 60,000
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samples and 10 classes. Each sample contains features and labels, characterized by 3072 pixels with a
value of 1–255 and a single integer in the range 0–9. We used 50,000 samples as training set and 10,000
samples the test set, and the algorithm parameter settings are shown in Table 2. In the IEREISA and
IERESA algorithms, Rend = 1. In the REE and RCE algorithms, the number of neurons in each layer
was 200 and 100, and in the TSCL algorithm, the number of hidden layers in the network was 10.

Table 2. Algorithm parameter settings for the Cifar-10 dataset.

Batch
Size

Iterations
(Supervised,

Unsupervised)

Learning
Algorithm Momentum

Learning Rate
(Supervised,

Unsupervised)

Activation
Function

Output
Classifier τ0 α

2000 (1500,50) Momentum
gradient 0.5 (0.5,0.5) Sigmoid Softmax 1 0.7

4.1.1. Reconstruction Error for Unsupervised Training

The reconstruction error for DBN obtained by the five structure design algorithms is shown in
Figure 2. Obviously, over the whole iteration process, except for the TSCL algorithm, the reconstruction
error of the algorithms gradually decreases. The IEREISA algorithm has the lowest convergence value,
demonstrating that it performs the best on this dataset.

In Figure 2, the REE algorithm and the RCE algorithm use an equal number of neurons in each
layer, which does not guarantee that the numbers of neurons in each layer are optimal. Hence, the
reconstruction error cannot converge to its optimal value. It proves that the performance of DBN is
determined by the number of layers and the number of nodes. The algorithms that only consider the
number of layers cannot find the optimal network structure. Moreover, the TSCL algorithm adopts
the traversal method with a slow convergence speed, so the reconstruction error tends to oscillate
and may not converge within the maximum number of iterations. In the same way, an algorithm that
considers only the number of nodes without considering the number of layers also cannot find the
optimal network structure. In addition, the IEREISA algorithm and IERESA algorithm have good
performance and the IEREISA algorithm can reach the lowest reconstruction error. This is because
the optimization ability of SA is not as good as that of ISA. The experimental results hence show that
the network structure generated by IEREISA algorithm has the lowest reconstruction error and the
IEREISA algorithm, which simultaneously and organically combines network depth and node number,
can find the optimal DBN structure suitable for the current dataset.
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The DBN structures obtained by the above five algorithms is shown in Table 3. It can be seen that
the DBN structure obtained by the IEREISA algorithm proposed in this paper is more reasonable than
other algorithms.

Table 3. The five DBN structures obtained by above five algorithms in Cifar-10 dataset.

Algorithm DBN Structure Reconstruction Error

REE [3072,200,200,200,200,200,200,10] 3.9989
TSCL [3072,3008,2009,500,507,406,99,208,316,58,36,10] 5.0036
RCE [3072,100,100,100,100,100,100,10] 3.6587

IERESA [3072,2959,756,1024,146,99,95,10] 1.4032
IEREISA [3072,2958,756,1033,134,99,95,10] 1.1106

4.1.2. RMSE in Supervised Training

The algorithm parameter settings for the supervised training process are shown in Table 2.
The RMSE of the DBN networks generated by the algorithms during the training process is shown
in Figure 3. Compared with the other four algorithms, the DBN network generated by the IEREISA
algorithm has the fastest convergence speed for supervised training and has the lowest RMSE
convergence value, because the IEREISA can design the most proper network structure.
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4.1.3. Prediction Error Rate and Time Complexity

The trained networks were tested using the same test set, and the error rates are shown in Figure 4.
The IEREISA algorithm has the lowest error rate of 30.35%. The runtime statistics of the algorithms
are shown in Figure 5. The training times of RCE and REE algorithms are short, the training times of
the IERESA and IEREISA algorithms are a little longer, and the training time of the TSCL algorithm
is the longest. This is because the number of nodes is much larger than the number of layers of the
solution space, so the IERESA, IEREISA, and TSCL algorithms require more searching and take a
longer time to compute. In particular, the TSCL algorithm uses traversal search, which is inefficient.
Although the IEREISA algorithm takes more time than some methods, it considers both the network
depth and number of nodes. In contrast to the REE and RCE algorithms, IEREISA obtains both the best
network depth and the number of nodes. IEREISA also improves the quality of the solution obtained
by IERESA.
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In summary, the experimental results show that on the Cifar-10 dataset, the proposed IEREISA
algorithm can obtain a lower RMSE and reconstruction error than those of other algorithms and has
higher prediction accuracy. However, the algorithm incurs a small increase in time complexity owing
to the increased scale of the solution space.

4.2. MNIST Dataset Classification Experiment

This experiment evaluates the performance of the algorithm on other datasets. The experiment
uses the MNIST handwriting recognition dataset, which is a basic experimental dataset for testing
network performance and consists of a total of 60,000 training samples, 10,000 test samples and
10 classes. Each sample has a 28 × 28 matrix as the input features and 10 one-hot vectors as labels.
The algorithm parameters were set as shown in Table 4.

Table 4. Algorithm parameter settings for the MNIST dataset.

Batch
Size

Iterations
(Supervised,

Unsupervised)

Learning
Algorithm Momentum

Learning Rate
(Supervised,

Unsupervised)

Activation
Function

Output
Classifier T0 α

200 (30,500) Momentum
gradient 0.5 (0.5,0.5) Sigmoid Softmax 5 0.5

In the IEREISA and IERESA algorithms, Rend = 1. In the REE and RCE algorithms, the number of
neurons in each layer was 200, and in the TSCL algorithm, the number of hidden layers in the network
was 10.
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4.2.1. Reconstruction Error in Unsupervised Training

The results of the reconstruction error are shown in Figure 6. Like the analysis in Section 4.1.1,
the IEREISA algorithm also achieves the lowest reconstruction error on the MNIST dataset, which
demonstrates the effectiveness of the algorithm on more than one dataset.

The DBN structures obtained by the above five algorithms is shown in Table 5. It has also been
proved in Table 5 that the IEREISA algorithm proposed in this paper has the most reasonable network
structure, which shows the same result as in Table 3.

Table 5. The five DBN structures obtained by above five algorithms in MNIST dataset.

Algorithm DBN Structure Reconstruction Error

REE [784,200,200,200,200,200,200,10] 3.9989
TSCL [784,777,659,452,68,106,69,78,16,28,36,10] 5.0036
RCE [784,100,100,100,100,100,100,10] 3.6587

IERESA [784,150,138,112,102,92,82,10] 1.4032
IEREISA [784,155,150,112,112,100,75,10] 1.1106
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4.2.2. RMSE in Supervised Training

The results of the RMSE are shown in Figure 7. The RMSE of the IEREISA algorithm converges to
the lowest value and its speed of convergence is the fastest on the MNIST data set. Compared with the
networks of the other algorithms, the DBN structure designed by the proposed IEREISA algorithm has
the most proper structure and shows the best fitting ability.
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4.2.3. Prediction Error Rate and Time Complexity

The error rates are compared shown in Figure 8. The error rate of the IEREISA algorithm (0.81%) is
much lower than of the other four algorithms. This demonstrates that the network structure generated
by the IEREISA algorithm has the best prediction performance on the MNIST dataset compared with
other algorithms.

The time consumed by the five algorithms is shown in Figure 9. The IEREISA algorithm slightly
increases the time complexity of the algorithm, which is consistent with the experimental results of
Section 4.1.3.

Entropy 2018, 20, x FOR PEER REVIEW  14 of 18 

 
Figure 7. RMSE variation of DBN of five algorithms on the MNIST dataset. 

4.2.3. Prediction Error Rate and Time Complexity 

The error rates are compared shown in Figure 8. The error rate of the IEREISA algorithm (0.81%) 
is much lower than of the other four algorithms. This demonstrates that the network structure 
generated by the IEREISA algorithm has the best prediction performance on the MNIST dataset 
compared with other algorithms. 

The time consumed by the five algorithms is shown in Figure 9. The IEREISA algorithm slightly 
increases the time complexity of the algorithm, which is consistent with the experimental results of 
Section 4.1.3. 

 
Figure 8. Prediction error rate of five algorithms on the MNIST dataset. 

 
Figure 9. Runtime of five algorithms on the MNIST dataset. 

20 40 60 80 100 120 140 160 180 200

10-1

100

Iteration

R
M

SE

 

 

REE
TSCL
RCE
IERESA
IEREISA

REE RCE TSCL IERESA IEREISA
0

0.5

1

1.5

2

2.5

3

3.5

Er
ro

r R
at

e(
 %

 )

REE RCE TSCL IERESA  IEREISA
0

100

200

300

400

500

600

700

800

900

1000

Sp
en

t T
im

e 
(s

ec
on

d)

Figure 8. Prediction error rate of five algorithms on the MNIST dataset.

Entropy 2018, 20, x FOR PEER REVIEW  14 of 18 

 
Figure 7. RMSE variation of DBN of five algorithms on the MNIST dataset. 

4.2.3. Prediction Error Rate and Time Complexity 

The error rates are compared shown in Figure 8. The error rate of the IEREISA algorithm (0.81%) 
is much lower than of the other four algorithms. This demonstrates that the network structure 
generated by the IEREISA algorithm has the best prediction performance on the MNIST dataset 
compared with other algorithms. 

The time consumed by the five algorithms is shown in Figure 9. The IEREISA algorithm slightly 
increases the time complexity of the algorithm, which is consistent with the experimental results of 
Section 4.1.3. 

 
Figure 8. Prediction error rate of five algorithms on the MNIST dataset. 

 
Figure 9. Runtime of five algorithms on the MNIST dataset. 

20 40 60 80 100 120 140 160 180 200

10-1

100

Iteration

R
M

SE

 

 

REE
TSCL
RCE
IERESA
IEREISA

REE RCE TSCL IERESA IEREISA
0

0.5

1

1.5

2

2.5

3

3.5

Er
ro

r R
at

e(
 %

 )

REE RCE TSCL IERESA  IEREISA
0

100

200

300

400

500

600

700

800

900

1000

Sp
en

t T
im

e 
(s

ec
on

d)

Figure 9. Runtime of five algorithms on the MNIST dataset.



Entropy 2018, 20, 927 15 of 18

4.3. ISA Algorithm Analysis

In the DBN structure design algorithm proposed in this paper, when the RBM layer is newly
added, the ISA algorithm is selected to calculate the optimal number of neurons. In order to verify
the effectiveness of the ISA algorithm, the ISA algorithm is compared with the SA algorithm and
the genetic algorithm (GA). The experiment using genetic algorithm was denoted as IEREGA. In the
experiment, the parameter settings of the IEREISA algorithm and the IERESA algorithm are shown in
Tables 2 and 3. The parameter settings on Cifar-10 dataset are same as Cifar-100 dataset. According
to [18], the parameter settings of IEREGA algorithm are as shown in Table 6.

Table 6. Parameter settings of the IEREIGA algorithm on different datasets.

Dataset Coding Length Population Max Number
of Generations

Crossover
Probability

Mutation
Probability

Cifar-10 12 10 10 0.75 0.01
Cifar-100 12 10 10 0.75 0.01
MNIST 10 10 10 0.75 0.01

The experimental results of three algorithms on the three datasets are shown in Tables 7–9.
By comparing Tables 7–9, it can be seen that the IEREISA algorithm can obtain a reasonable network
structure for different datasets while maintaining low reconstruction error, low RMSE, and high
prediction accuracy. Table 8 shows that the SA algorithm may fall into local optima when solving for
the number of neurons, which is caused by the SA algorithm’s performance.

It can be seen from Table 9 that the IEREGA algorithm also appears to fall into the local optimum,
because GA is susceptible to the initial value of the population. When searching the optimal number
of neurons, the area of solutions determined by the coding length of GA is much larger than the range
of values satisfying the constraints of neurons, thus causing a decline in GA search capability. And the
quality of the solution is affected by the insufficient local search ability of GA.

Table 7. Experimental results of the IEREISA algorithm on different dataset.

Dataset Number
of Layers Number of Neurons Reconstruction

Error RMSE Prediction
Accuracy

Cifar-10 8 [3072,2958,756,1033,134,99,95,10] 1.1106 3.3010 69.65%
Cifar-100 10 [3072,2586,880,112,86,73,99,95,86,100] 36.2558 10.0777 61.94%
MNIST 8 [784,155,150,112,112,100,75,10] 6.2096 0.0299 99.19%

Table 8. Experimental results of the IERESA algorithm on different dataset.

Dataset Number
of Layers Number of Neurons Reconstruction

Error RMSE Prediction
Accuracy

Cifar-10 8 [3072,2959,756,1024,146,99,95,10] 1.4032 3.4263 67.43%
Cifar-100 10 [3072,2516,892,117,86,73,98,95,85,100] 36.8585 11.7817 61.70%
MNIST 8 [784,150,138,112,102,92,82,10] 6.2397 0.0302 99.08%

Table 9. Experimental results of the IEREGA algorithm on different dataset.

Dataset Number
of Layers Number of Neurons Reconstruction

Error RMSE Prediction
Accuracy

Cifar-10 9 [3072,2436,1056,102,461,156,114,95,10] 2.0031 3.4003 64.34%
Cifar-100 10 [3072,2516,892,201,88,98,102,94,85,100] 38.6475 11.8016 61.60%
MNIST 8 [784,155,150,112,107,95,74,10] 6.3305 0.0311 99.07%
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In summary, for different datasets, the proposed IEREISA algorithm maintains the lowest
reconstruction error, RMSE and prediction error rate, and has the best fitting and prediction
performance compared with other algorithms. The IEREISA algorithm organically combines the
methods for determining the number of layers and number of neurons, and simultaneously optimizes
both to obtain a better network structure. Compared with the REE and RCE algorithms which only
consider the number of layers, the runtime of IEREISA algorithm is longer, but redundancy in the
network is avoided. Moreover, a network with better performance and a more reasonable structure
is obtained by the IEREISA algorithm. Compared with TSCL, which only considers the number of
neurons, IEREISA can not only obtain a network with better performance, but it also improves the
efficiency of the algorithm and reduces the runtime. Because TSCL adopts a traversal search, it is
difficult to converge for networks with a complex structure.

Compared with the previously proposed method, the IEREISA algorithm, which utilizes
information entropy and reconstruction error, optimizes the number of layers and the number of
neurons simultaneously and can quickly obtain a DBN network with better performance and a more
reasonable structure.

5. Conclusions

In this paper, an approach that combines and simultaneously optimizes the number of network
nodes and the depth of the network in a DBN was proposed. First, we constructed a mathematical
model for optimizing the DBN structure by introducing information entropy and reconstruction error.
Then, the ISA algorithm was employed to optimize the model. Finally, the algorithm proposed in
this paper was tested on three public datasets. Experimental results show that for different datasets,
the proposed algorithm can achieve lower reconstruction error, RMSE, and prediction error rates.
Moreover, this algorithm can adaptively optimize a network structure for different datasets and obtain
a better network structure than other algorithms. The DBN structure design algorithm proposed in
this paper is superior to the previously proposed algorithms and can be used to provide a reference
for the setting of DBN structural parameters for different datasets, which is an important and often
over-looked issue of parameter optimization in DBN.

The ideas in this article can also be used when working with other network models. For example,
for the CNN model, the reconstruction error after optimization for CNN can be used as an objective
function of network performance. The information entropy theory is used as the constraint condition
of the number of neurons, and the heuristic search algorithm can be used to obtain the optimal network
structure. In this paper, we mainly combine the unsupervised training process of DBN, so the algorithm
proposed in this paper may not be applicable to networks without unsupervised training process.
Therefore, our follow-up work will be based on the idea of this paper, and propose structure design
algorithms for other network models.
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