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Abstract: Since the 1970s, contact geometry has been recognized as an appropriate framework
for the geometric formulation of thermodynamic systems, and in particular their state properties.
More recently it has been shown how the symplectization of contact manifolds provides a new
vantage point; enabling, among other things, to switch easily between the energy and entropy
representations of a thermodynamic system. In the present paper, this is continued towards the
global geometric definition of a degenerate Riemannian metric on the homogeneous Lagrangian
submanifold describing the state properties, which is overarching the locally-defined metrics of
Weinhold and Ruppeiner. Next, a geometric formulation is given of non-equilibrium thermodynamic
processes, in terms of Hamiltonian dynamics defined by Hamiltonian functions that are homogeneous
of degree one in the co-extensive variables and zero on the homogeneous Lagrangian submanifold.
The correspondence between objects in contact geometry and their homogeneous counterparts
in symplectic geometry, is extended to the definition of port-thermodynamic systems and the
formulation of interconnection ports. The resulting geometric framework is illustrated on a number
of simple examples, already indicating its potential for analysis and control.
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1. Introduction

This paper is concerned with the geometric formulation of thermodynamic systems. While the
geometric formulation of mechanical systems has given rise to an extensive theory, commonly called
geometric mechanics, the geometric formulation of thermodynamics has remained more elusive
and restricted.

Starting from Gibbs’ fundamental relation, contact geometry has been recognized since the 1970s
as an appropriate framework for the geometric formulation of thermodynamics; see in particular [1–8].
More recently, the interest in contact-geometric descriptions has been growing, from different points of
view and with different motivations; see, e.g., [9–20].

Despite this increasing interest, the current geometric theory of thermodynamics still poses
major challenges. First, most of the work is on the geometric formulation of the equations of state,
through the use of Legendre submanifolds [1–3,5,8], while less attention has been paid to the geometric
definition and analysis of non-equilibrium dynamics. Secondly, thermodynamic system models
commonly appear both in energy and in entropy representation, while in principle, this corresponds
to contactomorphic, but different contact manifolds. This is already demonstrated by rewriting Gibbs’
equation in energy representation dE = TdS− PdV, with intensive variables T,−P, into the entropy
representation dS = 1

T dE + P
T dV, with intensive variables 1

T , P
T . Thirdly, for reasons of analysis

and control of composite thermodynamic systems, a geometric description of the interconnection of
thermodynamic systems is desirable, but currently largely lacking.
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A new viewpoint on the geometric formulation of thermodynamic systems was provided
in [21], by exploiting the well-known result in geometry that odd-dimensional contact manifolds
can be naturally symplectized to even-dimensional symplectic manifolds with an additional
structure of homogeneity; see [22,23] for textbook expositions. While the classical applications of
symplectization are largely confined to time-dependent Hamiltonian mechanics [23] and partial
differential equations [22], the paper [21] argued convincingly that symplectization provides an
insightful angle to the geometric modeling of thermodynamic systems as well. In particular, it yields
a clear way to bring together energy and entropy representations, by viewing the choice of different
intensive variables as the selection of different homogeneous coordinates.

In the present paper, we aim at expanding this symplectization point of view towards
thermodynamics, amplifying our initial work [24,25]. In particular, we show how the symplectization
point of view not only unifies the energy and entropy representation, but is also very helpful in
describing the dynamics of thermodynamic processes, inspired by the notion of the contact control
system developed in [11–13,17–19]; see also [16]. Furthermore, it yields a direct and global definition
of a metric on the submanifold describing the state properties, encompassing the locally-defined
metrics of Weinhold [26] and Ruppeiner [27], and providing a new angle to the equivalence results
obtained in [3,5,7,10]. Finally, it is shown how symplectization naturally leads to a definition
of interconnection ports; thus extending the compositional geometric port-Hamiltonian theory of
interconnected multi-physics systems (see, e.g., [28–30]) to the thermodynamic realm. All this will
be illustrated by a number of simple, but instructive, examples, primarily serving to elucidate the
developed framework and its potential.

2. Thermodynamic Phase Space and Geometric Formulation of the Equations of State

The starting point for the geometric formulation of thermodynamic systems throughout this
paper is an (n + 1)-dimensional manifold Qe, with n ≥ 1, whose coordinates comprise the extensive
variables, such as volume and mole numbers of chemical species, as well as entropy and energy [31].
Emphasis in this paper will be on simple thermodynamic systems, with a single entropy and energy
variable. Furthermore, for notational simplicity, and without much loss of generality, we will assume:

Qe = Q×R×R, (1)

with S ∈ R the entropy variable, E ∈ R the energy variable, and Q the (n− 1)-dimensional manifold
of remaining extensive variables (such as volume and mole numbers).

In composite (i.e., compartmental) systems, we may need to consider multiple entropies or
energies; namely for each of the components. In this case, R×R is replaced by RmS ×RmE , with mS
denoting the number of entropies and mE the number of energies; see Example 3 for such a situation.
This also naturally arises in the interconnection of thermodynamic systems, as will be discussed in
Section 5.

Coordinates for Qe throughout will be denoted by qe = (q, S, E), with q coordinates for
Q (the manifold of remaining extensive variables). Furthermore, we denote by T ∗Qe the (2n +

2)-dimensional cotangent bundle T∗Qe without its zero-section. Given local coordinates (q, S, E) for
Qe, the corresponding natural cotangent bundle coordinates for T∗Qe and T ∗Qe are denoted by:

(qe, pe) = (q, S, E, p, pS, pE), (2)

where the co-tangent vector pe := (p, pS, pE) will be called the vector of co-extensive variables.
Following [21], the thermodynamic phase space P(T∗Qe) is defined as the projectivization of

T ∗Qe, i.e., as the fiber bundle over Qe with fiber at any point qe ∈ Qe given by the projective space
P(T∗qe Qe). (Recall that elements of P(T∗qe Qe) are identified with rays in T∗qe Qe, i.e., non-zero multiples of
a non-zero cotangent vector.) The corresponding projection will be denoted by π : T ∗Qe → P(T∗Qe).
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It is well known [22,23] that P(T∗Qe) is a contact manifold of dimension 2n + 1. Indeed,
recall [22,23] that a contact manifold is an (2n+ 1)-dimensional manifold N equipped with a maximally
non-integrable field of hyperplanes ξ. This means that ξ = ker θ ⊂ TN for a, possibly only
locally-defined, one-form θ on N satisfying θ ∧ (dθ)n 6= 0. By Darboux’s theorem [22,23], there
exist local coordinates (called Darboux coordinates) q0, q1, · · · , qn, γ1, · · · , γn for N such that, locally:

θ = dq0 −
n

∑
i=1

γidqi (3)

Then, in order to show thatP(T∗M) for any (n+ 1)-dimensional manifold M is a contact manifold,
consider the Liouville one-form α on the cotangent bundle T∗M, expressed in natural cotangent bundle
coordinates for T∗M as α = ∑n

i=0 pidqi. Consider a neighborhood where p0 6= 0, and define the
homogeneous coordinates:

γi = −
pi
p0

, i = 1, · · · , n, (4)

which, together with q0, q1, · · · , qn, serve as local coordinates for P(T∗M). This results in the
locally-defined contact form θ as in (3) (with α = p0θ). The same holds on any neighborhood where
one of the other coordinates p1, · · · , pn is different from zero, in which case division by the non-zero
pi results in other homogeneous coordinates. This shows that P(T∗M) is indeed a contact manifold.
Furthermore [22,23], P(T∗M) is the canonical contact manifold in the sense that every contact manifold
N is locally contactomorphic to P(T∗M) for some manifold M.

Taking M = Qe, it follows that coordinates for the thermodynamical phase space P(T∗Qe)

are obtained by replacing the coordinates pe = (p, pS, pE) for the fibers T∗qe Qe by homogeneous
coordinates for the projective space P(T∗qe Qe). In particular, assuming pE 6= 0, we obtain the
homogeneous coordinates:

γ =:
p
−pE

, γS :=
pS
−pE

, (5)

defining the intensive variables of the energy representation. Alternatively, assuming pS 6= 0, we obtain
the homogeneous coordinates (see [21] for a discussion of pS, or pE, as a gauge variable):

γ̃ =:
p
−pS

, γ̃E :=
pE
−pS

, (6)

defining the intensive variables of the entropy representation.

Example 1. Consider a mono-phase, single constituent, gas in a closed compartment, with volume q = V,
entropy S, and internal energy E, satisfying Gibbs’ relation dE = TdS− PdV. In the energy representation,
the intensive variable γ is given by the pressure −P, and γS is the temperature T. In the entropy representation,
the intensive variable γ̃ is equal to P

T , while γ̃E equals the reciprocal temperature 1
T .

In order to provide the geometric formulation of the equations of state on the thermodynamic
phase space P(T∗Qe), we need the following definitions. First, recall that a submanifold L of T ∗Qe is
called a Lagrangian submanifold [22,23] if the symplectic form ω := dα is zero restricted to L and the
dimension of L is equal to the dimension of Qe (the maximal dimension of a submanifold restricted to
which ω can be zero).

Definition 1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is a Lagrangian submanifold with the
additional property that:

(qe, pe) ∈ L ⇒ (qe, λpe) ∈ L, for every 0 6= λ ∈ R (7)
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In the Appendix A, cf. Proposition A2, homogeneous Lagrangian submanifolds are geometrically
characterized as submanifolds L ⊂ T ∗Qe of dimension equal to dim Qe, on which not only the
symplectic form ω = dα, but also the Liouville one-form α is zero.

Importantly, homogeneous Lagrangian submanifolds of T ∗Qe are in one-to-one correspondence
with Legendre submanifolds of P(T∗Qe). Recall that a submanifold L of a (2n + 1)-dimensional
contact manifold N is a Legendre submanifold [22,23] if the locally-defined contact form θ is zero
restricted to L and the dimension of L is equal to n (the maximal dimension of a submanifold restricted
to which θ can be zero).

Proposition 1 ([23], Proposition 10.16). Consider the projection π : T ∗Qe → P(T∗Qe). Then, L ⊂
P(T∗Qe) is a Legendre submanifold if and only if L := π−1(L) ⊂ T ∗Qe is a homogeneous Lagrangian
submanifold. Conversely, any homogeneous Lagrangian submanifold L is of the form π−1(L) for some Legendre
submanifold L.

In the contact geometry formulation of thermodynamic systems [1–3,5], the equations of state are
formalized as Legendre submanifolds. In view of the correspondence with homogeneous Lagrangian
submanifolds, we arrive at the following.

Definition 2. Consider Qe and the thermodynamical phase space P(T∗Qe). The state properties of the
thermodynamic system are defined by a homogeneous Lagrangian submanifold L ⊂ T ∗Qe and its corresponding
Legendre submanifold L ⊂ P(T∗Qe).

The correspondence between Legendre and homogeneous Lagrangian submanifolds also implies
the following characterization of generating functions for any homogeneous Lagrangian submanifold
L ⊂ T ∗Qe. This is based on the fact [22,23] that any Legendre submanifold L ⊂ N in Darboux
coordinates q0, q1, · · · , qn, γ1, · · · , γn for N can be locally represented as:

L = {(q0, q1, · · · , qn, γ1, · · · , γn) | q0 = F− γJ
∂F
∂γJ

, qJ = −
∂F
∂γJ

, γI =
∂F
∂qI
} (8)

for some partitioning I ∪ J = {1, · · · , n} and some function F(qI , γJ) (called a generating function for
L), while conversely, any submanifold L as given in (8), for any partitioning I ∪ J = {1, · · · , n} and
function F(qI , γJ), is a Legendre submanifold.

Given such a generating function F(qI , γJ) for the Legendre submanifold L, we now define,
assuming p0 6= 0 and substituting γJ = −

pJ
p0

,

G(q0, · · · , qn, p0, · · · , pn) := −p0F(qI ,−
pJ

p0
) (9)

Then a direct computation shows that:

− ∂G
∂p0

= F(qI ,−
pJ

p0
) + p0

∂F
∂γJ

(qI ,−
pJ

p0
)

pJ

p2
0
= F(qI , γJ)−

∂F
∂γJ

γJ , (10)

implying, in view of (8), that:

π−1(L) = {((q0, · · · , qn, p0, · · · , pn) | q0 = − ∂G
∂p0

, qJ = −
∂G
∂pJ

, pI =
∂G
∂qI
} (11)

In its turn, this implies that G as defined in (9) is a generating function for the homogeneous
Lagrangian submanifold L = π−1(L). If instead of p0, another coordinate pi is different from zero,
then by dividing by this pi 6= 0, we obtain a similar generating function. This is summarized in the
following proposition.
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Proposition 2. Any Legendre submanifold L can be locally represented as in (8), possibly after renumbering
the index set {0, 1, · · · , n}, for some partitioning I ∪ J = {1, · · · , n} and generating function F(qI , γJ),
and conversely, for any such F(qI , γJ), the submanifold L defined by (8) is a Legendre submanifold.

Any homogeneous Lagrangian submanifold L can be locally represented as in (11) with generating
function G of the form (9), and conversely, for any such G, the submanifold (11) is a homogeneous Lagrangian
submanifold.

Note that the generating functions G as in (9) are homogeneous of degree one in the variables
(p0, · · · , pn); see the Appendix A for further information regarding homogeneity.

The simplest instance of a generating function for a Legendre submanifold L and its homogeneous
Lagrangian counterpart L occurs when the generating F as in (8) only depends on q1, · · · , qn. In this
case, the generating function G is given by:

G(q0, · · · , qn, p0, · · · , pn) = −p0F(q1, · · · , qn), (12)

with the corresponding homogeneous Lagrangian submanifold L = π−1(L) locally given as:

L = {(q0, · · · , qn, p0, · · · , pn) | q0 = F(q1, · · · , qn), p1 = −p0
∂F
∂q1

, · · · , pn = −p0
∂F
∂qn
} (13)

A particular feature of this case is the fact that exactly one of the extensive variables, in the above q0,
is expressed as a function of all the others, i.e., q1, · · · , qn. At the same time, p0 is unconstrained, while
the other co-extensive variables p1, · · · , pn are determined by p0, q1, · · · , qn. For a general generating
function G as in (9), this is not necessarily the case. For example, if J = {1, · · · , n}, corresponding to
a generating function −p0F(γ), then q0, · · · , qn are all expressed as a function of the unconstrained
variables p0, · · · , pn.

Remark 1. In the present paper, crucial use is made of homogeneity in the co-extensive variables (p, pS, pE),
which is different from homogeneity with respect to the extensive variables (q, qS, qE), as occurring, e.g., in the
Gibbs–Duhem relations [31].

The two most important representations of a homogeneous Lagrangian submanifold L ⊂
T ∗Qe, and its Legendre counterpart L ⊂ P(T∗Q), are the energy representation and the entropy
representation. In the first case, L is represented, as in (12), by a generating function of the form:

− pEE(q, S) (14)

yielding the representation:

L = {(q, S, E, p, pS, pE) | E = E(q, S), p = −pE
∂E
∂q

(q, S), pS = −pE
∂E
∂S

(q, S)} (15)

In the second case (the entropy representation), L is represented by a generating function of
the form:

− pSS(q, E) (16)

yielding the representation:

L = {(q, S, E, p, pS, pE) | S = S(q, E), p = −pS
∂S
∂q

(q, E), pE = −pS
∂S
∂E

(q, E)} (17)

Note that in the energy representation, the independent extensive variables are taken to be q and
the entropy S, while the energy variable E is expressed as a function of them. On the other hand, in the
entropy representation, the independent extensive variables are q and the energy E, with S expressed
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as a function of them. Furthermore, in the energy representation, the co-extensive variable pE is “free”,
while instead in the entropy representation, the co-extensive variable pS is free. In principle, also
other representations could be chosen, although we will not pursue this. For instance, in Example 1,
one could consider a generating function −pVV(S, E) where the extensive variable V is expressed as
function of the other two extensive variables S, E.

As already discussed in [1,2], an important advantage of describing the state properties by a
Legendre submanifold L, instead of by writing out the equations of state, is in providing a global
and coordinate-free point of view, allowing for an easy transition between different thermodynamic
potentials. Furthermore, if singularities occur in the equations of state, L is typically still a smooth
submanifold. As seen before [21], the description by a homogeneous Lagrangian submanifold L
has the additional advantage of yielding a simple way for switching between the energy and the
entropy representation.

Remark 2. Although the terminology “thermodynamic phase space” for P(T∗Qe) may suggest that all points
in P(T∗Qe) are feasible for the thermodynamic system, this is actually not the case. The state properties of the
thermodynamic system are specified by the Legendre submanifold L ⊂ P(T∗Qe), and thus, the actual “state
space” of the thermodynamic system at hand is this submanifold L; not the whole of P(T∗Qe).

A proper analogy with the Hamiltonian formulation of mechanical systems would be as follows. Consider the
phase space T∗Q of a mechanical system with configuration manifold Q. Then, the Hamiltonian H : T∗Q→ R
defines a Lagrangian submanifold LH of T∗ (T∗Q) given by the graph of the gradient of H. The homogeneous
Lagrangian submanifold L is analogous to LH , while the symplectized thermodynamic phase space T ∗Qe is
analogous to T∗ (T∗Q).

3. The Metric Determined by the Equations of State

In a series of papers starting with [26], Weinhold investigated the Riemannian metric that is
locally defined by the Hessian matrix of the energy expressed as a (convex) function of the entropy and
the other extensive variables. (The importance of this Hessian matrix, also called the stiffness matrix,
was already recognized in [31,32].) Similarly, Ruppeiner [27], starting from the theory of fluctuations,
explored the locally-defined Riemannian metric given by minus the Hessian of the entropy expressed
as a (concave) function of the energy and the other extensive variables. Subsequently, Mrugała [3]
reformulated both metrics as living on the Legendre submanifold L of the thermodynamic phase space
and showed that actually, these two metrics are locally equivalent (by a conformal transformation);
see also [9]. Furthermore, based on statistical mechanics arguments, [7] globally defined an indefinite
metric on the thermodynamical phase space, which, when restricted to the Legendre submanifold,
reduces to the Weinhold and Ruppeiner metrics; thus showing global conformal equivalence. This
point of view was recently further extended in a number of directions in [10].

In this section, crucially exploiting the symplectization point of view, we provide a novel global
geometric definition of a degenerate pseudo-Riemannian metric on the homogeneous Lagrangian
submanifold L defining the equations of state, for any given torsion-free connection on the
space Qe of extensive variables. In a coordinate system in which the connection is trivial (i.e.,
its Christoffel symbols are all zero), this metric will be shown to reduce to Ruppeiner’s locally-defined
metric once we use homogeneous coordinates corresponding to the entropy representation, and to
Weinhold’s locally-defined metric by using homogeneous coordinates corresponding to the energy
representation. Hence, parallel to the contact geometry equivalence established in [3,7,10], we show
that the metrics of Weinhold and Ruppeiner are just two different local representations of this same
globally-defined degenerate pseudo-Riemannian metric on the homogeneous Lagrangian submanifold
of the symplectized thermodynamic phase space.

Recall [33] that a (affine) connection ∇ on an (n + 1)-dimensional manifold M is defined as
an assignment:

(X, Y) 7−→ ∇XY (18)
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for any two vector fields X, Y, which is R-bilinear and satisfies ∇ f XY = f∇XY and ∇X( f Y) =

f∇XY + X( f )Y, for any function f on M. This implies that ∇XY(q) only depends on X(q) and the
value of Y along a curve, which is tangent to X at q. In local coordinates q for M, the connection is
determined by its Christoffel symbols Γa

bc(q), a, b, c = 0, · · · , n, defined by:

∇ ∂
∂qb

∂

∂qc
=

n

∑
a=0

Γa
bc(q)

∂

∂qa
(19)

The connection is called torsion-free if:

∇XY−∇YX = [X, Y] (20)

for any two vector fields X, Y, or equivalently if its Christoffel symbols satisfy the symmetry
property Γa

bc(q) = Γa
cb(q), a, b, c = 0, · · · , n. We call a connection trivial in a given set of coordinates

q = (q0, · · · , qn) if its Christoffel symbols in these coordinates are all zero.
As detailed in [34], given a torsion-free connection on M, there exists a natural pseudo-Riemannian

(“pseudo” since the metric is indefinite) metric on the cotangent-bundle T∗M, in cotangent bundle
coordinates (q, p) for T∗M given as:

2
n

∑
i=0

dqi ⊗ dpi − 2
n

∑
a,b,c=0

pcΓc
ab(q)dqa ⊗ dqb (21)

Let us now consider for M the manifold of extensive variables Qe = Q×R2 with coordinates
qe = (q, S, E) as before, where we assume the existence of a torsion-free connection, which is trivial in
the coordinates (q, S, E), i.e., the Christoffel symbols are all zero. Then, the pseudo-Riemannian metric
I on T ∗Qe takes the form:

I := 2(dq⊗ dp + dS⊗ dpS + dE⊗ dpE) (22)

Denote by G the pseudo-Riemannian metric I restricted to the homogeneous Lagrangian
submanifold L describing the state properties. Consider the energy representation (15) of L,
with generating function −pEE(q, S). It follows that 1

2G equals (in shorthand notation):

dq⊗ d
(
−pE

∂E
∂q

)
+ dS⊗ d

(
−pE

∂E
∂S

)
+ dE⊗ dpE =

−pEdq⊗
(

∂2E
∂q2 dq + ∂2E

∂q∂S dS
)
− dq⊗ ∂E

∂q dpE

−pEdS⊗
(

∂2E
∂q∂S dq + ∂2E

∂S2 dS
)
− dS⊗ ∂E

∂S dpE

+ ∂T E
∂q dq⊗ dpE + ∂T E

∂S dS⊗ dpE

= −pE

(
dq⊗ ∂2E

∂q2 dq + dq⊗ ∂2E
∂q∂S dS + dS⊗ ∂2E

∂q∂S dq + dS⊗ ∂2E
∂S2 dS

)
=: −pEW

(23)

where:

W = dq⊗ ∂2E
∂q2 dq + dq⊗ ∂2E

∂q∂S
dS + dS⊗ ∂2E

∂S∂q
dq + dS⊗ ∂2E

∂S2 dS (24)

is recognized as Weinhold’s metric [26]; the (positive-definite) Hessian of E expressed as a (strongly
convex) function of q and S.
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On the other hand, in the entropy representation (17) of L, with generating function −pSS(q, E),
an analogous computation shows that 1

2G is given as pSR, with:

R = −dq⊗ ∂2S
∂q2 dq− dq⊗ ∂2S

∂q∂E
dE− dE⊗ ∂2

∂E∂q
dq− dE⊗ ∂2S

∂E2 dE (25)

the Ruppeiner metric [27]; minus the Hessian of S expressed as a (strongly concave) function of q and
E. Hence, we conclude that:

− pEW = pSR, (26)

implying W = − pS
pE
R = ∂E

∂SR = TR, with T the temperature. This is basically the conformal
equivalence betweenW andR found in [3]; see also [7,10]. Summarizing, we have found the following.

Theorem 1. Consider a torsion-free connection on Qe, with coordinates qe = (q, S, E), in which the Christoffel
symbols of the connection are all zero. Then, by restricting the pseudo-Riemannian metric I to L, we obtain
a degenerate pseudo-Riemannian metric G on L, which in local energy-representation (15) for L is given by
−2pEW , withW the Weinhold metric (24), and in a local entropy representation (17) by 2pSR, with R the
Ruppeiner metric (25).

We emphasize that the degenerate pseudo-Riemannian metric G is globally defined on L,
in contrast to the locally-defined Weinhold and Ruppeiner metricsW andR; see also the discussion
in [3,5,7,9,10]. We refer to G as degenerate, since its rank is at most n instead of n + 1. Note furthermore
that G is homogeneous of degree one in pe and hence does not project to the Legendre submanifold L.

While the assumption of the existence of a trivial connection appears natural in most cases (see
also the information geometry point of view as exposed in [35]), all this can be directly extended to
any non-trivial torsion-free connection ∇ on Qe. For example, consider the following situation.

For the ease of notation, denote qS := S, qE := E, and correspondingly denote
(q0, q1, · · · , qn−2, qS, qE) := (q, S, E). Take any torsion-free connection on Qe given by symmetric
Christoffel symbols Γc

ab = Γc
ba, with indices a, b, c = 0, · · · , n− 2, S, E, satisfying Γc

ab = 0 whenever one
of the indices a, b, c is equal to the index E. Then, the indefinite metric I on T ∗Qe is given by (again in
shorthand notation):

2
E

∑
i=0

dqi ⊗ dpi − 2
S

∑
a,b,c=0

pcΓc
ab(q)dqa ⊗ dqb (27)

It follows that the resulting metric 1
2G on L is given by the matrix:

− pE

(
∂2E

∂qa∂qb
−

S

∑
c=0

∂E
∂qc

Γc
ab

)
a,b=0,··· ,S

(28)

Here, the (n× n)-matrix at the right-hand side of −pE is the globally defined geometric Hessian
matrix (see e.g., [36]) with respect to the connection on Q×R corresponding to the Christoffel symbols
Γc

ab, a, b, c = 0, · · · , n− 2, S.

4. Dynamics of Thermodynamic Processes

In this section, we explore the geometric structure of the dynamics of (non-equilibrium)
thermodynamic processes; in other words, geometric thermodynamics. By making crucial use of the
symplectization of the thermodynamic phase space, this will lead to the definition of port-thermodynamic
systems in Definition 3; allowing for open thermodynamic processes. The definition is illustrated in
Section 4.2 on a number of simple examples. In Section 4.3, initial observations will be made regarding
the controllability of port-thermodynamic systems.
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4.1. Port-Thermodynamic Systems

In Section 2, we noted the one-to-one correspondence between Legendre submanifolds L of
the thermodynamic phase space P(T∗Qe) and homogeneous Lagrangian submanifolds L of the
symplectized space T ∗Qe. In the present section, we start by noting that there is as well a one-to-one
correspondence between contact vector fields on P(T∗Qe) and Hamiltonian vector fields XK on T ∗Qe

with Hamiltonians K that are homogeneous of degree one in pe (see the Appendix A for further details
on homogeneity).

Here, Hamiltonian vector fields XK on T ∗Qe with Hamiltonian K are in cotangent bundle
coordinates (qe, pe) = (q0, · · · , qn, p0, · · · , pn) for T∗Qe given by the standard expressions:

q̇i =
∂K
∂pi

(qe, pe), ṗi = −
∂K
∂qi

(qe, pe), i = 0, 1, · · · , n, (29)

while contact vector fields XK̂ on the contact manifold P(T∗Qe) are given in local Darboux coordinates
(qe, γ) = (q0, · · · , qn, γ1, · · · , γn) as: [22,23]

q̇0 = K̂(qe, γ)−∑n
j=1 γj

∂K̂
∂γj

(qe, γ)

q̇i = − ∂K̂
∂γi

(qe, γ), i = 1, · · · , n

γ̇i = ∂K̂
∂qi

(qe, γ) + γi
∂K̂
∂q0

(qe, γ), i = 1, · · · , n,

(30)

for some contact Hamiltonian K̂(qe, γ).
Indeed, consider any Hamiltonian vector field XK on T ∗Qe, with K homogeneous of degree

one in the co-extensive variables pe. Equivalently (see Appendix A, Proposition A1), LXK α = 0,
with L denoting the Lie-derivative. It follows, cf. Theorem 12.5 in [23], that XK projects under
π : T ∗Qe → P(T∗Qe) to a vector field π∗XK, satisfying:

Lπ∗XK θ = ρθ (31)

for some function ρ, for all (locally-defined) expressions of the contact form θ on P(T∗Qe). This exactly
means [23] that the vector field π∗XK is a contact vector field with contact Hamiltonian:

K̂ := θ(π∗XK) (32)

Conversely [22,23], any contact vector field XK̂ on P(T∗Qe), for some contact Hamiltonian K̂,
can be lifted to a Hamiltonian vector field XK on T ∗Qe with homogeneous K. In fact, for K̂ expressed
in Darboux coordinates for P(T∗Qe) as K̂(q0, q1, · · · , qn, γ1, ·, γn), the corresponding homogeneous
function K is given as, cf. [23] (Chapter V, Remark 14.4),

K(q0, · · · , qn, p0, · · · , pn) = p0K̂(q0, · · · , qn,− p1

p0
, · · · ,− pn

p0
), (33)

and analogously on any other homogeneous coordinate neighborhood ofP(T∗Qe). This is summarized
in the following proposition (N.B.: for brevity, we will from now on refer to a function K(qe, pe) that
is homogeneous of degree one in the co-extensive variables pe as a homogeneous function and to a
Hamiltonian vector field XK on T ∗Qe with K homogeneous of degree one in pe as a homogeneous
Hamiltonian vector field).

Proposition 3. Any homogeneous Hamiltonian vector field XK on T ∗Qe projects under π to a contact vector
field XK̂ on P(T∗Qe) with K̂ locally given by (32), and conversely, any contact vector field XK̂ on P(T∗Qe)

lifts under π to a homogeneous Hamiltonian vector field XK on T ∗Qe with K locally given by (33).
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Recall, and see also Remark 2, that the equations of state describe the constitutive relations
between the extensive and intensive variables of the thermodynamic system, or said otherwise, the state
properties of the thermodynamic system. Since these properties are fixed for a given thermodynamic
system, any dynamics should leave its equations of state invariant. Equivalently, any dynamics on
T ∗Qe or on P(T∗Qe) should leave the homogeneous Lagrangian submanifold L ⊂ T ∗Qe, respectively,
its Legendre submanifold counterpart L ⊂ P(T∗Qe), invariant. (Recall that a submanifold is invariant
for a vector field if the vector field is everywhere tangent to it; and thus, solution trajectories remain
on it.)

Furthermore, it is natural to require the dynamics of the thermodynamic system to be Hamiltonian;
i.e., homogeneous Hamiltonian dynamics on T ∗Qe and a contact dynamics on P(T∗Qe).

In order to combine the Hamiltonian structure of the dynamics with invariance, we make crucial
use of the following properties.

Proposition 4.

1. A homogeneous Lagrangian submanifold L ⊂ T ∗Qe is invariant for the homogeneous Hamiltonian vector
field XK if and only if the homogeneous K : T ∗Qe → R restricted to L is zero.

2. A Legendre submanifold L ⊂ P(T∗Qe) is invariant for the contact vector field XK̂ if and only if K̂ :
P(T∗Qe)→ R restricted to L is zero.

3. The homogeneous function K : T ∗Qe → R restricted to L is zero if and only the corresponding function
K̂ : P(T∗Qe)→ R restricted to L is zero.

Item 2 is well known [22,23], and Item 1 can be found in [23,25], while Item 3 directly follows
from the correspondence between K and K̂ in (32) and (33).

Based on these considerations, we define the dynamics of a thermodynamic system as being
produced by a homogeneous Hamiltonian function, parametrized by u ∈ Rm,

K := Ka + Kcu : T ∗Qe → R, u ∈ Rm, (34)

with Ka restricted to L zero, and Kc an m-dimensional row of functions Kc
j , j = 1, · · · , m, all of which

are also zero on L. Then, the resulting dynamics is given by the homogeneous Hamiltonian dynamics
on T ∗Qe:

ẋ = XKa(x) +
m

∑
j=1

XKc
j
(x)uj, x = (qe, pe), (35)

restricted to L. (In [24,25], (35) was called a homogeneous Hamiltonian control system.) By
Proposition 3, this dynamics projects to contact dynamics corresponding to the contact Hamiltonian
K̂ = K̂a + K̂cu on the corresponding Legendre submanifold L ⊂ P(T∗Qe).

The invariance conditions on the parametrized Hamiltonian K defining the dynamics on L and L
can be seen to take the following explicit form. Since K is homogeneous of degree one, we can write by
Euler’s homogeneous function theorem (Theorem A1):

Ka = pT f + pS fS + pE fE, f = ∂Ka

∂p , fS = ∂Ka

∂pS
, fE = ∂Ka

∂pE

Kc = pT g + pSgS + pEgE, g = ∂Kc

∂p , gS = ∂Kc

∂pS
, gE = ∂Kc

∂pE
,

(36)

where the functions f , fS, fE, as well as the elements of the m-dimensional row vectors of functions
g, gS, gE are all homogeneous of degree zero. Now, recall the energy representation (15) of the
Lagrangian submanifold L describing the state properties of the system:

L = {(q, S, E, p, pS, pE) | E = E(q, S), p = −pE
∂E
∂q

(q, S), pS = −pE
∂E
∂S

(q, S)} (37)
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By substitution of (37) in (36), it follows that K restricted to L is zero for all u if and only if:(
−pE

∂E
∂q f − pE

∂E
∂S fS + pE fE

)
|L = 0(

−pE
∂E
∂q g− pE

∂E
∂S gS + pEgE

)
|L = 0

(38)

for all pE, or equivalently:(
∂E
∂q

f +
∂E
∂S

fS

)
|L = fE|L,

(
∂E
∂q

g +
∂E
∂S

g
)
|L = gE|L (39)

This leads to the following additional requirements on the homogeneous function Ka. The first
law of thermodynamics (“total energy preservation”) requires that the uncontrolled (u = 0) dynamics
preserves energy, implying that:

fE|L = 0 (40)

Furthermore, the second law of thermodynamics (“increase of entropy”) leads to the following
requirement. Writing out K|L = 0 in the entropy representation (17) of L amounts to:(

∂S
∂q

f +
∂S
∂E

fE

)
|L = fS|L,

(
∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (41)

Plugging in the earlier found requirement fE|L = 0, this reduces to:

∂S
∂q

f |L = fS|L,
(

∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (42)

Finally, since for u = 0, the entropy is non-decreasing, this implies the following additional requirement:

fS|L ≥ 0 (43)

All this leads to the following geometric formulation of a port-thermodynamic system.

Definition 3 (Port-thermodynamic system). Consider the space of extensive variables Qe = Q×R×R
and the thermodynamic phase space P(T∗Qe). A port-thermodynamic system on P(T∗Qe) is defined as
a pair (L, K), where the homogeneous Lagrangian submanifold L ⊂ T ∗Qe specifies the state properties.
The dynamics is given by the homogeneous Hamiltonian dynamics with parametrized homogeneous Hamiltonian
K := Ka + Kcu : T ∗Qe → R, u ∈ Rm, in the form (36), with Ka, Kc zero on L, and the internal Hamiltonian
Ka satisfying (corresponding to the first and second law of thermodynamics):

fE|L = 0, fS|L ≥ 0 (44)

This means that, in energy representation (15):(
∂E
∂q

f +
∂E
∂S

fS

)
|L = 0,

(
∂E
∂q

g +
∂E
∂S

gS

)
|L = gE|L (45)

and, in entropy representation (17):

∂S
∂q

f |L = fS|L ≥ 0,
(

∂S
∂q

g +
∂S
∂E

gE

)
|L = gS|L (46)

Furthermore, the power-conjugate outputs yp of the port-thermodynamic system (L, K) are defined as
the row-vector:

yp := gE|L (47)
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Since by Euler’s theorem (Theorem A1), all expressions f , fS, fE, g, gS, gE are homogeneous of degree
zero, they project to functions on the thermodynamic phase space P(T∗Qe). Hence, the dynamics and the
output equations are equally well-defined on the Legendre submanifold L ⊂ P(T∗Qe). Note that as a
consequence of the above definition of a port-thermodynamic system:

d
dt

E|L = ypu, (48)

expressing that the increase of total energy of the thermodynamic system is equal to the energy
supplied to the system by the environment.

Remark 3. In case f , fS, fE, g, gS, gE do not depend on pe (and therefore, are trivially homogeneous of degree
zero in pe), they actually define vector fields on the space of extensive variables Qe (since they transform as vector
fields under a coordinate change for Qe). In this case, the dynamics on T ∗Qe and L is equal to the Hamiltonian
lift of the dynamics on Qe; see, e.g., [37].

Remark 4. Whenever the dynamics on L is given as the Hamiltonian lift of dynamics on Qe (see the previous
Remark), the properties (44) can be enforced by formulating the dynamics on Qe as the sum of a Hamiltonian
vector field with respect to the energy E and a gradient vector field with respect to the entropy S, in such a way
that S is a Casimir of the Poisson bracket and E is a “Casimir” of the symmetric bracket; see, e.g., [38,39]. The
extension of this to the general homogeneous setting employed in Definition 3 is of much interest.

Remark 5. Definition 3 is generalized to the compartmental situation Qe = Q × RmS × RmE by
modifying (44) to:

mE

∑
i=1

fEi |L = 0,
mS

∑
j=1

fSj |L ≥ 0, (49)

corresponding, respectively, to total energy conservation and total entropy increase; see already Example 3.

Remark 6. An extension to Definition 3 is to consider a non-affine dependence of K on u, i.e., a general function
K : T ∗Qe ×Rm → R that is homogeneous in pe. See already the damper subsystem in Example 7 and the
formulation of Hamiltonian input-output systems as initiated in [40] and continued in, e.g., [37,41,42].

Defining the vector of outputs as being power-conjugate to the input vector u is the most common
option for defining an interaction port (in this case, properly called a power-port) of the thermodynamic
system. Nevertheless, there are other possibilities, as well. Indeed, a port representing the rate of
entropy flow is obtained by defining the alternative output yre as:

yre := gS|L, (50)

which is the entropy-conjugate to the input vector u, This leads instead to the rate of entropy balance:

d
dt

S|L = yreu + fS|L, (51)

where the second, non-negative, term on the right-hand side is the internal rate of entropy production.

Remark 7. From the point of view of dissipativity theory [43,44], this means that any port-thermodynamic
system, with inputs u and outputs yp, yre, is cyclo-lossless with respect to the supply rate ypu and cyclo-passive
with respect to the supply rate yreu.

Finally, it is of interest to note that, as illustrated by the examples in the next subsection,
the Hamiltonian K generating the dynamics on L is dimensionless; i.e., its values do not have a
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physical dimension. Physical dimensions do arise by dividing the homogeneous expression by one of
the co-extensive variables.

4.2. Examples of Port-Thermodynamic Systems

Example 2 (Heat compartment). Consider a simple thermodynamic system in a compartment, allowing for
heat exchange with its environment. Its thermodynamic properties are described by the extensive variables S
(entropy) and E (internal energy), with E expressed as a function E = E(S) of S. Its state properties (in energy
representation) are given by the homogeneous Lagrangian submanifold:

L = {(S, E, pS, pE) | E = E(S), pS = −pEE′(S)}, (52)

corresponding to the generating function −pEE(S). Since there is no internal dynamics, Ka is absent. Hence,
taking u as the rate of entropy flow corresponds to the homogeneous Hamiltonian K = Kcu with:

Kc = pS + pEE′(S), (53)

which is zero on L. This yields on L the dynamics (entailing both the entropy and energy balance):

Ṡ = u ṗS = −pEE′′(S)u

Ė = E′(S)u ṗE = 0,
(54)

with power-conjugate output yp equal to the temperature T = E′(S). Defining the homogeneous coordinate
γ = − pS

pE
leads to the contact Hamiltonian K̂c = E′(S)− γ on P(T∗R2), and the Legendre submanifold:

L = {(S, E, γ) ∈ P(T∗R2) | E = E(S), γ = E′(S)} (55)

The resulting contact dynamics on L is equal to the projected dynamics π∗XK = XK̂ given as:

Ṡ = u

Ė = E′(S)u

γ̇ = − ṗS
pE

= E′′(S)u

(56)

Here, the third equation corresponds to the energy balance in terms of the temperature dynamics. Note that
E′′(S) = T

C , with C the heat capacitance of the fixed volume.
Alternatively, if we take instead the incoming heat flow as input v, then the Hamiltonian is given by:

K = (pS
1

E′(S)
+ pE)v, (57)

leading to the “trivial” power-conjugate output yp = 1 and to the rate of entropy conjugate output yre given by
the reciprocal temperature yre =

1
T .

Example 3 (Heat exchanger). Consider two heat compartments as in Example 2, exchanging a heat flow through
an interface according to Fourier’s law. The extensive variables are S1, S2 (entropies of the two compartments) and E
(total internal energy). The state properties are described by the homogeneous Lagrangian submanifold:

L = {(S1, S2, E, pS1 , pS2 , pE) | E = E1(S1) + E2(S2), pS1 = −pEE′1(S1), pS2 = −pEE′2(S2)}, (58)
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corresponding to the generating function −pE (E1(S1) + E2(S2)), with E1, E2 the internal energies of the
two compartments. Denoting the temperatures T1 = E′1(S1), T2 = E′2(S2), the internal dynamics of the
two-component thermodynamic system corresponding to Fourier’s law is given by the Hamiltonian:

Ka = λ(
1
T1
− 1

T2
)(pS1 T2 − pS2 T1), (59)

with λ Fourier’s conduction coefficient. Note that the total entropy on L satisfies:

Ṡ1 + Ṡ2 = λ(
1
T1
− 1

T2
)(T2 − T1) ≥ 0, (60)

in accordance with (49). We will revisit this example in the context of the interconnection of thermodynamic
systems in Examples 8 and 9.

Example 4 (Mass-spring-damper system). Consider a mass-spring-damper system in one-dimensional
motion, composed of a mass m with momentum π, linear spring with stiffness k and extension z, and
linear damper with viscous friction coefficient d. In order to take into account the thermal energy and the
entropy production arising from the heat produced by the damper, the variables of the mechanical system are
augmented with an entropy variable S and internal energy U(S) (for instance, if the system is isothermal, i.e.,
in thermodynamic equilibrium with a thermostat at temperature T0, the internal energy is U(S) = T0S). This
leads to the total set of extensive variables z, π, S, E = 1

2 kz2 + π2

2m +U(S) (total energy). The state properties of
the system are described by the Lagrangian submanifold L with generating function (in energy representation):

− pE

(
1
2

kz2 +
π2

2m
+ U(S)

)
(61)

This defines the state properties:

L = {(z, π, S, E, pz, pπ , pS, pE)|E =
1
2

kz2 +
π2

2m
+ U(S), pz = −pEkz, pπ = −pE

π

m
, pS = −pEU′(S)} (62)

The dynamics is given by the homogeneous Hamiltonian:

K = pz
π

m
+ pπ

(
−kz− d

π

m

)
+ pS

d( π
m )2

U′(S)
+
(

pπ + pE
π

m

)
u, (63)

where u is an external force. The power-conjugate output yp = π
m is the velocity of the mass.

Example 5 (Gas-piston-damper system). Consider a gas in an adiabatically-isolated cylinder closed by a
piston. Assume that the thermodynamic properties of the system are covered by the properties of the gas (for an
extended model, see [13], Section 4). Then, the system is analogous to the previous example, replacing z by
volume V and the partial energy 1

2 kz2 + U(S) by an expression U(V, S) for the internal energy of the gas.
The dynamics of a force-actuated gas-piston-damper system is defined by the Hamiltonian:

K = pz
π

m
+ pπ

(
−∂U

∂V
− d

π

m

)
+ pS

d( π
m )2

∂U
∂S

+
(

pπ + pE
π

m

)
u, (64)

where the power-conjugate output yp = π
m is the velocity of the piston.
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Example 6 (Port-Hamiltonian systems as port-thermodynamic systems). Example 4 can be extended to
any input-state-output port-Hamiltonian system [28–30]:

ẋ = J(x)e− R(e) + G(x)u, e = ∂H
∂x (x), J(x) = −JT(x)

y = GT(x)e
(65)

on a state space manifold x ∈ X , with inputs u ∈ Rm, outputs y ∈ Rm, Hamiltonian H (equal to the
stored energy of the system), and dissipation R(e) satisfying eT R(e) ≥ 0 for all e. Including entropy S as
an extra variable, along with an internal energy U(S) (for example, in the isothermal case U(S) = T0S),
the state properties of the port-Hamiltonian system are given by the homogeneous Lagrangian submanifold
L ⊂ T∗(X ×R2) defined as:

L = {(x, S, E, p, pS, pE) | E(x, S) = H(x) + U(S), p = −pE
∂H
∂x

(x), pS = −pEU′(S)}, (66)

with generating function −pE (H(x) + U(S)). The Hamiltonian K is given by (using the shorthand notation
e = ∂H

∂x (x)):

K(x, S, E, p, pS, pE) = pT (J(x)e− S(e) + G(x)u) + pS
eT R(e)
U′(S)

+ pEeTG(x)u (67)

reproducing on L the dynamics (65) with outputs yp = y. Note that in this thermodynamic formulation of the
port-Hamiltonian system, the energy-dissipation term eT R(e) in the power-balance d

dt H = −eT R(e) + yTu is
compensated by the equal increase of the internal energy U(S), thus leading to conservation of the total energy
E(x, S) = H(x) + U(S).

4.3. Controllability of Port-Thermodynamic Systems

In this subsection, we will briefly indicate how the controllability properties of the
port-thermodynamic system (L, K) can be directly studied in terms of the homogeneous Hamiltonians
Ka and Kc

j , j = 1, · · · , m, and their Poisson brackets. First, we note that by Proposition A3, the Poisson
brackets of these homogeneous Hamiltonians are again homogeneous. Secondly, we recall the
well-known correspondence [22,23,33] between Poisson brackets of Hamiltonians h1, h2 and Lie
brackets of the corresponding Hamiltonian vector fields:

[Xh1 , Xh2 ] = X{h1,h2} (68)

In particular, this property implies that if the homogeneous Hamiltonians h1, h2 are zero on the
homogeneous Lagrangian submanifold L and, thus, by Proposition 4, the homogeneous Hamiltonian
vector fields Xh1 , Xh2 are tangent to L, then also [Xh1 , Xh2 ] is tangent to L, and therefore, the Poisson
bracket {h1, h2} is also zero on L. Furthermore, with respect to the projection to the corresponding
Legendre submanifold L, we note the following property of homogeneous Hamiltonians:

̂{h1, h2} = {ĥ1, ĥ2}, (69)

where the bracket on the right-hand side is the Jacobi bracket [22,23] of functions on the contact manifold
P(T∗Qe). This leads to the following analysis of the accessibility algebra [45] of a port-thermodynamic
system, characterizing its controllability.

Proposition 5. Consider a port-thermodynamic system (L, K) on P(T∗Qe) with homogeneous K := Ka +

∑m
j=1 Kc

j uj : T ∗Qe → R, zero on L. Consider the algebra P (with respect to the Poisson bracket) generated by

Ka, Kc
j , j = 1, · · · , m, consisting of homogeneous functions that are zero on L and the corresponding algebra P̂

generated by K̂a, K̂c
j , j = 1, · · · , m, on L. The accessibility algebra [45] is spanned by all contact vector fields Xĥ
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on L, with ĥ in the algebra P̂ . It follows that the port-thermodynamic system (L, K) is locally accessible [45] if
the dimension of the co-distribution dP̂ on L defined by the differentials of ĥ, with h in the Poisson algebra P ,
is equal to the dimension of L. Conversely, if the system is locally accessible, then the co-distribution dP̂ on L
has dimension equal to the dimension of L almost everywhere on L.

Similar statements can be made with respect to local strong accessibility of the port-thermodynamic
system; see the theory exposed in [45].

5. Interconnections of Port-Thermodynamic Systems

In this section, we study the geometric formulation of interconnection of port-thermodynamic systems
through their ports, in the spirit of the compositional theory of port-Hamiltonian systems [28–30,43].
We will concentrate on the case of power-port interconnections of port-thermodynamic systems,
corresponding to power flow exchange (with total power conserved). This is the standard situation
in (port-based) physical network modeling of interconnected systems. At the end of this section, we will
make some remarks about other types of interconnection; in particular, interconnection by exchange of the
rate of entropy.

Consider two port-thermodynamic systems with extensive and co-extensive variables:

(qi, pi, Si, pSi , Ei, pEi ) ∈ T∗Qe
i = T∗Qi × T∗Ri × T∗Ri, i = 1, 2, (70)

and Liouville one-forms αi = pidqi + pSi dSi + pEi dEi, i = 1, 2. With the homogeneity assumption in
mind, impose the following constraint on the co-extensive variables:

pE1 = pE2 =: pE (71)

This leads to the summation of the one-forms α1 and α2 given by:

αsum := p1dq1 + p2dq2 + pS1 dS1 + pS2 dS2 + pEd(E1 + E2) (72)

on the composed space defined as:

T∗Qe
1 ◦ T∗Qe

2 := {(q1, p1, q2, p2, S1, pS1 , S2, pS2 , E, pE) ∈ T∗Q1 × T∗Q2 × T∗R× T∗R× T∗R} (73)

Leaving out the zero-section p1 = 0, p2 = 0, pS1 = 0, pS2 = 0, pE = 0, this space will be denoted by
T ∗Qe

1 ◦ T ∗Qe
2 and will serve as the space of extensive and co-extensive variables for the interconnected

system. Furthermore, it defines the projectivization P(T∗Qe
1 ◦ T∗Qe

2), which serves as the composition
(through Ei, pEi , i = 1, 2) of the two projectivizations P(T∗Qe

i ), i = 1, 2.
Let the state properties of the two systems be defined by homogeneous Lagrangian submanifolds:

Li ⊂ T∗Qi × T∗Ri × T∗Ri, i = 1, 2, (74)

with generating functions −pEi Ei(qi, Si), i = 1, 2. Then, the state properties of the composed system
are defined by the composition:

L1 ◦ L2 := {(q1, q2, p1, p2, S1, pS1 , S2, pS2 , E, pE | E = E1 + E2, (qi, pi, Si, pSi , Ei, pEi ) ∈ Li, i = 1, 2}, (75)

with generating function −pE (E1(q1, S1) + E2(q2, S2)).
Furthermore, consider the dynamics on Li defined by the Hamiltonians Ki = Ka

i + Kc
i ui, i = 1, 2.

Assume that Ki does not depend on the energy variable Ei, i = 1, 2. Then, the sum K1 + K2 is
well-defined on L1 ◦ L2 for all u1, u2. This defines a composite port-thermodynamic system, with
entropy variables S1, S2, total energy variable E, inputs u1, u2, and state properties defined by L1 ◦ L2.
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Next, consider the power-conjugate outputs yp1, yp2; in the sequel, simply denoted by y1, y2.
Imposing on the power-port variables u1, u2, y1, y2 interconnection constraints that are satisfying the
power-preservation property:

y1u1 + y2u2 = 0, (76)

yields an interconnected dynamics on L1 ◦ L2, which is energy conserving (the pE-term in the
expression for K1 + K2 is zero by (76)). This is summarized in the following proposition.

Proposition 6. Consider two port-thermodynamic systems (Li, Ki) with spaces of extensive variables Qe
i ,

i = 1, 2. Assume that Ki does not depend on Ei, i = 1, 2. Then, (L1 ◦ L2, K1 + K2), with L1 ◦ L2 given
in (75), defines a composite port-thermodynamic system with inputs u1, u2 and outputs y1, y2. By imposing
interconnection constraints on u1, u2, y1, y2 satisfying (76), an autonomous (no inputs) port-thermodynamic
system is obtained.

Remark 8. The interconnection procedure can be extended to the case of an additional open power-port with
input vector u and output row vector y, by replacing (76) by power-preserving interconnection constraints on
u1, u2, u, y1, y2, y, satisfying:

y1u1 + y2u2 + yu = 0 (77)

Proposition 6 is illustrated by the following examples.

Example 7 (Mass-spring-damper system). We will show how the thermodynamic formulation of the system
as detailed in Example 4 also results from the interconnection of the three subsystems: mass, spring, and damper.

I. Mass subsystem (leaving out irrelevant entropy). The state properties are given by:

Lm = {(π, κ, pπ , pκ) | κ =
π2

2m
, pπ = −pκ

π

m
}, (78)

with energy κ (kinetic energy) and dynamics generated by the Hamiltonian:

Km = (pκ
π

m
+ pπ)um, (79)

corresponding to π̇ = um, ym = π
m .

II. Spring subsystem (again leaving out irrelevant entropy). The state properties are given by:

Ls = {(z, P, pz, pP) | P =
1
2

kz2, pz = −pPkz}, (80)

with energy P (spring potential energy) and dynamics generated by the Hamiltonian:

Ks = (pPkz + pz)us, (81)

corresponding to ż = us, ys = kz.
III. Damper subsystem. The state properties are given by:

Ld = {(S, U) | U = U(S), pS = −pUU′(S)}, (82)

involving the entropy S and an internal energy U(S). The dynamics of the damper subsystem is generated by
the Hamiltonian:

Kd = (pU + pS
1

U′(S)
)du2

d (83)

with d the damping constant and power-conjugate output:

yd := dud (84)
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equal to the damping force.
Finally, interconnect, in a power-preserving way, the three subsystems to each other via their power-ports

(um, ym), (us, ys), (ud, yd) as:
um = −ys − yd, us = ym = ud (85)

This results (after setting pκ = pP = pU =: p) in the interconnected port-thermodynamic system with
total Hamiltonian Km + Ks + Kd given as:

(p π
m + pπ)um + (pkz + pz)us + (p + pS

1
U′(S) )du2

d =

(p π
m + pπ)(−kz− d π

m ) + (pkz + pz)
π
m + (p + pS

1
U′(S) )d(

π
m )2 =

pz
π
m + pπ(−kz− d π

m ) + pS
d( π

m )2

U′(S) ,

(86)

which is equal to the Hamiltonian for u = 0 as obtained before in Example 4, Equation (63).

Example 8 (Heat exchanger). Consider two heat compartments as in Example 2, with state properties:

Li = {(Si, Ei, pSi , pEi ) | Ei = Ei(Si), pSi = −pEi E
′
i(S)}, i = 1, 2. (87)

The dynamics is given by the Hamiltonians:

Ki = (pEi + pSi

1
Ti
)vi, Ti = E′i(Si), i = 1, 2, (88)

with v1, v2 the incoming heat flows and power-conjugate outputs y1, y2, which both are equal to one. Consider the
power-conserving interconnection:

v1 = −v2 = λ(T2 − T1), (89)

with λ the Fourier heat conduction coefficient. Then, the Hamiltonian of the interconnected port-thermodynamical
system is given by:

K1 + K2 = λ(T2 − T1)(
pS1

T1
−

pS2

T2
), (90)

which equals the Hamiltonian (59) as obtained in Example 3.

Apart from power-port interconnections as above, we may also define other types of
interconnection, not corresponding to the exchange of rate of energy (power), but instead to the
exchange of rate of other extensive variables. In particular, an interesting option is to consider
interconnection via the rate of entropy exchange. This can be done in a similar way, by considering,
instead of the variables Ei, pEi , i = 1, 2, as above, the variables Si, pSi , i = 1, 2. Imposing alternatively
the constraint pS1 = pS2 =: pS yields a similar composed space of extensive and co-extensive variables,
as well as a similar composition L1 ◦ L2 of the state properties. By assuming in this case that the
Hamiltonians Ki do not depend on the entropies Si, i = 1, 2 and by imposing interconnection constraints
on u1, u2 and the “rate of entropy” conjugate outputs yre1, yre2 leads again to an interconnected
port-thermodynamic system. Note however that while it is natural to assume conservation of
total energy for the interconnection of two systems via their power-ports, in the alternative case
of interconnecting through the rate of entropy ports, the total entropy may not be conserved, but
actually increasing.

Example 9. As an alternative to the previous Example 8, where the heat exchanger was modeled as the
interconnection of two heat compartments via power-ports, consider the same situation, but now with outputs yi
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being the “rate of entropy conjugate” to vi, i.e., equal (cf. the end of Example 2) to the reciprocal temperatures 1
Ti

with Ti = E′(Si), i = 1, 2. This results in interconnecting the two heat compartments as, equivalently to (89),

v1 = −v2 = λ(
1
y2
− 1

y1
) (91)

This interconnection is not total entropy conserving, but instead satisfies y1v1 + y2v2 = λ( 1
y2
− 1

y1
)(y1−

y2) ≥ 0, corresponding to the increase of total entropy.

6. Discussion

While the state properties of thermodynamic systems have been geometrically formulated since
the 1970s through the use of contact geometry, in particular by means of Legendre submanifolds,
the geometric formulation of non-equilibrium thermodynamic processes has remained more elusive.
Taking up the symplectization point of view on thermodynamics as successfully initiated in [21],
the present paper develops a geometric framework based on the description of non-equilibrium
thermodynamic processes by Hamiltonian dynamics on the symplectized thermodynamic phase
space generated by Hamiltonians that are homogeneous of degree one in the co-extensive
variables; culminating in the definition of port-thermodynamic systems in Section 4.1. Furthermore,
Section 3 shows how the symplectization point of view provides an intrinsic definition of a metric that
is overarching the locally-defined metrics of Weinhold and Ruppeiner and provides an alternative
to similar results in the contact geometry setting provided in [3,5,7,10]. The correspondence
between objects in contact geometry and corresponding homogeneous objects in symplectic geometry
turns out to be very effective. An additional benefit of symplectization is the simplicity of
the expressions and computations in the standard Hamiltonian context, as compared to those
in contact geometry. This feature is also exemplified by the initial controllability study in
Section 4.3. As noted in [38], physically non-trivial examples of mesoscopic dynamics are
infinite-dimensional. This calls for an infinite-dimensional extension, following the well-developed
theory of infinite-dimensional Hamiltonian systems (but now adding homogeneity) of the presented
definition of port-thermodynamic systems, encompassing systems obtained by the Hamiltonian lift
of infinite-dimensional GENERIC [38] and dissipative port-Hamiltonian [46] formulations; see also
Remark 4. From a control point of view, one of the open problems concerns the stabilization of
thermodynamic processes using the developed framework.
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Appendix A. Homogeneity of Functions, of Hamiltonian Vector Fields, and of
Lagrangian Submanifolds

In this section, we use throughout, for notational simplicity, the notation M instead of Qe.
Furthermore, we let dim M = n + 1 with n ≥ 0 denote coordinates for M by q = (q0, q1, · · · , qn)

and co-tangent bundle coordinates for T∗M by (q, p) = (q0, q1, · · · , qn, p0, p1, · · · , pn).
The notion of homogeneity in the variables p will be fundamental.

Definition A1. Let r ∈ Z. A function K : T ∗M → R is called homogeneous of degree r (in the variables
p = (p0, p1 · · · , pn)) if:

K(q0, q1, · · · , qn, λp0, λp1, · · · , λpn) = λrK(q0, q1, · · · , qn, p0, p1, · · · , pn), ∀λ 6= 0 (A1)

Note that this definition is independent of the choice of cotangent-bundle coordinates (q, p) for T ∗M.
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Theorem A1 (Euler’s homogeneous function theorem). A differentiable function K : T ∗M → R is
homogeneous of degree r (in p = (p0, p1, · · · , pn)) if and only if:

n

∑
i=0

pi
∂K
∂pi

(q, p) = rK(q, p), for all (q, p) ∈ T ∗M (A2)

Furthermore, if K is homogeneous of degree r, then its derivatives ∂K
∂pi

, i = 0, · · · , n, are homogeneous of
degree r− 1.

Geometrically, Euler’s theorem can be equivalently formulated as follows. Recall that the
Hamiltonian vector field Xh on T∗M with symplectic form ω = dα corresponding to an arbitrary
Hamiltonian h : T∗M→ R is defined by iXh ω = −dh. It is immediately verified that h : T∗M→ R is
homogeneous of degree r iff:

α(Xh) = r h (A3)

Define the Euler vector field (also called the Liouville vector field) E on T∗M as the vector
field satisfying:

dα(E, ·) = α (A4)

In co-tangent bundle coordinates (q, p) for T∗M, the vector field E is given as ∑n
i=0 pi

∂
∂pi

.
One verifies that h : T∗M→ R is homogeneous of degree r iff (with L denoting Lie-derivative):

LEh = r h (A5)

In the sequel, we will only use homogeneity and Euler’s theorem for r = 0 and r = 1. First, it is
clear that physical variables defined on the contact manifold P(T∗Qe) correspond to functions on
T ∗Qe, which are homogeneous of degree zero in p. On the other hand, as formulated in Proposition 3,
a Hamiltonian vector field on T ∗Qe with respect to a Hamiltonian that is homogeneous of degree one
in p projects to a contact vector field on the contact manifold P(T∗Q). Such Hamiltonian vector fields
are locally characterized as follows.

Proposition A1. If h : T∗M→ R is homogeneous of degree one in p, then X = Xh satisfies:

LXα = 0 (A6)

Conversely, if a vector field X satisfies (A6), then X = Xh for some locally-defined Hamiltonian h that is
homogeneous of degree one in p.

Proof. Note that by Cartan’s formula, for any vector field X:

LXα = iXdα + diXα = iXdα + d (α(X)) (A7)

If h is homogeneous of degree one in p, then by (A3), we have α(Xh) = h, and thus, iXh dα +

dα(Xh) = −dh + dh = 0, implying by (A7) that LXh α = 0. Conversely, if LXα = 0, then (A7) yields
iXdα + d (α(X)) = 0, implying that X = Xh, with h = α(X), which by (A3) for r = 1 is homogeneous
of degree one.

Summarizing, Hamiltonian vector fields with Hamiltonians that are homogeneous of degree one
in p are characterized by (A6); in contrast to general Hamiltonian vector fields X on T∗M, which are
characterized by the weaker property LXdα = 0.

Similar statements as above can be made for homogeneous Lagrangian submanifolds
(cf. Definition 1). Recall [22,23,33] that a submanifold L ⊂ T∗M is called a Lagrangian submanifold if
the symplectic form ω := dα is zero on L, and dimL = dim M.
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Proposition A2. Consider the cotangent bundle T∗M with its canonical one-form α and symplectic form
ω := dα. A submanifold L ⊂ T ∗M is a homogeneous Lagrangian submanifold if and only if α restricted to L
is zero, and dimL = dim M.

Proof. First of all, note the following. Recall the definition of the Euler vector field E in (A4).
In co-tangent bundle coordinates (q, p) for T∗M, the Euler vector field takes the form E = ∑n

i=0 pi
∂

∂pi
.

Hence, the homogeneity of L is equivalent to the tangency of E to L.
(If) By Palais’ formula (see, e.g., [33], Proposition 2.4.15):

dα(X0, X1) = LX0(α(X1))−LX1(α(X0))− α ([X0, X1]) (A8)

for any two vector fields X0, X1. Hence, for any X1, X2 tangent to L, we obtain dα(X0, X1) = 0,
implying that dα is zero restricted to L, and thus, L is a Lagrangian submanifold. Furthermore,
by (A4):

dα(E, X) = α(X) = 0, (A9)

for all vector fields X tangent to L. Because L is a Lagrangian submanifold, this implies that E is
tangent to L (since a Lagrangian submanifold is a maximal submanifold restricted to ω = dα, whichis
zero). Hence, L is homogeneous.

(Only if) If L is homogeneous, then E is tangent to L, and thus, since L is Lagrangian, (A9) holds
for all vector fields X tangent to L, implying that α is zero restricted to L.

Regarding the Poisson brackets of Hamiltonian functions that are either homogeneous of degree
one or zero (in p), we have the following proposition.

Proposition A3. Consider the Poisson bracket {h1, h2} of functions h1, h2 on T∗M defined with respect to the
symplectic form ω = dα. Then:

(a) If h1, h2 are both homogeneous of degree one, then also {h1, h2} is homogeneous of degree one.
(b) If h1 is homogeneous of degree one and h2 is homogeneous of degree zero, then {h1, h2} is homogeneous of

degree zero.
(c) If h1, h2 are both homogeneous of degree zero, then {h1, h2} is zero.

Proof.

(a) Since h1, h2 are both homogeneous of degree one, we have by Proposition A1, LXhi
α = 0,

i = 1, 2. Hence:

LX{h1,h2}
α = L[Xh1

,Xh2
]α = LXh1

(LXh2
α)−LXh2

(LXh1
α) = 0, (A10)

implying by Proposition A1 that {h1, h2} is homogeneous of degree one.
(b) α(Xh2) = 0, while by Proposition A1 LXh1

α = 0, implying:

0 = LXh1
(α(Xh2)) = (LXh1

α)(Xh2) + α([Xh1 , Xh2 ]) = α(X{h1,h2}), (A11)

which means that {h1, h2} is homogeneous of degree zero.
(c) First we note that for any Xh with h homogeneous of degree zero, since α(Xh) = 0,

LXh α = iXh dα + d(iXh α) = −dh (A12)

Utilizing this property for h1, we obtain, since α(Xh2) = 0,

0 = LXh1
(α(Xh2)) = (LXh1

α)(Xh2) + α(X{h1,h2}) =

−dh1(Xh2) + α(X{h1,h2}) = −{h1, h2}+ α(X{h1,h2}),
(A13)
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proving that {h1, h2} is homogeneous of degree one. Hence, by Proposition A1, LX{h1,h2}
α = 0,

and thus:
0 = LX{h1,h2}

α = L[Xh1
,Xh2

]α = LXh1
LXh2

α−LXh2
LXh1

α =

LXh1
(−dh2)−LXh2

(−dh1) = −2{h1, h2}
(A14)

where in the fourth equality, we use (A12) for h1 and h2.

References

1. Hermann, R. Geometry, Physics and Systems; Marcel Dekker: New York, NY, USA, 1973.
2. Mrugała, R. Geometric formulation of equilibrium phenomenological thermodynamics. Rep. Math. Phys.

1978, 14, 419. [CrossRef]
3. Mrugała, R. On equivalence of two metrics in classical thermodynamics. Physica 1984, 125A, 631–639.

[CrossRef]
4. Mrugała, R. Submanifolds in the thermodynamic phase space. Rep. Math. Phys. 1985, 21, 197. [CrossRef]
5. Mrugała, R. On contact and metric structures on thermodynamic spaces. RIMS Kokyuroku 2000, 1142, 167–181.
6. Mrugała, R. On a special family of thermodynamic processes and their invariants. Rep. Math. Phys. 2000,

3, 46. [CrossRef]
7. Mrugała, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Statistical approach to the geometric structure of

thermodynamics. Phys. Rev. A 1990, 41, 3156. [CrossRef] [PubMed]
8. Mrugała, R.; Nulton, J.D.; Schön, J.C.; Salamon, P. Contact structures in thermodynamic theory. Rep. Math. Phys.

1991, 29, 109–121. [CrossRef]
9. Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F. Contact symmetries and Hamiltonian thermodynamics.

Ann. Phys. 2015, 361, 377–400. [CrossRef]
10. Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F. Conformal gauge transformations in thermodynamics. Entropy

2015, 17, 6150–6168. [CrossRef]
11. Eberard, D.; Maschke, B.M.; van der Schaft, A.J. An extension of Hamiltonian systems to the thermodynamic

space: Towards a geometry of non-equilibrium thermodynamics. Rep. Math. Phys. 2007, 60, 175–198. [CrossRef]
12. Favache, A.; Maschke, B.M.; Santos, V.D.; Dochain, D. Some properties of conservative control systems.

IEEE Trans. Autom. Control 2009, 54, 2341–2351. [CrossRef]
13. Favache, A.; Dochain, D.; Maschke, B.M. An entropy-based formulation of irreversible processes based on

contact structures. Chem. Eng. Sci. 2010, 65, 5204–5216. [CrossRef]
14. Gay-Balmaz, F.; Yoshimura, H. A Lagrangian variational formulation for nonequilibrium thermodynamics.

Part I: Discrete systems. J. Geom. Phys. 2017, 111, 169–193. [CrossRef]
15. Gromov, D. Two approaches to the description of the evolution of thermodynamic systems. IFAC-Papers

OnLine 2016, 49, 34–39. [CrossRef]
16. Merker, J.; Krüger, M. On a variational principle in thermodynamics. Contin. Mech. Thermodyn. 2013, 25,

779–793. [CrossRef]
17. Ramirez, H.; Maschke, B.; Sbarbaro, D. Feedback equivalence of input-output contact systems. Syst. Control

Lett. 2013, 62, 475–481. [CrossRef]
18. Ramirez, H.; Maschke, B.; Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of

irreversible processes with application to the CSTR. Chem. Eng. Sci. 2013, 89, 223–234. [CrossRef]
19. Ramirez, H.; Maschke, B.; Sbarbaro, D. Partial stabilization of input-output contact systems on a Legendre

submanifold. IEEE Trans. Autom. Control 2017, 62, 1431–1437. [CrossRef]
20. Gromov, D.; Castanos, F. The geometric structure of interconnected thermo-mechanical systems.

IFAC-Papers OnLine 2017, 50, 582–587. [CrossRef]
21. Balian, R.; Valentin, P. Hamiltonian structure of thermodynamics with gauge. Eur. J. Phys. B 2001, 21,

269–282. [CrossRef]
22. Arnold, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Springer: Berlin, Germany, 1989.
23. Libermann, P.; Marle, C.-M. Symplectic Geometry and Analytical Mechanics; D. Reidel Publishing Company:

Dordrecht, The Netherlands, 1987.

http://dx.doi.org/10.1016/0034-4877(78)90010-1
http://dx.doi.org/10.1016/0378-4371(84)90074-8
http://dx.doi.org/10.1016/0034-4877(85)90059-X
http://dx.doi.org/10.1016/S0034-4877(00)90012-0
http://dx.doi.org/10.1103/PhysRevA.41.3156
http://www.ncbi.nlm.nih.gov/pubmed/9903470
http://dx.doi.org/10.1016/0034-4877(91)90017-H
http://dx.doi.org/10.1016/j.aop.2015.07.010
http://dx.doi.org/10.3390/e17096150
http://dx.doi.org/10.1016/S0034-4877(07)00024-9
http://dx.doi.org/10.1109/TAC.2009.2028973
http://dx.doi.org/10.1016/j.ces.2010.06.019
http://dx.doi.org/10.1016/j.geomphys.2016.08.018
http://dx.doi.org/10.1016/j.ifacol.2016.10.749
http://dx.doi.org/10.1007/s00161-012-0277-2
http://dx.doi.org/10.1016/j.sysconle.2013.02.008
http://dx.doi.org/10.1016/j.ces.2012.12.002
http://dx.doi.org/10.1109/TAC.2016.2572403
http://dx.doi.org/10.1016/j.ifacol.2017.08.083
http://dx.doi.org/10.1007/s100510170202


Entropy 2018, 20, 925 23 of 23

24. Maschke, B.M.; van der Schaft, A.J. Homogeneous Hamiltonian control systems, Part II: Application to
thermodynamic systems. IFAC-PapersOnLine 2018, 51, 7–12. [CrossRef]

25. van der Schaft, A.J.; Maschke, B.M. Homogeneous Hamiltonian control systems, Part I: Geometric
formulation. IFAC-Papers OnLine 2018, 51, 1–6. [CrossRef]

26. Weinhold, F. Metric geometry of equilibrium thermodynamics. J. Chem. Phys. 1975, 63, 2479. [CrossRef]
27. Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [CrossRef]
28. Maschke, B.M.; van der Schaft, A.J. Port controlled Hamiltonian systems: Modeling origins and system

theoretic properties. IFAC Proc. Vol. 1992, 25, 359–365. [CrossRef]
29. Van der Schaft, A.J.; Maschke, B.M. The Hamiltonian formulation of energy conserving physical systems

with external ports. Archiv für Elektronik und Übertragungstechnik 1995, 49, 362–371.
30. Van der Schaft, A.J.; Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Found. Trends

Syst. Control 2014, 1, 173–378. [CrossRef]
31. Callen, H. Thermodynamics; Wiley: New York, NY, USA, 1960.
32. Tisza, L. The thermodynamics of phase equilibrium. Ann. Phys. 1961, 13, 1. [CrossRef]
33. Abraham, R.A.; Marsden, J.E. Foundations of Mechanics, 2nd ed.; Benjamin/Cummings: Reading, MA,

USA, 1978.
34. Yano, K.; Ishihara, S. Tangent and Cotangent Bundles; Marcel Dekker: New York, NY, USA, 1973.
35. Amari, S.I. Information Geometry and its Applications (Applied Mathematical Sciences); Springer: Berlin,

Germany, 2016.
36. Bullo, F.; Lewis, A.D. Geometric Control of Mechanical Systems (Texts in Applied Mathematics); Springer: Berlin,

Germany, 2005.
37. Crouch, P.E.; van der Schaft, A.J. Variational and Hamiltonian Control Systems; Lecture Notes in Control and

Information Sciences; Springer: Berlin, Germany, 1987; Volume 101.
38. Grmela, M. Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 2014, 16, 1652.

[CrossRef]
39. Morrison, P.J. A paradigm for joined Hamiltonian and dissipative systems. Physics D 1986, 18, 410–419.

[CrossRef]
40. Brockett, R.W. Geometric Control Theory; Volume 7 of Lie Groups: History, Frontiers and Applications,

Control Theory and Analytical Mechanics; Martin, C., Hermann, R., Eds.; MathSciPress: Brookline, MA,
USA, 1977; pp. 1–46.

41. Van der Schaft, A.J. Hamiltonian dynamics with external forces and observations. Math. Syst. Theory 1982,
15, 145–168. [CrossRef]

42. Van der Schaft, A.J. System Theory and Mechanics. In Three Decades of Mathematical System Theory; Lecture
Notes in Control and Information Sciences; Springer: Berlin, Germany, 1989; Volume 135, pp. 426–452.

43. Van der Schaft, A.J. L2-Gain and Passivity Techniques in Nonlinear Control, 3rd ed.; Springer: Berlin,
Germany, 2017.

44. Willems, J.C. Dissipative dynamical systems. Part I: General theory. Arch. Rat. Mech. Anal. 1972, 45, 321–351.
[CrossRef]

45. Nijmeijer, H.; van der Schaft, A.J. Nonlinear Dynamical Control Systems; Springer-Verlag: New York, NY,
USA, 1990.

46. Moses-Badlyan, A.; Maschke, B.; Beattie, C.; Mehrmann, V. Open physical systems: From GENERIC to
port-Hamiltonian systems. In Proceedings of the International Symposium on Mathematical Theory of
Networks and Systems (MTNS), Hong Kong, China, 16–20 July 2018; pp. 204–211.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ifacol.2018.06.002
http://dx.doi.org/10.1016/j.ifacol.2018.06.001
http://dx.doi.org/10.1063/1.431689
http://dx.doi.org/10.1103/PhysRevA.20.1608
http://dx.doi.org/10.1016/S1474-6670(17)52308-3
http://dx.doi.org/10.1561/2600000002
http://dx.doi.org/10.1016/0003-4916(61)90027-6
http://dx.doi.org/10.3390/e16031652
http://dx.doi.org/10.1016/0167-2789(86)90209-5
http://dx.doi.org/10.1007/BF01786977
http://dx.doi.org/10.1007/BF00276493
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Thermodynamic Phase Space and Geometric Formulation of the Equations of State
	The Metric Determined by the Equations of State
	Dynamics of Thermodynamic Processes
	Port-Thermodynamic Systems
	Examples of Port-Thermodynamic Systems
	Controllability of Port-Thermodynamic Systems

	Interconnections of Port-Thermodynamic Systems
	Discussion
	Homogeneity of Functions, of Hamiltonian Vector Fields, and of Lagrangian Submanifolds
	References

