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Abstract: We consider a purely mechanical quantum cycle comprised of adiabatic and isoenergetic
processes. In the latter, the system interacts with an energy bath keeping constant the expectation
value of the Hamiltonian. In this work, we study the performance of the quantum cycle for a system
described by the quantum Rabi model for the case of controlling the coupling strength parameter,
the resonator frequency, and the two-level system frequency. For the cases of controlling either
the coupling strength parameter or the resonator frequency, we find that it is possible to closely
approach to maximal unit efficiency when the parameter is sufficiently increased in the first adiabatic
stage. In addition, for the first two cases the maximal work extracted is obtained at parameter
values corresponding to high efficiency, which constitutes an improvement over current proposals of
this cycle.

Keywords: quantum thermodynamics; quantum Rabi model; isoenergetic cycle

1. Introduction

The possibility to create nano-scale devices which are more efficient than current classical
counterparts motivates the study of the quantum version of the very well known cycles of classical
thermodynamics [1–6]. The interest in these concepts has derived in the experimental construction of
some quantum thermal machines [7–9]. The main hypothesis is that there is a relation between the
quantum nature of the working substance and the first law of thermodynamics, this link has been
already established by others [10].

In 2000, Bender et al. proposed a thermodynamical cycle with no classical analogue [11], which
involved the replacement of the heat baths for so-called “energy baths”. This was originally presented
as a proposal for the substitution of the concept of temperature with the expectation value of the
system Hamiltonian [11,12]. When the system is coupled to an energy bath it evolves through an
isoenergetic process, during which the expectation value of the Hamiltonian is constant. This cycle
has been mostly considered for a single non-relativistic confined particle [13–20], and its optimization
has also been a focus of study [21–23]. Recently, it was extended to the case of relativistic regime
by considering the single-particle Dirac spectrum [24,25] and has also been extended to multilevel
systems [26,27].

On the other hand, light-matter systems are described in the more basic sense by the quantum
Rabi model [28]. This model describes the interaction of a single electromagnetic mode with a
two-level system (TLS), and it has been studied in a wide range of the coupling parameter [29–31].
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In particular, the ultrastrong-coupling (USC) regime, which has been experimentally realized [30],
corresponds to the case where the coupling strength and the resonator frequency become comparable.
The light-matter interaction in the USC regime presents interesting properties, such as parity symmetry,
and anharmonic energy spectrum [32]. These properties have led to remarkable applications of
systems described by the USC, also termed quantum Rabi systems (QRS), such as fast quantum
gates [33], efficient energy transfer [34,35], and generation of non-classical states [36,37]. Further,
current progress in superconducting circuit technology has enabled the manipulation of several
parameters of QRSs [38–46]. These results have motivated the study of this system as a working
susbtance of quantum thermodynamical cycles [5,6]. This progress, together with the anharmonicity
and nonlinearity spectrum of the QRS, constitutes an interesting system to investigate the performance
of this quantum cycle involving isoenergetic processes.

In this work we study a quantum cycle comprising adiabatic and isoenergetic processes, where the
working substance corresponds to a two-level system interacting with a single electromagnetic mode
described by the quantum Rabi model. Notice that this choice involves a different physical scenario
from other thermodynamical cycles, such as quantum Otto cycle [5,6], since here the system does not
interact with thermal reservoirs. This means that the total work extracted and the efficiency will be
completely different from that of Reference [5] even under the variation of the same parameters. In the
case of the present work, the efficiency is not bounded by Carnot’s efficiency. Here, we consider an
analytical approximation of the energy levels which allows for qualitative and quantitative description
of the thermodynamical quantities depending on the range of validity of the approximation. We obtain
the total work extracted and efficiency of the cycle for the variation of each one of the parameters of
the model, namely, the coupling strength, the resonator frequency, and the two-level system frequency.
For the cases where the energy spectrum shows nonlinearity and degeneracy, we see that the cycle
performance is improved. In particular, we find that the nonlinear dependence of the energy levels
on either the coupling strength, g, or the resonator frequency, ω, allows for the cycle efficiency to
closely approach to maximal unit value, when the parameter is sufficiently increased in the first
adiabatic stage.

1.1. Quantum Rabi Model

We will consider a working substance composed of a light-matter system described by the
quantum Rabi model [28,32], which reads as:

H = h̄Ωσz + h̄ωa†a + h̄gσx(a† + a), (1)

where a (a†) corresponds to the bosonic annihilation (creation) operator of the resonator mode, σx and
σz stand for the Pauli operators describing the two-level system. In addition, Ω, ω, and g, correspond
to the TLS frequency, resonator frequency, and TLS-resonator coupling strength, respectively.

This model has been considered for several applications in quantum information
processing [33,47–51]. The ratio between the coupling strength and the resonator frequency
g/ω (ω∼Ω) separates the behavior of the system into different regimes [52,53]. In the strong coupling
regime, where the coupling strength is much larger than any decoherence or dephasing rate in the
system, and for values g/ω . 10−2, one can perform the rotating wave approximation (RWA) and the
system can be described by the Jaynes-Cummings model [54]. As the ratio g/ω is increased beyond
the strong coupling regime, there is a breakdown of the RWA and the system must be described by
the full quantum Rabi model. We distinguish two main regimes for the later case, the ultra-strong
coupling regime (USC) [30,55,56] where the coupling strength is comparable to the resonator frequency
g . ω, and the deep-strong coupling regime (DSC) [31,57] where the interaction parameter is greater
than the relevant frequencies g > ω.

In this work we study the quantum cycle for a working substance which is described by the
two lowest energy levels of the quantum Rabi model. In order to better describe the behavior of the
thermodynamical figures of merit we will use a simple approximation for the first two lowest energy



Entropy 2018, 20, 767 3 of 17

levels, employed on a recent work [5] based on References [58,59]. The approximated energy levels are
given by:

E0 = −h̄
g2

ω
− h̄

Ω
2

e−2 g2

ω2 ,

E1 = −h̄
g2

ω
+ h̄

Ω
2

e−2 g2

ω2 , (2)

where E0 and E1 refers to the energy of the ground and first excited state, respectively. Figure 1 shows
E0 and E1 as a function of each of the parameters, g, ω, and Ω as obtained from Equation (2), compared
to their calculation as obtained from the numerical diagonalization of Equation (1). We can see that the
approximation given by Equation (2) captures the behavior of the spectrum for all values of g and ω

considered, while for the case of Ω it is not a good approximation for Ω > ω. Therefore, we will only
consider the numerical calculation for the later case.
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Figure 1. Two lowest energy levels of the quantum Rabi model as a function of (a) the coupling
strength g, with ω = Ω; (b) the resonator frequency ω, with g = Ω; and (c) the TLS frequency Ω with
g = ω. The Solid line denotes the exact diagonalization of Equation (1) and dashed line denotes the
approximation given by Equation (2).

1.2. First Law of Thermodynamic

Let us consider a system with discrete energy levels and whose Hamiltonian Ĥ (ξ) depends
explicitly on a parameter ξ that can be varied at an arbitrary slow rate. We define the eigenstate and
eigenenergies of Ĥ (ξ) by Ĥ|n; ξ〉 = En(ξ)|n; ξ〉, then, for state |ψ〉 = ∑n=0 cn|ξ; n〉, the average energy
〈E〉 = 〈Ĥ〉 of the system takes the form:

〈E〉 = ∑
n

pn (ξ) En (ξ) . (3)
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where pn = |cn|2. The change in the average energy due to an arbitrary quasistatic process involving
the modulation of the parameter ξ is given by:

δ〈E〉 = ∑
n

En (ξ)
∂

∂ξ
pn (ξ) δξ + ∑

n
pn (ξ)

∂

∂ξ
En (ξ) δξ

= δQ + δW. (4)

where:

δQ = ∑
n

En (ξ)
∂

∂ξ
pn (ξ) δξ,

δW = ∑
n

pn (ξ)
∂

∂ξ
En (ξ) δξ. (5)

Equation (4) is cast in a form reminiscent of the first law of thermodynamics, however, the first
term of Equation (4) can only be associated with heat when it is possible to define a temperature in the
system, as is the case of an interaction with a thermal reservoir in an isochoric process. Since this is
not the case for isoenergetic processes, δQ is known as the energy exchange [25,27], while the second
term δW can be identified with the work done. That is, the work done corresponds to the change
in the eigenenergies En (ξ) which is in agreement with the fact that work can only be performed
through a change in generalized coordinates of the systems, which in turn gives rise to a change
in the eigenenergies.

1.3. Cycle of Operation

We consider a quantum cycle composed of two quantum adiabatic processes and two isoenergetic
ones (see Figure 2). In the quantum adiabatic processes, we change the parameter ξ between two values.
This variation must be performed sufficiently slow such that it satisfies the adiabatic approximation [60],
which ensures that the populations are kept constant throughout the process. In the isoenergetic process
the central idea is to keep constant the initial energy expectation value along the procedure, which
means δQ + δW = 0. Therefore, both work and energy exchange are nonzero during this process.
This means that for ξ ∈ [ξk, ξ`], we have:

∑
n

pn(ξk)En(ξk) = ∑
n

pn(ξ)En(ξ) = ∑
n

pn(ξ`)En(ξ`), (6)

where k and ` refers to the ends points of the compression process (k = 1, ` = 2) or expansion process
(k = 3, ` = 4). If we consider that the states at the ends of the isoenergetic process correspond
to the ground state and first excited state of the system, as is shown in Figure 2, the processes are
termed maximal compression for E0(ξ1) = E1(ξ2), and maximal expansion for E1(ξ3) = E0(ξ4).
These conditions yield ξ2 as a function of ξ1, and ξ4 as a function of ξ3; and are referred to as the
isoenergetic condition.

For a two-level system, the energy exchange along the isoenergetic process for maximal expansion
is given by [19,24]:

Qk→`
in = E0(ξk)× ln

[∣∣∣∣∣E0(ξ`)− E1(ξ`)

E0(ξk)− E1(ξk)

∣∣∣∣∣
]
+
∫ ξ`

ξk

E0
dE1
dξ − E1

dE0
dξ

E0(ξ)− E1(ξ)
dξ. (7)

where k = 1 and ` = 2. The isoenergetic process can be modeled as a sequence of steps each composed
of an adiabatic processes followed by a driving process on the working substance (see Appendix A),
from which expression (7) is recovered. For a maximal compression process we refer to the energy
exchange as Qk→`

out (k = 3, ` = 4), and it is obtained by exchanging 0 by 1, and 1 by 0 in Equation (7).
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The subscripts “in” and “out” denote that energy enters or leaves the system, respectively. We remark
that we refer to the quantity Qin(out) as energy exchange, which is not associated with heat.
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Figure 2. Diagram of the Isoenergetic cycle for (a) ξ ≡ g; (b) ξ ≡ ω; and (c) ξ ≡ Ω. Stages 1 → 2
and 3 → 4 correspond to isoenergetic processes, while stages 2 → 3 and 4 → 1 correspond to
adiabatic processes.

In a isoenergetic process there is work performed through the change of the parameter ξ, as can be
seen from Equation (5). At the same time, the energy exchange Qk→`

in(out) is supplied by the energy bath
in order to keep the expectation value of the Hamiltonian constant. Since in this process the average
energy change is zero, we write:

Qk→`
in(out) + Wk→`

iso = 0, (8)

where Wk→`
iso is the work done by the system. Therefore, we have:

Wk→`
iso = −Qk→`

in(out) (9)

As will be seen in what follows, the isoenergetic processes are the only contribution to the total
work extracted.
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On the other hand, in a generic adiabatic process the occupation probabilities pn(ξ) are constant
and only work is performed by the system, which is given by [3]:

Wi→j
(ad) =

∫ ξ j
ξi

dξ
(

∂E
∂ξ

)
pn(ξi)=pn(ξ j)=constant

= ∑n pn(ξi)
[
En(ξ j)− En(ξi)

]
, (10)

where the superscripts (i, j) can taken the values (i = 2, j = 3) for an adiabatic expansion and
(i = 4, j = 1) for the adiabatic compression, respectively. From Figure 2 it is clear that, for each case,
the net contribution of the adiabatic processes cancels out, that is, W2→3

(ad) + W4→1
(ad) = 0. Therefore, the

total work extracted is obtained from the isoenergetic processes, which, using Equation (9), can be
written as:

Wtotal = W1→2
iso + W3→4

iso = −Q1→2
in −Q3→4

out . (11)

It is important to notice that within the framework of maximal expansion/compression the system
ends in a pure state at the end of each stage. This means that the von Neumann entropy of the system
is zero at each process of the cycle, which means that there is no breakdown of the second law for
this cycle [14].

Finally, the efficiency of the cycle is:

η =
Wtotal
Qin

= 1− Q3→4
out

Q1→2
in

. (12)

It is evident from this expression that to improve the efficiency in the quantum cycle, the ratio
Q3→4

out /Q1→2
in is required to be reduced. As will be shown later, the quantum Rabi system spectrum

yields a better minimization of this ratio than most other systems previously considered.
The quantum cycle is specified by the initial parameter ξ1 and α(ξ) ≡ ξ3/ξ2, which characterizes

the adiabatic process.
The quantum Rabi model depends on three parameters, the coupling strength g, the resonator

frequency ω, and the TLS frequency Ω. In our cycle, we will fix two of them and vary the third.
Furthermore, we will consider the cases of varying each of the three parameters.

We have chosen the first isoenergetic process to be of maximal expansion, which will determine
whether ξ should be increased or decreased during the first isoenergetic stage. For the case of ξ = g
we must increase the parameter, whereas for ξ = ω and ξ = Ω we must decrease the parameter.

2. Quantum Rabi Model as a Working Substance

2.1. Case of ξ ≡ g

Let us start by considering the case of ξ ≡ g as the parameter to be varied, and fix ω = Ω. This is
motivated by experimentally reported control of the coupling strength [38,39,61]. Figure 2a shows the
diagram of the quantum cycle corresponding to this case.

Let us first consider the isoenergetic expansion and compression stages. The first isoenergetic
process is subject to the isoenergetic condition given by E0(g1) = E1(g2) which yields g2 as a function
of g1. This is shown in Figure 3a. Due to the structure of the energy levels, the range of values for g1 in
which the cycle can be operated is approximately between 0 < g1 < 1.5. Beyond this value, the energy
levels become degenerate and we expect no energy exchange in the isoenergetic process. Therefore,
the energy spectrum imposes a bound in the range of values of g1 for the operation of the quantum
cycle. Similarly, we consider the isoenergetic condition for the compression stage E1(g3) = E0(g4) and
obtain the values of g4 for given g3, which is shown in Figure 3b for α(g) ∈ [1.2, 2].
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Figure 3. (a) g2 as a function of g1, given by the isoenergetic condition E0(g1) = E1(g2); (b) g4 as a
function of g1, where g4 is obtained from the isoenergetic condition E1(g3) = E0(g4), and g3 = α(g)g2.
We have chosen α(g) = 1.2 (blue), α(g) = 1.4 (red), α(g) = 1.6 (yellow), α(g) = 1.8 (purple),
and α(g) = 2 (green). The dots in Figure 3b indicate the threshold g3 = 2 Ω [57]. Solid lines denote the
numerical calculation, and dashed lines are calculated with the approximated energy levels.

From Equation (7), we obtain the energy exchange for the isoenergetic expansion and compression
process as:

Q1→2
in =

2
ω2

(
g2

2 − g2
1

)( h̄g2
1

ω
+

h̄Ω
2

e−
2g2

1
ω2

)
− h̄

ω3

(
ω2
(

g2
2 − g2

1

)
+
(

g4
2 − g4

1

))
, (13)

Q3→4
out =

2
ω2

(
g2

3 − g2
4

)(
−

h̄g2
3

ω
+

h̄Ω
2

e−
2g2

3
ω2

)
+

h̄
ω3

(
ω2
(

g2
3 − g2

4

)
+
(

g4
3 − g4

4

))
. (14)

We can see from Equations (13) and (14) that the energy exchange that enters or leaves the system
is proportional to g2

2 − g2
1 or g2

3 − g2
4, respectively. This is to be expected, since the energy exchange

between the system and the energy reservoir should depend on how large is the variation of the
parameter during the isoenergetic process. Then, by inspecting Figure 2a, we would expect that
Q1→2

in /Q3→4
out > 1, and that this ratio should be increased by incrementing α(g).

On the other hand, for the first and second adiabatic processes the work done is given by
W2→3 = E1(g3)− E1(g2) and W4→1 = E0 (g1)− E0 (g4), respectively. Where g3 = α(g)g2 and g4 is
specified by the second isoenergetic condition.

Figure 4a shows the energy exchange of the first isoenergetic process as a function of g1, as
expected, the maximum values are achieved when the isoenergetic condition maximizes the difference
g2

2 − g2
1, which can also be seen in Figure 2a. The total work extracted, Wtotal, depends on g1 and α(g),

as is shown in Figure 4b. Since the total work extracted is obtained from the sum of Q1→2
in and Q3→4

out ,
the maximum work extracted is found where Q1→2

in is maximum and Q3→4
out is minimum, that is, at

small values of g1 and high values of α(g). In the same way, from Figure 2a we can expect for the
total work extracted to vanish as g1 → 1.5Ω. This is a consequence of the energy levels becoming
degenerate, and therefore, the isoenergetic process requires almost no variation of g, which minimizes
both Q1→2

in and Q3→4
out .
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Figure 4. (a) Energy exchange Qin and (b) total work extracted, Wtotal, as a function of g1,
for α(g) = 1.2 (blue), α(g) = 1.4 (red), α(g) = 1.6 (yellow), α(g) = 1.8 (purple), and α(g) = 2 (green).
The dots in Figure 4b indicate the threshold g3 = 2 Ω [57]. Solid lines denote the numerical calculation,
and dashed lines are calculated with the approximated energy levels.

Figure 5 shows the efficiency, η, of the cycle as a function of g1 for different values α(g). From this
figure, we see that the efficiency increases with g1 as well as with α(g). This is a consequence of the
nonlinear dependence of the energy spectrum on the parameter g. Additionally, we see that for finite
values of g1 the efficiency quickly approaches its maximal theoretical value, instead of asymptotically
converging to it [19,24,25]. This can be understood from Figures 2a and 3, since, as g1 and α(g) increase,
we can expect that the ratio Q3→4

out /Q1→2
in to be minimized. This is because the nonlinearity of the

energy spectrum with respect to g is such that the second isoenergetic process happens closer to the
region where the energy levels become degenerate, and from Equation (14) we see that if g4 → g3,
then Q3→4

out → 0. However, this will happen for Wtotal → 0, as can be seen from Figure 4b. On the
other hand, in the region of maximal total work extracted we find values of the efficiency that range in
0.5 < η < 0.95, depending on the values of α(g).

0 0.5 1 1.5
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Efficiency η as function g1 for α(g) = 1.2 (blue), α(g) = 1.4 (red), α(g) = 1.6 (yellow),
α(g) = 1.8 (purple), and α(g) = 2 (green). The dots indicate the threshold g3 = 2 Ω [57]. In both figures
solid line denotes the exact numerical calculation, and dashed line is calculated with the approximated
energy levels.

2.2. Case of ξ ≡ ω

Now, we consider the choice of ξ ≡ ω as the parameter to be varied, and fix g = Ω. This is
motivated by experimentally reported control of the resonator frequency [40,41,62].
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In this case, the energy exchange for maximal expansion and compression are given by:

Q1→2
in =

(
−2g2

(
1

ω2
2
− 1

ω2
1

))
E1 (ω1)−

4
3

h̄g4

(
1

ω3
2
− 1

ω3
1

)
− h̄g2

(
1

ω2
− 1

ω1

)
, (15)

Q3→4
out =

(
2g2

(
1

ω2
3
− 1

ω2
4

))
E2 (ω3) +

4
3

h̄g4

(
1

ω3
3
− 1

ω3
4

)
+ h̄g2

(
1

ω3
− 1

ω4

)
. (16)

where ω2, and ω4 are obtained from the isoenergetic conditions E1(ω2) = E0(ω1) and
E0(ω4) = E1(ω3), respectively. This is presented in Figure 6, for α(ω) ∈ [0.75, 0.95]. In the same
way as in the previous case, we see that the energy exchange in the isoenergetic processes depends
on the amplitude of the variation of the parameter required by the isoenergetic condition. Then, we
can expect that the nonlinear dependence of the energy spectrum on ξ = ω will play a similar role
as with ξ = g. In what follows we find it convenient to express the results in terms of 1/ω1. In this
case, the range of values of ω for the operation of the quantum cycle is lower bounded by ω = 0.5 Ω.
Below this value the energy levels become degenerate and there is no total work extracted nor energy
exchange as can be seen from Figure 7.

For the first and second adiabatic processes the work done is given by W2→3 = E1 (ω3)− E1 (ω2)

and W4→1 = E0 (ω1)− E0 (ω4), respectively. Where ω3 = α(ω)ω2, and ω4 is specified by the second
isoenergetic process.

The total work extracted, Wtotal, is shown in Figure 7b as a function of ω−1
1 . We see that for

0.35 . ω−1
1 . 0.45 (in units of Ω−1) we obtain the region of maximal Wtotal for different values of α(ω).

This is because in this region, the isoenergetic process requires a large variation of the parameter ω,
as can be seen in Figure 2b, which in turn maximizes both Q1→2

in and Wtotal. In addition, in Figure 7,
we see that as ω−1

1 → 2 Ω−1, then, Q1→2
in → 0 and Wtotal → 0, which is a consequence of the energy

levels becoming degenerate beyond this value of resonator frequency.

0 1 2
0.5

1

1.5

2

2.5

0 1 2
0

1

2

3(a) (b)

Figure 6. (a) ω−1
2 as a function of ω−1

1 given by the isoenergetic condition E0(ω1) = E1(ω2); (b) ω−1
4

as a function of ω−1
1 , where ω4 is obtained from the isoenergetic condition E1(ω3) = E0(ω4),

and ω3 = α(ω)ω2. We have chosen α(ω) = 0.75 (blue), α(ω) = 0.80 (red), α(ω) = 0.85 (yellow),
α(ω) = 0.90 (purple), and α(ω) = 0.95 (green). Solid lines denote the numerical calculation, and dashed
lines are calculated with the approximated energy levels.
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Figure 7. (a) Energy exchange Qin and (b) total work extracted (Wtotal) as a function of ω−1
1 for

α(ω) = 0.75 (blue), α(ω) = 0.8 (red), α(ω) = 0.85 (yellow), α(ω) = 0.90 (purple), and α(ω) = 0.95 (green).
Solid lines denote the numerical calculation, and dashed lines are calculated with the approximated
energy levels.

In Figure 8 we show the efficiency as a function of ω−1
1 for different values of α(ω), where we

see that the efficiency increases as α(ω) is reduced. Notice that the efficiency approaches its maximal
theoretical value within the range of ω1 considered. The reason for this is similar to the case of ξ = g,
where degeneracy and nonlinearity of the energy spectrum with respect to ω lead to a minimization
of the ratio Q3→4

out /Q1→2
in . This can be seen in Figure 2b. At the same time, the maximization of the

efficiency occurs as the energy exchange and total work extracted goes to zero. On the other hand, in
the region of maximal total work extracted we find values of the efficiency that range in 0.1 < η < 0.65,
depending on the values of α(ω).

0 1 2
0

0.2

0.4

0.6

0.8

1

Figure 8. Efficiency as function ω−1
1 for α(ω) = 0.75 (blue), α(ω) = 0.8 (red), α(ω) = 0.85 (yellow),

α(ω) = 0.90 (purple), and α(ω) = 0.95 (green). Solid lines denote the numerical calculation, and dashed
lines are calculated with the approximated energy levels.

In both the ξ ≡ g case and the ξ ≡ ω case, the nonlinearity and degeneracy of the energy spectrum
allows close approach to maximal efficiency of the quantum cycle.

2.3. Case of ξ ≡ Ω

For the final case, we consider the choice ξ ≡ Ω as the parameter to be varied,
and fix g = ω. This is motivated by experimentally reported control of the TLS
frequency [42,43]. Since the approximation of Equation (2) breaks down for Ω > ω, we will
only consider numerical calculations of the figures of merit.



Entropy 2018, 20, 767 11 of 17

The solution for the isoenergetic condition is shown in Figure 9, for α(Ω) ∈ [0.75, 0.95]. We see
that this case differs from the previous ones in that there is no need to limit the parameter Ω to a
specific range of values because there is no degeneracy of the energy levels. Nonetheless, we have
restricted the values of Ω to the range 0.5 < Ω < 6 (in units of ω) to facilitate the comparison with
the other cases.

0 1
0

0.2

0.4

0.6

0 1 2
0

2

4

6
(a) (b)

Figure 9. (a) shows Ω−1
2 as a function of Ω−1

1 given by the isoenergetic condition E0(Ω1) =

E1(Ω2); (b) shows Ω−1
4 as a function of Ω−1

1 where Ω4 is obtained from the isoenergetic condition
E1(Ω3) = E0(Ω4), and Ω3 = α(Ω)Ω2. We have chosen α(Ω) = 0.75 (blue), α(Ω) = 0.8 (red),
α(Ω) = 0.85 (yellow), α(Ω) = 0.90 (purple), and α(Ω) = 0.95 (green). In this case we have only
considered the exact numerical calculation.

The total work extracted is shown in Figure 10, it can be seen that it is considerably smaller than
in previous cases, as expected from inspecting the energy spectrum in Figure 2c. Since in this case there
is no degeneracy, the total work extracted does not vanish within the chosen range of the parameter.

0 1 2
0

0.2

0.4

0.6

0 1 2
0

0.04

0.08

0.12(a) (b)

Figure 10. (a) Energy exchange Qin and (b) total work extracted (Wtotal) as a function of Ω−1
1 for

α(Ω) = 0.75 (blue), α(Ω) = 0.8 (red), α(Ω) = 0.85 (yellow), α(Ω) = 0.90 (purple), and α(Ω) = 0.95 (green).

In Figure 11 we show the efficiency as a function of Ω−1
1 for different values of α(Ω). Here,

the efficiency is smaller than those in the previous cases. This is because the functional dependence of
the energy levels on Ω is closer to linear behavior as compared with the other two parameters that
were previously considered.
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0 1 2
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Figure 11. Efficiency as a function of Ω−1
1 for different values of α(Ω) given by α(Ω) = 0.75 (blue),

α(Ω) = 0.8 (red), α(Ω) = 0.85 (yellow), α(Ω) = 0.90 (purple), and α(Ω) = 0.95 (green).

Finally, we briefly discuss a possible implementation of this cycle in superconducting circuits.
As we mentioned before, the operation of the cycle under consideration relies on varying some
parameter of the system at each step. The modulation of the parameters considered in the
manuscript has been demonstrated experimentally in superconducting circuit realizations [38–43,61,62].
This allows the implementation of the adiabatic stages by a slow variation of the parameters. On the
other hand, the isoenergetic processes could be engineered by the method shown in the appendix,
as a sequence of steps each composed of an adiabatic processes followed by a driving process.
The implementation of drivings is straightforward, which means that the possibility of varying
the system parameters in superconducting circuit realizations also enable the implementation of the
isoenergetic processes.

3. Conclusions

We have studied the performance of an quantum cycle with a working substance described by
the quantum Rabi model. We have considered the variation of each of the parameters of the system, g,
ω and Ω. We use a simple approximation of the energy levels, which helps to understand the behavior
of the figures of merit.

We find that the nonlinear dependence of the energy levels on either the coupling strength, g, or
the resonator frequency, ω, allows for the cycle efficiency to closely approach the maximum. This occurs
when the parameter is sufficiently increased (for g) or decreased (for ω) in the first adiabatic stage.
On the other hand, maximal total work extracted is found at efficiencies in the range of 0.5 < η < 0.95
for the variation of g, and in the range of 0.1 < η < 0.65 for the variation of ω, which depend on the
changes induced by the adiabatic processes.

Finally, we considered the case of varying the TLS frequency Ω. We find that the total work
extracted and the efficiency are considerably smaller than those in the previous cases. This is because
the functional dependence of the energy levels with Ω is closer to linear behavior as compared with
the other two parameters.

Summarizing, the degeneracy and nonlinearity of the energy spectrum of the working substance
play the role of enhancing the performance of the quantum cycle. These results may encourage the
consideration of these properties of the energy spectrum to optimize the performance of a quantum
cycle composed of adiabatic and isoenergetic processes in future studies.
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Appendix A. Simulation of Isoenergetic Process

In this appendix we show that expression (7) for the energy exchange between the system and
the energy reservoir can be reproduced by regarding the isoenergetic process as a sequence of steps
each composed of an infinitesimal adiabatic change of the parameter ξ followed by a driving process,
simulating the action of the energy reservoir. While this is exact, it is not possible to implement
an infinitesimal adiabatic change, nonetheless, an isoenergetic process could be approximated by
a finite sequence of steps with arbitrary precision, by considering at each step an arbitrarily small
adiabatic process, that is followed by a driving process. In this case, both actions of each step could be
implemented with current technology in superconducting circuits.

Let us consider a system described by a Hamiltonian that depends on a parameter ξ, it means:

H(ξ) = ∑
j

εj(ξ)|φj(ξ)〉〈φj(ξ)| (A1)

with εj(ξ) and |φj(ξ)〉 are the j-th eigenenergy and eigenstate, respectively.
Now, we consider an isoenergetic change in the parameter ξ, with energy expectation value

Eo ≤ ε1(ξ). In this case, we can write the quantum state of the system as a linear superposition of
the two lowest levels. Then in an arbitrary point ξ = ξa of the isoenergetic process the state of the
system reads:

|ψ(ξa)〉 =
√

p(ξa)|φ0(ξa〉+
√

1− p(ξa)|φ1(ξa)〉 (A2)

and its energy is given by:
Eo = p(ξa) [ε0(ξa)− ε1(ξa)] + ε1(ξa), (A3)

then:

p(ξa) =
Eo − ε1(ξa)

ε0(ξa)− ε1(ξa)
. (A4)

We simulate an infinitesimal isoenergetic change by an adiabatic change in the parameter ξ and
a driving in order to keep the energy constant. Then, first we change adiabatically ξa → ξa + δξ,
obtaining the state:

|ψ̄(ξa + δξ)〉 =
√

p(ξa)|φ0(ξa + δξ)〉+
√

1− p(ξa)|φ1(ξa + δξ)〉 (A5)

with energy:
Ē = p(ξa) [ε0(ξa + δξ)− ε1(ξa + δξ)] + ε1(ξa + δξ). (A6)

Performing a driving process in the transition 0–1 of the system we obtain the state:

|ψ(ξa + δξ)〉 =
√

p(ξa + δξ)|φ0(ξa + δξ)〉+
√

1− p(ξa + δξ)|φ1(ξa + δξ)〉 (A7)

with energy Eo. In order to keep the energy constant, there must be an energy flow from the driving
machine to the system given by δE = Eo − Ē given by:

δE = p(ξa) [(ε0(ξa)− ε0(ξa + δξ))− (ε1(ξa)− ε1(ξa + δξ))] + (ε1(ξa)− ε1(ξa + δξ))

=
[

Eo−ε1(ξa)
ε0(ξa)−ε1(ξa)

]
[(ε0(ξa)− ε0(ξa + δξ))− (ε1(ξa)− ε1(ξa + δξ))] + (ε1(ξa)− ε1(ξa + δξ))

(A8)
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As δξ is a small change, the eigenenergies in the point ξ = ξa + δξ reads:

ε0(ξa + δξ) ≈ ε0(ξa) +

(
d

dξ
ε0(ξ)

) ∣∣∣∣
ξ=ξa

δξ

ε1(ξa + δξ) ≈ ε1(ξa) +

(
d

dξ
ε1(ξ)

) ∣∣∣∣
ξ=ξa

δξ (A9)

then we obtain for δE:

δE = −
[

Eo − ε1(ξa)

ε0(ξa)− ε1(ξa)

] [
ε′0(ξa)− ε′1(ξa)

]
δξ − ε′1(ξ)δξ

⇒ δE = −
[

Eo

ε0(ξa)− ε1(ξa)

] [
ε′0(ξa)− ε′1(ξa)

]
δξ +

[
ε1(ξa)ε′0(ξa)− ε0(ξa)ε′1(ξa)

ε0(ξa)− ε1(ξa)

]
δξ.(A10)

If the change δξ is infinitesimal, then δξ → dξ, δE → dE, and the total energy flow from the
driving machine to the system along the isoenergetic process reads:

∆E =
∫ ξfinal

ξinitial
dE = −Eo

∫ ξfinal
ξinitial

ε′0(ξ)−ε′1(ξ)
ε0(ξ)−ε1(ξ)

dξ +
∫ ξfinal

ξinitial

ε1(ξ)ε
′
0(ξ)−ε0(ξ)ε

′
1(ξ)

ε0(ξ)−ε1(ξ)
dξ

= −Eo ln
[

ε0(ξfinal)−ε1(ξfinal)
ε0(ξinitial)−ε1(ξinitial)

]
+
∫ ξfinal

ξinitial

ε1(ξ)ε
′
0(ξ)−ε0(ξ)ε

′
1(ξ)

ε0(ξ)−ε1(ξ)
dξ

(A11)

which corresponds to the expression of the energy exchange of Equation (7) considered in our quantum
cycle. Therefore, we can consider a physical implementation of an approximate isoenergetic process
as a sequence of steps, each composed by an arbitrarily small adiabatic change in the parameter (δξ)
followed by a driving to restore the energy, where the latter plays the role of the energy reservoir. Both
of these processes are available in superconducting circuit realizations.
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