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SM-0. General Framework–Spin models, Stochastic Complexity

SM-0.1. Spin Operators

Let us consider the system of n spin variables, s = (s1, · · · , sn), that take random values si = ±1.
In order to account for interactions of any order, we associate to any interaction involving a subset µ of
spins a spin operator φµ(s) defined as the product of all the spins in µ:

φµ(s) = ∏
i∈µ

si , (S.1)

which takes value in {+1,−1}. By definition, the total number of these operators corresponds to
the number of possible interactions in the n-spin system, i.e. to the number of possible subsets of
{s1, . . . , sn}, empty set excluded, which is 2n − 1. In the following we simplify the notation of the
operator label µ by using an integer, µ ∈ {1, . . . , 2n− 1}, whose binary representation directly identifies
the spins that belong to the set µ [1]. For instance, the operator φ1(s) = s1 is associated with a field
acting on s1, and φ7(s) = s1s2s3 with a three body interaction. These spin operators are the building
blocks of the models. Note that, these operators verify:

∑
s∈S

φµ(s) = 0 , µ ∈ {1, . . . , 2n − 1} , (S.2)

where S = {−1, 1}n, and the sum over s ∈ S denotes the sum over all possible configurations of
the spins.

SM-0.2. Complete Set of Spin Operators

We define the set Ωn = {φµ(s)}µ∈{0,...,2n−1} of all the spin operators built with n spins, including
also the operator φ0(s) = 1 (which is not associated with any interaction). By definition, the cardinality
of Ωn is |Ωn| = 2n. The set Ωn is (called) orthogonal and complete as its operators verify respectively the
relations [2]:

〈φµ(s), φν(s)〉 = 1
2n ∑

s∈S
φµ(s) φν(s) = δµ,ν and

1
2n

2n−1

∑
µ=0

φµ(s) φµ(s′) = δs,s′ . (S.3)

The first relation defines an inner product 〈·, ·〉 over the space of operators Ωn. The relation
derives from the fact that the product of two operators of Ωn is also an operator of Ωn:

φµ(s) φν(s) = φµ⊕ν(s) , (S.4)

where, in the binary representation of µ and ν, ⊕ is the XOR bitwise operation. Using the property (S.2)
and observing that φµ(s)φµ(s) = φ0(s) = 1 gives the first relation. The second relation is an immediate
consequence of the fact that, for the set of monomials Ωn, one has
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2n−1

∑
µ=0

φµ(s) φµ(s′) = ∑
α1=0,1

· · · ∑
αn=0,1

n

∏
i=1

(sis′i)
αi , (S.5)

which is always equal to zero, unless all si are equal to s′i. In this latter case the sum yields the 2n factor
that allows to recover (S.3). The orthogonality and completeness properties (S.3) allow us to express
any function F : S → R [3] as a linear combination of operators [2] φµ(s), i.e.,

F(s) = ∑
µ∈Ωn

f µφµ(s), and f µ = 〈F(s), φµ(s)〉 = 1
2n ∑

s∈S
φµ(s)F(s). (S.6)

Generating Set of Ωn and Independent Operators

In the following, we will call generating set of Ωn a set of n spin operators that can fully generate
Ωn, such as the set {s1, . . . , sn}. We also define the notion of set of independent operators [4] as a set I
verifying that the product of all the operators of any subset of I is always different from φ0(s) = 1.
Formally, any set of n independent operators of Ωn is a generating set of Ωn. By definition, a generating
set of Ωn cannot include the identity operator φ0.

Mathematically, the set Ωn, associated with the multiplication operation (Ωn, ·), forms a finite
Abelian group with identity element φ0(s) = 1 generated by a minimal set of n generators of order 2
(Ωn = Z2

n).

SM-0.3. Spin Models

A model M is defined in terms of a subset M ⊆ Ωn\{φ0} of operators [5]. These define a
probability distribution of the vector s = (s1, . . . , sn) of spin variables:

P(s | g,M) =
1

ZM(g)
e∑µ∈M gµφµ(s) where ZM(g) = ∑

s∈S
e∑µ∈M gµφµ(s) , (S.7)

where the vector g = {gµ, µ ∈ M} are the conjugate parameters: each parameter gµ is a real variable
that modulates the strength of the interaction associated with the operator φµ(s). We shall refer to
the model M̄ = Ωn\{φ0} with all operators as the complete model. Models can be degenerate (several
operators are mapped to the same parameter) or not.

Non-Degenerate Models

Non-degenerate models are those for which each operator φµ(s) is assigned a different parameter
gµ. For instance, model a) in Figure 1 of the main text involves |M| = 7 interactions, mapping the
7 operatorsM = {s1, s2, s3, s1s2, s1s3, s2s3, s1s2s3} onto the 7 parameters g = {g1, g2, g4, g3, g5, g6, g7}
(using the binary representation [1] of µ). The number of different non-degenerate models with n spins
grows superexponentially in n:

Nn = 2|Ωn\{1}| = 22n−1 . (S.8)

To give an idea: N2 = 8, N3 = 128, N4 = 32768, N5 ' 2 · 109. In the main paper and in most of
the supplemental material we shall focus on non-degenerate models.

Degenerate Models

For completeness we also define degenerate models, which are discussed in section SM-7. In a
degenerate model, each parameter can be associated to one or more interactions. For example, the mean
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field Ising model is a degenerate model with only 2 parameters, h and J; the connection with the gµ

notation reads:

gµ =


h for all µ = 2k with k ∈ [0, n− 1] ,
J for all µ = 2k + 2k′ with k > k′ and (k, k′) ∈ [0, n− 1]2 ,
0 otherwise ,

(S.9)

where we used the binary representation of the set µ [1]. To work with degenerate models, it is
convenient to introduce a more general notation, in which a model M is defined by a set of |M|
operators, φ = {φµ}µ∈M, a set of m parameters g = {gi}i∈{0,...,m}, and a rectangular (mapping) matrix
U of size |M| ×m that maps each operator of φ to one parameter of g:

Uij =

{
1 if φj is parameterised by gi ,

0 otherwise .
(S.10)

For non-degenerate models, U is simply the |M| × |M| identity matrix. By definition, each
column of U contains a single 1, whereas the sum of each line i gives the degeneracy αi = ∑j Uij
of the parameter gi. Note that ∑ij Uij = |M|. The extension to such degenerate models is natural
when operators µ ∈ V are of the same order [6]. The number of possible degenerate models, where
interactions of the same order may be assigned the same parameter, grows much faster thanNn with n:

N deg
n =

n

∏
j=1

B(n
j)+1 ,

where Bm is the number of partitions of a set with m elements, known as Bell number. For instance,
N deg

2 = 10, N deg
3 = 450, N deg

4 = 2.371.408 and N deg
5 ' 38 · 1015.

SM-0.4. The Stochastic Complexity and Bayesian Model Selection

In this section we recall the relation between the stochastic complexity defined in the context of
Minimum Description Length and the geometric complexity obtained from a Bayesian approach. We
refer to References [7,8] for a more complete treatment.

Bayesian model selection dictates that, given a dataset ŝ = (s(1), . . . , s(N)) of N observed
configurations s(i) ∈ S , each model should be assigned a posterior probability

P(M| ŝ) = P(ŝ |M) P0(M)

∑M′ P(ŝ |M′) P0(M′)
, (S.11)

according to Bayes’ rule. Here P0(M) is the prior probability on the modelM and the sum in the
denominator runs on all modelsM′ that are considered. In Equation (S.11), P(ŝ|M) is the so-called
evidence that is computed by integrating the likelihood P(ŝ | g,M) over the parameters g. In the case
where s(i) are i.i.d., this reads:

P(ŝ |M) =
∫

dg
N

∏
i=1

P(s(i)| g,M) P0(g|M) (S.12)

where P0(g|M) is the prior distribution on the parameters g of model M. For spin models, the
probability P(s | g,M) is given by Equation (S.7) and the evidence becomes:

P(ŝ |M) =
∫

dg e N [ϕ̂(ŝ) · g − log ZM(g)] P0(g |M) , (S.13)

http://dx.doi.org/10.3390/e20100739


Entropy 2018, 20, 739; doi:10.3390/e20100739 S4 of S23

where ϕ̂(ŝ) is a vector with |M| elements, containing the empirical averages of the operators φµ over
the measured data ŝ:

ϕ̂µ(ŝ) =
1
N

N

∑
i=1

φµ(s(i)) , for µ ∈ M . (S.14)

The log-likelihood, log P(ŝ | g,M) = N [ϕ̂(ŝ) · g− log ZM(g)], is a convex function of g and it has
a unique maximum for the values of the parameters g = ĝ that are the solution of the set of equations:

ϕµ(ĝ) = ϕ̂µ(ŝ) for all µ ∈ M , (S.15)

where

ϕµ(g) =
∂ log ZM(g)

∂gµ = ∑
s∈S

φµ(s) P(s | g,M) , (S.16)

denotes the ensemble average of the operator φµ(s) under the model specified by g. In other words,
at g = ĝ, the ensemble average of each operator φµ ofM is equal to its empirical average ϕ̂µ over
the measured data ŝ. For large N, the integral is sharply dominated by the maximum and it can be
estimated by the Saddle-point method, expanding ϕ̂(ŝ) · g − log ZM(g) to second order about ĝ. This
shows that, for large N, Equation (S.13) is well approximated by:

log P(ŝ |M) ∼= log P(ŝ | ĝ,M) − |M|
2

log
(

N
2π

)
− cBMS

M + O
(

1
N

)
, (S.17)

where cBMS
M is a geometric complexity term [8] arising from the Gaussian integration:

cBMS
M = log

[√
det J(ĝ)

P0(ĝ |M)

]
, (S.18)

and J(g) is the Hessian of the log-likelihood, which in this case coincides with the Fisher Information
matrix defined in Equation (5) of the main text.

Minimum Description Length instead approaches the problem of model complexity from an
apparently different angle. Imagine we run a series of experiments that generate a sample ŝ of
N � 1 observations of a system. We model the outcome of the experiment as N i.i.d. drawn from a
model P(s | g,M) for unknown parameters g (imagine the situation where we run the experiment
precisely because we want to infer the parameters g). How much memory storage should be set aside
before running the experiment? If we knew the parameters ĝ the solution is given by (minus) the
log-likelihood − log P(ŝ | ĝ,M) where P(ŝ| . . .) = ∏N

i=1 P(s(i)| . . .). In the absence of this information,
the problem can be cast as a minimax problem (we refer to [9] for details), i.e., to find the best possible
coding P̄(ŝ) in the case where Nature choses the worst possible sample ŝ. The solution is the normalised
maximum likelihood

P̄(ŝ) =
P(ŝ | ĝ(ŝ),M)

∑ŝ′ P(ŝ′ | ĝ(ŝ′),M)
. (S.19)

From this, it is clear that the additional memory space that is needed to describe the model and the
parameters is given by the log of the denominator of Equation (S.19), which is the l.h.s. in Equation (3)
of the main text. In order to derive the r.h.s. of Equation (3) of the main text, consider the expansion:
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∫
dg P(ŝ | g,M) f (g) ' P(ŝ | ĝ,M) f (ĝ)

(2π/N)|M|/2√
det J(ĝ)

[1 + O(1/N)] (S.20)

that arises from performing the integral by saddle point around the maximum likelihood parameters
ĝ(ŝ) which depend on the data ŝ. In Equation (S.20), the matrix J is, in general, the Hessian of
the likelihood at ĝ. Yet, for exponential models, the Hessian J does not depend on the data, and it
coincides with the Fisher Information matrix. Taking f (g) =

√
det J(g), summing over all samples ŝ

in Equation (S.20) and taking the limit N → ∞, one finds

∫
dg
√

det J(g) = lim
N→∞

(
2π

N

)|M|/2

∑̂
s

P(ŝ | ĝ,M) = ecM , (S.21)

which is Equation (3) of the main text, and where cM is given by Equation (4) of the main text.
As observed in Reference [8], the choice of Jeffreys’ priors [10]

P0(g |M) =

√
det J(g)∫

dg′
√

det J(g′)
(S.22)

in Equation (S.18) makes the geometric complexity cBMS
M of the Bayesian approach coincide with the

stochastic complexity cM (see Equation (4) of the main text) prescribed by Minimum Description
Length [7,11]. This choice for the prior seems natural (in absence of any information on the values
of g), as it corresponds to assuming an a priori uniform distribution in the space of samples [8]. We will
see that this choice of prior has also an interesting property, as it is invariant under re-parametrisation,
which will lead to the definition of class of complexity.

SM-1. Gauge Transformations (GT)

SM-1.1. Definition

Any generating set σ = {φν1 , . . . , φνn} of Ωn induces a bijection s → σ(s) on the set of
configurations S and on the set Ωn of operators. Indeed

φµ(σ) = ∏
i∈µ

φνi (s) = φµ′(s), µ′ = ⊕i∈µνi (S.23)

where ⊕i∈µνi is the bitwise XOR of the binary representation of the integers νi for all i ∈ µ. We call
such a bijection a gauge transformation [12]. In other words, these are transformations that map the set
of n generators {s1, . . . , sn} of Ωn to another set of generators of Ωn, i.e. a set of n independent operators
of Ωn (see definitions in SM-0). A GT preserves the structure of Ωn in the sense that any operator in the
old basis is mapped into a distinct operator in the new one. A transformation that maps (s1, . . . , sn)

to a set of n non-independent operators will not preserve its structure. Indeed it maps Ωn to a strict
subset of Ωn, with n′ < n independent generators. Combining them can generate only 2n′ operators,
which means that some operators of Ωn will not occur in Ωn′ . Note also that the operator φ0(s) = 1 is
invariant under GTs.

Mathematically, these transformations are the automorphisms of the group (Ωn, ·).

SM-1.2. Number of Gauge Transformations for A System with n Spins

The total number of these transformations corresponds to the number of possible sets of generators
of Ωn. There are exactly

(
|Ωn| − 1

n

)
× n! =

n

∏
i=1

(2n − i) = (2n)n
n

∏
i=1

(
1− i

2n

)
' (2n)n

(
1 + O(n2/2n)

)
(S.24)
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possible ways to sample a set of n operators among Ωn\{1} [13] . However, only a few of them
correspond to a set of n independent operators. Consider that you have chosen i independent operators,
{σ1, . . . , σi}, in Ωn\{1}: with these operators you can generate a subset of 2i operators of Ωn. The
number of operators left in Ωn that are independent of the family {σ1, . . . , σi} is thus |Ωn| − 2i = 2n− 2i,
which corresponds to the number of possibilities for choosing another independent operator σi+1. As a
consequence, the number of different ways to sample n independent operators from Ωn, i.e., the total
number of GTs, is

NGT(n) =
n−1

∏
i=0

(2n − 2i) = (2n)n
n

∏
i=1

(
1− 1

2i

)
. (S.25)

In this equation, one can recognise the q-Pochhammer symbol,
(

1
2 , 1

2

)
n
= ∏n−1

i=0

(
1− ( 1

2 )
i+1),

a (strictly) decreasing function of n, converging rapidly (n > 5) to its asymptotic value known as
the Euler φ-function, φ

( 1
2
)
' 0.2887880950. For example, NGT(3) = 168 and NGT(4) = 20160; for

n > 5, the number of gauge transformations grows as NGT(n) ∼ 0.289× (2n)n. Finally, the probability
of getting a GT by drawing at random n operators {σ1, . . . , σn} of Ωn converges asymptotically to a
non-zero constant:

PGT =

(
1
2 , 1

2

)
n

∏n
i=1

(
1− i

2n

) −→
n→∞

φ

(
1
2

)
' 0.2887880950 . (S.26)

SM-2. Partition Function of A Spin ModelM

SM-2.1. Partition Function and Loops ofM

In order to compute the complexity cM of a modelM from Equation (4) of the main text, one has
first to compute the Fisher Information matrix J(g), and, by extension, the partition function ZM(g)
given in Equation (S.7). As each operator φµ(s) only takes values in {−1, 1}, the exponential terms in
Equation (S.7) can be expanded as [14,15]

egµφµ(s) = cosh(gµ) + φµ(s) sinh(gµ) = cosh(gµ) [1 + φµ(s) tanh(gµ)] , (S.27)

which successively leads to the expressions for the partition function:

ZM(g) =

(
∏

µ∈M
cosh(gµ)

)
∑
s∈S

∏
µ∈M

[1 + φµ(s) tanh(gµ)] ,

=

(
∏

µ∈M
cosh(gµ)

)
∑
s∈S

[
∑

M′⊆M
∏

µ∈M′
φµ(s) tanh(gµ)

]
,

where the sum overM′ ⊆ M runs over all possible sub-models (i.e., subsets) ofM and the product
is then taken over every operator of the sub-modelM′. The “empty model”M′ = {∅}, with no
interactions, is also included in the sum, considering that ∏µ∈{∅} φµ tanh(gµ) = 1. In order to compute
the sum over all configurations S , one can exploit Equations (S.2) and (S.4), that lead to:

∑
s∈S

∏
µ∈M′

φµ(s) tanh(gµ) = ∏
µ∈M′

tanh(gµ) ∑
s∈S

φ
⊕µ∈M′ (s)

= 2n ∏
µ∈M′

tanh(gµ)δ⊕µ∈M′ ,0 ,
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where ⊕µ∈M′ denotes the bitwise XOR operation between all the operators µ ∈ M′. Here, the key
observation is that⊕µ∈M′ = 0 if and only if each spin occurs an even number of times (or none) among
the operators ofM′. In this latter case, the operators ofM′ form a loop, such that ∏µ∈M′ φ

µ(s) = 1
is equal to the identity operator. Let us name ` any sub-modelM′ that forms a loop and call L the
set of all the loops ` of a given modelM (including the empty loop {∅}), allowing us to obtain the
expression in Equation (7) of the main text. The expansion of the partition function in loops is in the
same spirit of cluster expansions methods in statistical physics (for a review see [16]).

SM-2.2. Invariance of ZM under Gauge Transformation

In Equation (7) of the main text, the structure of the partition function depends only on few
characteristics of the modelM:

i) the total number of operators |M|, as they all appear in the product ∏µ∈M cosh(gµ);
ii) the structure of its set of loops L: the number |L| of loops in the model (through the sum over
L); the number |`| of operators involved in each loop, named the length of the loop (through the
product over each operator µ of `); and finally which operators are involved in each loop.

These properties are invariant under GTs, such that the structure of the partition function in
Equation (7) of the main text remains invariant as well. Indeed, consider two models, M and
M′ = T [M], that are images of one another via a GT T . They verify the following properties:

i) the two models have the same number of operators: |M| = |M′|. Indeed, we define the image of
the setM by T as,M′ = T [M] = {T [φµ], µ ∈ M}, and T is a bijection on the set of operators
Ωn (such that for all φµ, T [φµ] ∈ Ωn and if φµ 6= φν then T [φµ] 6= T [φν]).

ii) the two models have the same loop structure. Indeed, if ` ∈ L is a loop of the modelM, i.e.,

∏
µ∈`

φµ(s) = φ⊕µ∈` = 1,

then `′ = T (`) has the same length as ` (see i)) and is a loop of the modelM′ = T [M]:

∏
µ∈`′

φµ(s) = ∏
µ∈`
T [φµ(s)] = T [φ0(s)] = 1,

where we used that T [φµ(s) · φµ′(s)] = T [φµ(s)] · T [φµ′(s)] (as T is an homomorphism of Ωn),
and that the identity element φ0 of Ωn is invariant under T . Reciprocally, as T is a bijection, if `′

is a loop ofM′ then ` = T −1[`′] is a loop ofM. Finally, if `1 and `2 are two distinct loops ofM,
then their respective images by T are two distinct loops ofM′.
In other words, if L is the group of loops of the modelM, then the group of loops associated to
the modelM′ = T [M] is L′ = T [L].

As a consequence, if two models are related by a GT,M′ = T [M], then they have the same
value of complexity cM = cM′ . Indeed, the function under the integral in Equation (4) of the main
text stays invariant under the change of variables from the modelM to the modelM′. Finally, gauge
transformations define an equivalence relation between models, for which the structure (previously
described, see i) and ii)) and the complexity cM are invariant. Gauge transformations thus allow us to
partition all models into equivalence classes, that we call complexity classes. For instance, Figure 1 of the
main text displays several models for n = 4 that belong to the same complexity class (highlighted in bold
font in Table S2) for which cM ' 2.8. Note that, conversely, cM = cM′ does not imply thatM andM′

belong to the same complexity class. For example, the modelsM = {s1, s2} andM′ = {s1, s2, s1s2}
have both cM = cM′ = 2 log π (see Table S1), but their structures are clearly different.
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SM-3. Complexity Classes and Loop Structure of Spin Models

Let us highlight several interesting properties of models belonging to the same class of complexity.
First, the number of independent operators nM in a modelM is invariant under GT and is thus a property
of each complexity class (see SM-3.1). It can besides be (strictly) smaller than the system size n: any
model with nM < n is equivalent to a model involving only nM spins. Second, the set of loops L of a
model (including the empty loop {∅}) has the structure of a finite group, from which we show that
the total number of loops of a given modelM is of the form (see SM-3.2):

|L| = 2λ with λ = |M| − nM . (S.28)

The structure of the group L is an invariant of the class. Table S1 gives, for instance, a description
of the loop structure for each class of complexity of models with n = 3. Finally, GTs also imply a
duality relation between complexity classes of complementary models: each class of models with |M|
operators corresponds to a complementary class of models with (2n − 1)− |M| operators that contains
the same number of models (see SM-3.3 and Table S1).

SM-3.1. Number of Independent Operators

We define nM as the maximum number of independent operators of a model M, i.e., the
maximum number of operators that can be taken in M without forming any loop. Necessarily
nM ≤ n, because all operators can be generated by products of the n spins. Furthermore, the number
of spin operators [17] generated by nM independent operators is 2nM − 1, which implies the following
relations between |M| and nM (see Figure S1):

nM ≤ |M| ≤ 2nM − 1 ⇐⇒ log2(|M|+ 1) ≤ nM ≤ min(n, |M|) . (S.29)

8

6

4

2

8643210

10

141210

Figure S1. Dependence of λ, defined in SM-3.2, as a function of the number of parameters |M| for
different values of nM. Each value of λ (squares) is extracted from the classification of all the possible
models for n = 4 (see Table S2 in SM-6). The dash lines corresponds to (S.28) for different values
of nM; the black squares, to the value of λmax given in (S.31). Models with λ = 0 are models with
only independent operators, whereas models with λ = λmax are equivalent to sub-complete models, i.e.
complete models on a subset nM of the n spins.
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By definition, nM is invariant under GT and is thus a property of each complexity class. Table S1,
for instance, reports the value of nM for each class of models with n = 3. As an important consequence,
any model with nM < n can be mapped (through a GT) to a model involving only nM spins. See for
instance the class displayed in Figure 1 of the main text: each model involves |M| = 7 operators for
n = 4 spins, but only nM = 3 are independent; consequently any of these models can be mapped
through a GT to a model that involves only 3 spins (see model a) in Figure 1).

SM-3.2. Loop Structure of A Model

For any modelM, the corresponding set of loops L has a finite cardinality [18]. Let us define the
disjunctive union (or symmetric difference) of two loops `1 and `2 as the set that contains the operators
that occur in `1 but not in `2 and viceversa: `1 ⊕ `2 = (`1 ∪ `2)\(`1 ∩ `2). The set L is closed under
disjunctive union ⊕: indeed if `1 and `2 are two elements of L, then `1 ⊕ `2 is also in L [19]. We can
thus find a minimal generating set of loops, of cardinality λ ≤ |L|, that can generate the whole set L.
Finally, we note that the operation ⊕ is commutative and that any element of L is of order 2: for any
loop `, `⊕ ` = {∅}. This way, the total number of loops that can be formed with λ generating loops is
|L| = 2λ, including the empty loop {∅}, and consequently, the total number of non-empty loops of
any model is of the form 2λ − 1.

Mathematically, for any modelM, the corresponding set of loop L forms a finite Abelian group
associated with the operator of disjunctive union ⊕, the neutral element being the empty loop {∅}.
Each element of this group is of order two, which implies that the cardinality of the group is of the
form 2λ, where λ is then the cardinality of the minimal set of generators of L.

Let us now prove the relation in (S.28). Consider the modelM with |M| operators, of which at
most nM are independent. Let us take one maximal subset of independent operators ofM and call
it IM: by construction, the number of operators in this subset is |IM| = nM and the set of loops that
can be formed with these operators is necessarily empty. If |M| = nM, then the set of loops ofM is
empty, which is consistent with λ = 0 in (S.28). If instead |M| > nM, then, for any other operators
φν ∈ M\IM, we can find a subset Pν ⊆ IM such that the set `ν = {φν} ∪ Pν is a loop ofM, i.e.,

φν ×
(

∏
µ∈Pν

φµ

)
= 1 . (S.30)

This procedure, for each different operator φν ∈ M\IM, produces a different loop, so the set of
|M| − nM loops `ν = {φν} ∪ Pν built in this way is a minimal generating set of LM. Note indeed
that each loop ` ∈ LM can be decomposed in the loops `ν in an unique way. Therefore λ = |M| − nM.
Table S1, reports the values of |M|, nM and λ for n ≤ 4 and (S.28) can be verified for each class of
complexity. For a fixed number nM of independent operators, λ thus grows linearly as a function of
the number of parameters ofM up to a maximum value (see Figure S1),

λmax = |ΩnM\{1}| − nM = 2nM − 1− nM , (S.31)

where ΩnM is the set of operators that can be generated from nM spins. The value of λmax is associated
with the maximum set of loops that can be generated from nM spins, that corresponds to the class of
complexity of sub-complete models on nM spins, i.e., complete models on a subset nM of the n spins.

SM-3.3. Complexity Classes of Complementary Models

Consider a modelM with |M| operators, we define the complementary modelMc as the unique
model that contains all the operators that are not inM, i.e.,Mc = Ωn\{1}\M, which can also be
written as:
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Mc ∪M = Ωn\{1} and Mc ∩M = ∅ . (S.32)

By definition,Mc has exactly |Mc| = 2n − 1− |M| operators. Using the properties of gauge
transformations, it can be shown that, if two models belong to the same complexity class C, then their
respective complementary models also belong to the same class Cc (see proof below). As a consequence,
the two corresponding classes of complexity (named complementary classes) have the same cardinality
and the number of complexity classes with |M| parameters is equal to the number of classes with
2n − 1− |M| parameters. Observe, for instance, in Table S1 the symmetry in the cardinality of classes
of complementary models (starting from the first line and the last line of the table).

Proof. Consider a modelM, its complementary modelMc, and their respective classes of complexity,
C and Cc. Let us take a GT T and define the transformed modelsM′ = T [M] andM′

c = T [Mc]. By
definition,M′ ∈ C andM′

c ∈ Cc. As GT are bijections of the space of operators andMc ∩M = ∅,
the new sets of operators obtained after GT are necessarily disjoint:M′

c ∩M′ = ∅. Besides, |M′
c|+

|M′| = |Mc|+ |M| = |Ωn\{1}|, such that the two models also verify thatM′
c ∪M′ = Ωn\{1}. In

other words,M′
c is the complementary model ofM′. We thus obtain that, if two models belong to the

same class of complexity C, then their respective complementary models also belong to the same class
Cc, thus called complementary class of C.

SM-4. A General Argument for the Calculation of cM

In this section we provide a general argument for the calculation of the complexity cM: in the
first part we compute the complexity of models with only independent operators and show that any
independent operator (that doesn’t enter in a loop) contributes as log π to cM; while in the second
part we suggest that this value constitutes an upper bound for the complexity of any operator.

SM-4.1. Models with Only Independent Operators

At fixed number of spins n, every model with |M| = nM independent operators and
non-degenerated parameters belongs to the same class of complexity (see SM-3), which is the class of
models with L = {{∅}}. The number of models in such a class is

N ind
n (nM) =

∏nM−1
i=0 (2n − 2i)

nM!
, (S.33)

which is the number of possible ways [20] of choosing nM independent operators in Ωn\{1} divided
by their permutations. Notice that 1 ≤ nM ≤ n, as n + 1 operators are necessarily forming at
least one loop. In particular, for models with |M| = 1 operator, we recover that N ind

n (1) = |Ωn|
(any operator can be chosen); and, for models with nM = n independent operators, we obtain that
N ind

n (n) = NGT/n! . For instance, with n = 4, Equation (S.33) gives: N ind
4 (2) = 105 for nM = 2,

N ind
4 (3) = 420 and N ind

4 (4) = 840, that match with the results in Table S2.
The partition function of a model with nM = |M| independent operators contains only the first

term of Equation (7) of the main text, Z(g) = 2n ∏µ∈M cosh(gµ). The Fisher information matrix (FIM),
in Equation (5) of the main text, is therefore diagonal and reads Jind

µν (g) = δµν[1− tanh2(gµ)], which
finally leads to the complexity term:

ecM =
∫
R|M|

∏
µ∈M

√
1− tanh2(gµ) dg =

[∫
R

√
1− tanh2(g) dg

]|M|
= π|M| . (S.34)
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For the same reason, any operator of a model, that doesn’t enter in any loop of the model,
contributes with a term log π to the complexity cM. Indeed, let us consider a modelM with |M|
operators, including K independent φ1, . . . φK. We can then introduce a modelM′ formed by the set
of non-independent operators of M, and a model Mind = {φ1, . . . φK}, so that M = M′ ∪Mind,
|M| = |M′|+ K and LM′ = LM. As a consequence the partition function in Equation (7) of the main
text can be factorized in the two models:

ZM(g) = 2n ∏
µ∈Mind

cosh(gµ) ∏
µ∈M′

cosh(gµ)

 ∑
`∈LM′

∏
µ∈`

tanh(gµ)

 (S.35)

=
1
2n ZMind

(g1, . . . , gK) ZM′(gK+1, . . . , gM) (S.36)

Using the previous argument, we obtain that the FIM ofM is a block matrix:

JM(g) =

(
Jind(g [1,K]) 0

0 JM′(g′)

)
(S.37)

where Jind is the diagonal matrix previously introduced (for models with only independent operators).
Finally, using the property of the determinant, det J = det[Jind]det[JM′], we obtain that

ecM = ecMind × ecM′ = πK × ecM′ . (S.38)

Notice that, in (S.34), the stochastic complexity for |M| independent operators is linear in the
number of operators |M|, which is of the same form than the first penalty term in the BIC (penalty
due to the number of operators – see Equation (3) of the main text).

SM-4.2. General Argument

Given a dataset ŝ = (s(1), ..., s(N)) where s(i) are n-spins configurations, the maximum likelihood
of exponential models defined in (S.7), is achieved when the empirical averages ϕ̂µ (S.14) of the
operators φµ match the population averages ϕµ (S.16), and takes the value:

P(ŝ|ĝ,M) = e−NS(ϕ̂),

where S(ϕ̂) is the entropy of P(s|ĝ). So we can introduce a delta function enforcing Equation (S.15) in
Equation (S.21) for each operator µ ∈ M, resulting in

(
2π

N

)|M|/2

∑̂
s

P(ŝ|ĝ,M) =

(
2π

N

)|M|/2 ∫ 1

−1
dϕe−NS(ϕ) ∑̂

s
∏

µ∈M
δ

(
ϕµ − 1

N

N

∑
i=1

φµ(s(i))

)
. (S.39)

The sum over samples is zero unless ϕ can be realized in at least one sample. This means that
ϕµ = (2kµ − N)/N can only attain N + 1 values for kµ = 0, 1, . . . , N. Yet not all values of ϕ can be
realized. For instance, if φ1 = s1, φ2 = s2 and φ3 = s1s2, when ϕ̂1 = ϕ̂2 = 1 there are no samples for
which ϕ̂3 6= 1. So let

F =
{

ϕ′ : ∃ŝ (ϕ′)µ = ϕ̂µ(ŝ) ∀µ ∈ M
}

(S.40)

be the set of feasible values of ϕ, known as the marginal polytope [21]. Then the integral in Equation (S.39)
becomes a sum
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(
2π

N

)|M|/2

∑̂
s

P(ŝ|ĝ,M) =

(
2π

N

)|M|/2

∑
ϕ∈F

Q(ϕ)e−NS(ϕ) (S.41)

where Q(ϕ′) is the number of samples ŝ for which ϕ̂µ(ŝ) = (ϕ′)µ for all µ ∈ M. Q(ϕ) can be estimated
in the weak dependence limit where it is given by

Q(ϕ) ' ∏
µ∈M

(
N

N 1+ϕµ

2

)
'
(

2
πN

)|M|/2
eNS(ϕ) ∏

µ∈M

[
1− (ϕµ)2

]−1/2
.

so

( 2π
N
)|M|/2

∑ŝ P(ŝ|ĝ,M) '
( 2

N
)|M|

∑ϕ∈F ∏µ∈M
[
1− (ϕµ)2

]−1/2
'
∫
F dϕ∏µ∈M

[
1− (ϕµ)2

]−1/2
(S.42)

where we have turned the sum over ϕµ into an integral, observing that dϕµ = 2/N. In the limit
N → ∞ we finally get

ecM =
∫

dg
√

det J(g) '
∫
F

dϕ ∏
µ∈M

[
1− (ϕµ)2

]−1/2
. (S.43)

This is a quite interesting result. It tells us that the complexity of a model is related to how
operators of the model constrain the values that the expected values of other operators can take. All
integrals in Equation (S.43) are over a subset F of the hypercube [−1, 1]|M|, with the same integrand.
Then the complexity uniquely depends on the volume of F under the measure p(ϕ) ∝ ∏µ∈M(1−
(ϕµ)2)−1/2.

The approximation used becomes exact in the case of independent operators and is likely an
upper bound otherwise.

As a corollary, we find that the most complex models are those where all operators are independent
and F = [−1, 1]|M|. In this case the integral takes the value π|M| (see SM-4.1). The least complex
models, instead, are those where operators constrain themselves as much as possible. This correspond
to models where all operators depend on the same subset of spins.

SM-5. The Complexity of Complete Models

In this section we derive an analytic expression for the complexity of complete models exploiting
the invariance under reparametrization of Jeffreys prior [10] distribution over the parameters.

SM-5.1. Properties of the Complete Model

The complete model M involves all the 2n − 1 operators of Ωn\{1}. This model presents the
peculiarity that the number of parameters |M| equals the number of independent parameters that are
needed to specify a generic distribution p(s) on the spin configurations. In order to make this more
explicit let us label by an integer i ∈ {0, 1, ..., 2n − 1} all configurations si ∈ S and let pi = p(si). We
can take p0 = p(s0) to be constrained by normalisation: ∑2n−1

i=0 pi = 1, which leaves 2n − 1 = |M| free
parameters pi, i ∈ {1, ..., 2n − 1}. Re-writing (S.7) with this notation,

pi = exp

[
2n−1

∑
µ=1

gµ φµ(si)− log ZM(g)

]
, (S.44)

taking the log, multiplying by φν(si) and summing over i with the relation in (S.3), leads to
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gν =
1
2n

2n−1

∑
i=0

φν(si) log pi, where p0 = 1−
2n−1

∑
i=1

pi . (S.45)

We call this model complete in the sense that (S.44) and (S.45) define a bijection between the sets
of parameters g = {gµ}µ∈{1,...,2n−1} and the sets of 2n − 1 probabilities p = {pi}i∈{1,...,2n−1}, provided
that one includes the values ±∞ as legitimate values for the individual parameters gµ. This shows
that this basis of models is complete in the sense that any probability distribution can be represented
within this class of models.

SM-5.2. Complexity of the Complete Model

The bijection between parameters {gµ} and probabilities {pi} indicates that p constitutes a
suitable parametrization for the complete model. The Fisher Information matrix in p reads:

Jij(p) = −
〈

∂pi ∂pj log P(s | p,M)
〉

P
=

δi,j

pi +
1
p0 , for all (i, j) ∈ {1, ..., 2n − 1} 2 . (S.46)

Using that the volume element

dV =
√

det J(g) dg =
√

det J(p) dp , (S.47)

is invariant under re-parametrisation [22], we can express the complexity in the new set of
parameters p:

cM = log
∫

dp
√

det J(p) . (S.48)

In the p-parameters, the determinant of J(p) can be more easily worked out by rewriting the
FIM as:

J(p) = D
(
1+ vwt) (S.49)

where D is a diagonal matrix with entries Dii = 1/pi, 1 is the identity matrix, and, v and w are two
vectors with elements

vi = pi and wj =
1
p0 . (S.50)

Finally by using the properties of the determinant, det(D
(
1+ vwt)) = detD det(1+ vwt) and

det(1+ vwt) = 1 + vtw, one gets

det J(p) =
2n−1

∏
i=0

1
pi . (S.51)

So the complexity of the complete model is

cM = log
∫
[0,1]2n

dp δ

(
2n−1

∑
i=0

pi − 1

)
2n−1

∏
i=0

1√
pi

= 2n−1 log π − log Γ(2n−1) (S.52)
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SM-6. Complexity: Numerical Estimates

In this Section we deal with the computation of the complexity penalty cM, defined in Equation (5)
of the main text. We start by considering the generic model with an arbitrary loop structure and we
derive the expression of the complexity integral for a model with a single loop. Finally we assess
numerically the complexity for all the models on systems of n ≤ 4 spins. Here we will focus on models
with non-degenerated parameters, leaving the discussion on degeneracy to SM-7.

SM-6.1. Generic Model

In this section we will derive an expression for the complexity integral of a generic model suitable
for numerical integration. Since the contribution to the complexity of independent operators has been
derived in SM-4, here we will focus on models in which there are no independent operators, i.e., every
operator participates in at least into one loop.

The elements of the FIM in Equation (5) of the main text, obtained by taking the derivatives of the
logarithm of the partition function Equation (7) of the main text, are for a generic modelM:

Jµν =


(

1− γ2
µ

)(
1− 2 χµ

1+χ −
1−γ2

µ

γ2
µ

χ2
µ

(1+χ)2

)
for µ = ν

1−γ2
µ

γµ(1+χ)
1−γ2

ν
γν(1+χ)

(
χµ,ν(1 + χ)− χµχν

)
for µ 6= ν

(S.53)

where we have defined

γµ = tanh gµ (S.54a)

χ = ∑
`∈LM\{∅}

∏
µ∈`

γµ (S.54b)

χµ = ∑
`|µ

∏
ν∈`

γν (S.54c)

χν,µ = ∑
`|{ν,µ}

∏
σ∈`

γσ (S.54d)

and "`|µ" ("`|ν, µ") refers to the loops in LM in which gµ (gµ and gν) enters. In light of (S.53) the FIM
can be expressed as

J(g) = A(g) +W(g) (S.55)

where A(g) is a diagonal matrix with Aµµ = Jµµ −Wµµ and W(g) is defined as:

Wµν =
(1− γ2

µ

γµ

) χµ

1 + χ

(1− γ2
ν

γν

) χν

1 + χ

( χµ,ν

χµχν
(1 + χ)− 1

)
. (S.56)

Splitting J(g) as in (S.55) allows us to rewrite the determinant of the FIM

det J(g) = det(A(g) +W(g)) = detA(g)det(1+A−1(g)W(g)) (S.57)

and to exploit the fact that detA(g) is simply the product of the diagonal entries of A

detA(g) = ∏
µ

(
1− γ2

µ

)(
1−

1 + γ2
µ

γ2
µ

χµ

1 + χ

)
(S.58)

and that A−1(g) is a diagonal matrix with entries A−1
µµ = (Aµµ)−1. Notice that 1 in (S.57) is the

identity matrix. Substituting (S.58) in (S.57) one gets:
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det J(g) = ∏
µ

(
1− γ2

µ

)[
∏

µ

(
1−

χµ

1 + χ

1 + γ2
µ

γ2
µ

)](
det(1+B(g))

)
Bµν =

γµ

γν

1− γ2
ν

1 + χ

χµ,ν(1 + χ)− χµχν

(γ2
µ(1 + χ)− (1 + γ2

µ)χµ)

(S.59)

where we have defined the matrix B(g) = A−1(g)W(g). Replacing the determinant of the FIM (
Equation (S.59)) in the complexity integral (Equation (5) in the main text) and performing the change
of variables gµ → γµ, defined in (S.54), yields

ecM = π|M|
∫
[−1,1]|M|

dγ q(γ)

[
∏

µ∈M

√(
1−

χµ

1 + χ

1 + γ2
µ

γ2
µ

)]√
det(1+B) (S.60)

where

q(γ) =
1

π|M|
∏

µ

(
1− γ2

µ

)−1/2
. (S.61)

Now (S.60) is prone for standard Monte Carlo integration by random sampling γ according to the
pdf q(γ) on its bounded support. As one could easily check, q(γ) is the measure induced by a set of
|M| independent operators on the hypercube [−1, 1]|M| (see SM-4).

SM-6.2. Models with A Single Loop

We consider models with all their operators involved in a single loop. The contribution to the
complexity cM of any supplementary independent operator (not involved in the loop) was studied
in SM-4 (contribution of log π for each supplementary operator), and will not be considered here.
Single loop modelsM are such that L = {{∅}, `}, where ` = {φ1, . . . , φ|M|} =M. All such models
with fixed number of operators belong to the same class of complexity. The cardinality of this class
can be assessed thinking at the single loop model with |M| operators as a set of |M| − 1 independent
operators plus an operator being the product of the independent ones. Following this reasoning the
number of single loop models on a n spins system is:

N1 loop =
|M|−2

∏
l=0

(2n − 2l)

|M|! , (S.62)

where the previous formula was derived in full analogy with the number of models with only
independent operators (see SM-4).

Complexity of Single Loop Models

Expression (S.60) for the complexity integral can be notably simplified in case of single loop
models. The single loop ` of length |M| reduces (S.54) to χµ,ν = χµ = χ and χ = ∏µ∈` γµ. Enforcing
these relations into the determinant of the FIM (S.59) yields

det J(g) = ∏
µ∈`

(
1− γ2

µ

)[
∏
µ∈`

(
1− χ

1 + χ

1 + γ2
µ

γ2
µ

)](
det(1+B)

)
Bµν =

γµ

γν

1− γ2
ν

1 + χ

χ

(γ2
µ − χ)

(S.63)
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The matrix B(g) in (S.63) can be rewritten as the outer product of two vectors:

B(g) = bct with bµ =
χ

1 + χ

γµ

γ2
µ − χ

and cµ =
αµ(1− γ2

µ)

γµ
, µ ∈ ` (S.64)

such that

det(1+B) = 1 + ctb = 1 +
χ

1 + χ ∑
µ∈`

1− γ2
µ

(γ2 − χ)
. (S.65)

The resulting expression for the complexity, obtained by replacing (S.65) and (S.63) in Equation (5)
of the main text,

ec` = π|M|
∫
[−1,1]|M|

dγ q(γ)

[
∏

µ

√(
1− χ

1 + χ

1 + γ2
µ

γ2
µ

) ]√√√√1 +
χ

1 + χ ∑
µ∈`

1− γ2
µ

(γ2
µ − χ)

, (S.66)

is then suited for numerical integration using Monte Carlo methods as explained in section SM-6.1.
Figure 3 of the main text displays the complexity of models with a fixed number |M| of operators

and a single loop ` of length k, for different values of k. Such a model has |M| − k free operators
(operators not involved in any loop). It can be, for instance, a model with (|M| − 1) fields (considering
that the number of spins n ≥ |M| − 1) and one (k − 1)-body interaction, or a model formed with
a closed chain of k pairwise interactions and |M| − k free fields. The complexity of such a model
is cM(k) = c`(k) + (|M| − k) log π, where (|M| − k) log π is the contribution of the free operators
and c`(k) is the one of the single loop of length k. For k = 3, this latter complexity can be obtained
analytically from (S.66),

c`(3) = log
∫
(−1,1)3

1
(1 + xyz)2 dxdydz = log(π2) , (S.67)

or directly by setting n = 2 in (S.52) (as the complete model for n = 2 spins is a single loop of length
k = 3). We thus obtain that cM(3) = (|M| − 1) log π. For larger values of k, the complexity c`(k) is
obtained numerically by integrating (S.66) with a Monte Carlo method. Figure 3 of the main text
shows that the complexity cM(k) of such models increases with the length k of the loop, and saturates
for large k at cM(k)→ cM(3) + log π = |M| log π, which corresponds to the complexity of a model
with |M| independent operators. This can be re-written in terms of the complexity of the single loop:
the complexity of the single loop increases with the length k of the loop, starting from c`(3) = 2 log π

to finally grow for large k as c`(k)→ k log π, as if the k operators of the loop were independent.

SM-6.3. All Models for n ≤ 4

In Table S1 and Table S2, we classified all the models for, respectively, n = 3 and n = 4.
In the 4-spin system, there are 215 = 32768 distinct non-degenerate models. We counted

20160 possible gauge transformations, which is in agreement with Equation (S.25). By applying all
gauge transformations to all models, we find that models can be classified in 46 complexity classes
(see Table S2). The number of different values of complexity cM to be estimated numerically with
Equation (S.66) is thus drastically reduced, from 32768 to only 46. In the 3-spin system, there are
27 = 128 non-degenerate models spread over 10 complexity classes (see Table S1). Note that the 3-spin
system is a sub-case of a 4-spin system (see all classes with nM ≤ 3 in Table S2): every complexity
class of the 3-spin system is also a class of the 4-spin system, with all characteristics preserved, except
for the number of elements in the class (which takes into account the additional spin).
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The comprehensive study of classes for n = 3 and n = 4 allows comparing with the results
of the previous sections. First, the relation between |M|, λ and nM in (S.28) is always verified for
each class of the two tables. We can also observe, in both tables, the “symmetry” in the cardinality
between classes of models with |M| operators and their respective complementary classes of models
with 2n − 1− |M| operators (see SM-3.3). Equation (S.33) for the cardinality of classes with only
independent operators (such that |M| = nM) is also verified here. Finally, let us remark, in Table S1,
that two different classes, with different structures (even different number of operators), may have
the same value of cM. For instance, the modelM = {s1, s2, s3} (in the class of the 4th row) and the
modelM = {s1, s2, s3, s2s3} (class in the 7th row) have both cM = 3 log π even though their structure
are clearly different.

Remarkably, the complexity of models is not monotonic in the number |M| of operators, as it
can be verified in Table S1 for n = 3 and in Figure 4 in the main text for n = 4. Observe for instance
in Table S1 that the complete model (with |M| = 7) is much less complex then any model with
|M| = 6 operators. At equal number of operators |M|, the maximum of the complexity is achieved by
models with only independent operators (see SM-4.2 and Figure 4 ) in the main text; on the other hand,
sub-complete models, i.e. models that contain a complete model (see SM-5) on a subset of spins, are the
simplest. We also notice that complexity decreases when turning an independent interaction into an
operator that enters a loop (compare for instance the two complexity classes with |M| = 3 operators
in Table S1). In summary, we found that, adding a new operator to a model:

• increases its complexity cM by log π if this new operator is independent (doesn’t enter in any loop)
• increases its complexity by a quantity between 0 and log π if this new operator enter in a single

loop; 0 if the length of the loop is |`| = 3, and then growing values for larger loop length
(see SM-6.2).

• if the new operator enter in several loops, the complexity may increase (from always less than
log π) or decrease; although it is no trivial to predict what will happen, we observe that, at fix
number of operators |M|, the closest the model is to a sub-complete model, the less complex it is.

Table S1. Summary table of all non-degenerate models of a 3-spin system; models are partitioned in 10
classes. Each line gives the characteristics of one class: the common structure of the models of the class
(number of operators |M|, number of independent operators nM, λ = log2 |L|, and lengths |`| of each
loop ` ∈ L), the number of models in the class, and finally, the corresponding value of the complexity
cM. The notation ab means that the element a is repeated b times. The last row corresponds to the
complete 3-spin model.

|M| nM λ { |`| , ∀ ` ∈ L} number of models exp(cM)
0 0 0 {0} 1 -
1 1 0 {0} 7 π ' 3.141
2 2 0 {0} 21 π2 ' 9.869
3 3 0 {0} 28 π3 ' 31.006
3 2 1 {0, 3} 7 π2 ' 9.869
4 3 1 {0, 4} 7 π3.56831 ' 59.427
4 3 1 {0, 3} 28 π3 ' 31.006
5 3 2 {0, 32, 4} 21 π3.18346 ' 38.252
6 3 3 {0, 34, 43} 7 π3.34058 ' 45.790
7 3 4 {0, 7, 47, 37} 1 π2.43472' 16.233
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Table S2. Summary table of all non-degenerate models of a 4-spin system; models are partitioned in 46
classes. Each line corresponds to one or more classes with the same number of operators |M| and gives,
for each class, the following characteristics: number of independent operators nM, cardinality of the
minimal generating set of loops λ = log2 |L|, and number of models in the class (column “cardinality”).
The notation ab means that the element a is repeated b times. The complexity class taken as an example
in Figure 1 and Figure 4 Left is highlighted in bold in this table (|M| = 7 interactions, λ = 4 and a
cardinality of 15).

|M| number of classes nM λ cardinality of each class
0 1 {0} {0} {1}
1 1 {1} {0} {15}
2 1 {2} {0} {105}
3 2 {3, 2} {0, 1} {420, 35}
4 3 {4, 32} {0, 12} {840, 420, 105}
5 4 {43, 3} {13, 2} {1680, 840, 168, 315}
6 5 {44, 3} {24, 3} {2520, 420, 1680, 280, 105}
7 6 {45, 3} {35, 4} {840, 120, 2520, 2520, 420, 15}
8 6 {46} {46} {840, 120, 2520, 2520, 420, 15}
9 5 {45} {55} {2520, 420, 1680, 280, 105}

10 4 {44} {64} {1680, 840, 168, 315}
11 3 {43} {73} {840, 420, 105}
12 2 {42} {82} {420, 35}
13 1 {4} {9} {105}
14 1 {4} {10} {15}
15 1 {4} {11} {1}

To conclude, our close analysis of the n = 4 spin case suggests that the simplest models are
those where operators concentrate their support on a subset of spins (and their equivalent models), as
opposite to “sparse” models with many independent parameters. More precisely, for fixed value of
|M|, classes with lower value of nM (i.e., with less independent operators) are less complex (see colors
in Figure 4 in the main text). They are the classes that contain at least one model whose interactions
are grouped on a subset nM of the n spins. Finally, among these models, the least complex are the
ones equivalent to the model that is as close as possible to a sub-complete model (exactly a sub-complete
model for |M| = 2nM − 1, see |M| = 1, 3, 7 and 15 in Figure 4 in the main text).

SM-7. Degenerate Models

In degenerate models at least two operators, say φµ and φν, have the same parameter, i.e., gµ = gν

(see SM-0.3). Since the mapping between parameters and operators is no longer bijective, for a
degenerate modelM, together with the |M| operators φ and m parameters g, one requires to specify
the matrix U (S.10), that maps operators into parameters [23]. The degeneracy coefficient αi = ∑j Uij
defines the number of operators parametrized by gi, implying that, if the number of parameters is m ,
while the number of operators is |M|, then ∑m

i=1 αi = |M|.
The partition function (see SM-2) of a generic degenerate spin modelM, parametrized by g is

ZM(g) = 2n
m

∏
j=1

(cosh gj)αj ∑
`∈LM

∏
i∈`

(tanh gi)βi(`) . (S.68)

This expression extends Equation (7) of the main text to the case of degenerated parameters. Here
i ∈ ` means that there is at least one operator φµ, parametrized by gi, such that φµ enters the loop `

(µ ∈ ` following the notation of SM-1.2). Finally βi(`) [24] denotes the degeneracy coefficient of gi in
loop ` (how many operators parametrized by gi enter the loop `).
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SM-7.1. Independent Operators and Parameters

The partition function of a model with nM = |M| independent operators and m parameters with
degeneracy coefficients (α1, . . . , αm) contains only the first term of (S.68), ZM(g) = 2n ∏m

i=1 cosh(gi)αi .
As a consequence its complexity is:

ecM = πm
m

∏
i=1

√
αi. (S.69)

such that any parameter gi contributes with a term log(
√

αiπ) to the complexity cM.
Consider now a generic degenerate model M with |M| operators, including K independent

φ1, . . . φK. We can then introduce a modelM′ formed by the set of non-independent operators of
M (and relative parameters), and a modelMind = {φ1, . . . φK} (and relative parameters). Suppose
now that the set of parameters of the two modelsM′ andMind is disjoint, meaning that there is no
parameter parametrizing both operators inM′ andMind. It follows thatM =M′ ∪Mind, such that,
analogously to the non-degenerated case (see SM-4.1), the partition function (S.68) can be factorized in
the two models, and so does the complexity:

ecM = ecMind × ecM′ = πmind
mind

∏
i=1

√
αi × ecM′ . (S.70)

where mind is the number of parameters inMind (that possibly differs from the number of operators
inMind, K).

Notice that if the sets of operators ofM′ andMind are disjoint while the sets of parameters aren’t,
the complexity doesn’t factorize in the two models. By comparing this result with the non degenerate
case (see SM-4) degenerating parameters reduces the number of independent operators of a model,
decreasing the complexity of the model itself. For models with only independent parameters this
statement can be easily checked, as the complexity of a model with |M| independent operators and
|M| parameters is larger than the complexity of a model |M| independent operators and m ≤ |M|
parameters, since π|M| ≤ πm ∏m

i=1
√

αi if ∑m
i=1 αi = |M|. The fact that degeneracy of parameters

reduces the complexity of a model holds also in loopy models, as we show in section SM-7.3.

Complexity Classes

In case of degenerated parameters the complexity of models with nM = |M| independent
operators depends only on the number of parameters and the degeneracy coefficients αi, as shown in
SM-7.1. Specifically each class of complexity is identified by the number of parameters m ≤ |M|, the
set of degeneracy coefficients and their multiplicities

{
(αj1 , rj1), ..., (αjK , rjK )

}
, with αj1 < ... < αjK and

K total number of distinct values that the degeneracy coefficients αi take, such that ∑K
i=1 αji rji = |M|

and ∑K
i=1 rji = m. Then the cardinality of such a class of complexity is

N deg
ind = Nind

nM!
(αj1 !)rj1 · ... · (αjK !)rjK

1
rj1 ! · ... · rjK !

(S.71)

the number of possible ways of choosing nM independent operators Nind (S.33) times the number
of partitions of a set of nM elements in exactly m subsets of which rj1 of cardinality αj1 , ..., and rjK of
cardinality αjK .

SM-7.2. Generic Model

The derivation of the complexity for the generic model in case of non-degenerated parameters
(see SM-6.1) can be straightforwardly extended to the case of degenerate models. In particular the FIM
(hessian of logarithm of the partion function (S.68)) is
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Jij =


(

1− γ2
i

)(
αi +

(1−γ2
i )

γ2
i (χ+1)

[χi,i − χi]− 2 χi
1+χ −

1−γ2
i

γ2
i

χ2
i

(1+χ)2

)
for i = j

1−γ2
i

γi(1+χ)

1−γ2
j

γj(1+χ)

(
χi,j(1 + χ)− χiχj

)
for i 6= j

(S.72)

where

γi = tanh gi (S.73a)

χ = ∑
`∈LM\{∅}

∏
i∈`

γ
βi(`)
i (S.73b)

χi = ∑
`|i

βi(`)∏
j∈`

γ
β j(`)

j (S.73c)

χi,j = ∑
`|{i,j}

βi(`)β j(`) ∏
m∈`

γ
βm(`)
m (S.73d)

and `|i and `|{i, j} refer respectively to the loops in LM in which gi enters and in which both gi and
gj enter. The derivation then follows the non degenerated case, by decomposing the FIM (S.72) and
factorizing out a diagonal matrix ( see section SM-6.1).

Finally the complexity of the generic degenerate model reads:

ecM = πm
∫
[−1,1]m

dγ q(γ)

[
∏

i

√(
αi −

χi
1 + χ

1 + γ2
i

γ2
i

) ]√
det(1+B) (S.74)

where the matrix B is defined as

Bij =
γi
γj

1− γ2
j

1 + χ

χi,j(1 + χ)− χiχj

(αiγ
2
i (1 + χ)− (1 + γ2

i )χi)
(S.75)

and

q(γ) =
1

πm ∏
i

(
1− γ2

i

)−1/2
. (S.76)

Now (S.74) is prone for standard Monte Carlo integration by random sampling γ according to the
pdf q(γ).

SM-7.3. Models with A Single Loop

We now focus on the complexity of models that contain only one loop involving all |M|
operators, L = {{∅}, `}, where ` = {φ1, . . . , φ|M|}, parametrized by m ≤ |M| parameters. All
such models with fixed number of operators, parameters and degeneracy coefficient belong to the
same class of complexity. Specifically the class of complexity is identified by the number of operators
|M|, the number of parameters m and the set of degeneracy coefficients and their multiplicities{
(αj1 , rj1), ..., (αjK , rjK )

}
, with αj1 < ... < αjK ( K is the total number of distinct values that the degeneracy

coefficients αi take), such that ∑K
i=1 αji rji = |M| and ∑K

i=1 rji = m. The cardinality of such a class of
complexity is

N deg
1 loop = N1 loop

|M|!
(αj1 !)rj1 · ... · (αjK !)rjK

1
rj1 ! · ... · rjK !

(S.77)
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given by the number of possible ways of choosing |M| operators constituting a single loop N1 loop
(S.62), times the number of partitions of a set of |M| elements in exactly m subsets of which rj1 of
cardinality αj1 , ..., and rjK of cardinality αjK .

The complexity of this class of models can be derived from (S.74) by enforcing the single loop
constraints on (S.73), namely αi = βi and χi = αiχ, χi,j = αiαjχ, while χ = ∏m

i=1 γ
αi
i :

ecM = πm
∫
[−1,1]m

dγ q(γ)

[
∏

i

√(
αi −

χ

1 + χ

1 + γ2
i

γ2
i

)]√√√√1 +
χ

1 + χ ∑
i

αi
1− γ2

i
(γ2 − χ)

(S.78)

where q(γ) is defined in (S.76).
The expression (S.78) for the complexity was obtained by replacing the relation (that only holds

for single loop models)

det(1+B) = 1 +
χ

1 + χ ∑
i

αi
1− γ2

i
(γ2 − χ)

. (S.79)

in the complexity of the generic degenerate model (S.74).
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Figure S2. Degeneracy and complexity. Ratio (data points + solid line to guide the eye) between the
complexity of two single loop models of length |M| (number of operators) parametrised respectively
by 2 parameters (one of them |M| − 1 times degenerated) and |M| parameters, versus loop length
|M|. Complexities here are averages of 103 numerical estimates of the integrals (S.66) and (S.78) using
106 MC samples each and error bars result from error propagation of one standard deviation of these
estimates. The larger the loop the more independent are the operators, as shown in Figure 3 of the
main text, such that the ratio between the complexities of single loop degenerated and non degenerated
models is approaching the ratio (dashed line) between the complexities of independent operators
degenerated (log

√
|M| − 1π2) and non-degenerated (log π|M|) models (see SM-4.1 and SM-7.1).

The simple case of single loop models constitutes a suitable platform to gain some insights on how
the degeneracy affects the complexity of models with loops. The degeneracy coefficients of parameters
enter the expression of the complexity (S.78) in a non trivial way, such that numerical exploration is
required. In Figure S2 we compare the complexity of a single loop model of length |M| (number of
operators) parametrised by 2 parameters and the corresponding non degenerated single loop model.
By increasing the length of the loop the degeneracy increases while the complexity decreases (relatively
to the non degenerated model). The fact that—analogously to the independent operators model (see
SM-7.1)—degeneracy in the single loop model reduces the complexity can be intuitively understood
through our general argument in SM-4. By degenerating the parameters gµ one indirectly constrains
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the averages of the operators φµ (dual coordinates ϕµ in the model manifold) resulting in a downsized
marginal polytope F and a smaller complexity as a consequence.
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