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Abstract: Finite-time thermodynamic models for an Otto cycle, an Atkinson cycle, an over-expansion
Miller cycle (M1), an LIVC Miller cycle through late intake valve closure (M2) and an LIVC Miller
cycle with constant compression ratio (M3) have been established. The models for the two LIVC Miller
cycles are first developed; and the heat-transfer and friction losses are considered with the effects of
real engine parameters. A comparative analysis for the energy losses and performances has been
conducted. The optimum compression-ratio ranges for the efficiency and effective power are different.
The comparative results of cycle performances are influenced together by the ratios of the energy
losses and the cycle types. The Atkinson cycle has the maximum peak power and efficiency, but the
minimum power density; and the M1 cycle can achieve the optimum comprehensive performances.
The less net fuel amount and the high peak cylinder pressure (M3 cycle) have a significantly adverse
effect on the loss ratios of the heat-transfer and friction of the M2 and M3 cycles; and the effective
power and energy efficiency are always lower than the M1 and Atkinson cycles. When greatly
reducing the weights of the heat-transfer and friction, the M3 cycle has significant advantage in
the energy efficiency. The results obtained can provide guidance for selecting the cycle type and
optimizing the performances of a real engine.

Keywords: Atkinson and Miller cycles; over-expansion cycle; LIVC; energy losses; cycle performances;
finite-time thermodynamics

1. Introduction

Internal combustion engines have achieved great success especially in the automotive industry.
A diesel engine can achieve a higher thermal efficiency, but with more NOx and soot emissions and
higher cost and NVH (Noise, Vibration and Harshness (NVH)) level compared with an Otto cycle
engine. The cost of Otto cycle engines is less, but the thermal efficiency is limited because of low CR
(compression ratio (CR)). The compression and expansion strokes are the same for an Otto cycle engine;
and the increment of the CR of an Otto cycle engine is restricted by the knock [1]. Therefore, a great
improvement of the thermal efficiency for Otto cycle engines is difficult. The attention on Atkinson
and Miller cycle engines is greater and greater in recent years because of the high level of thermal
efficiency and special applications in hybrid vehicles [2–4].

The ACE (Atkinson cycle engine (ACE)) is a type of full expansion internal combustion engine
invented by James Atkinson in 1882 [5]. The original ACE used a complex linkage mechanism to
make the expansion stroke greatly longer than the compression stroke aimed at achieving a high
thermal efficiency. In addition to the ACE, an MCE (Miller cycle engine (MCE)) is another type of
over-expansion cycle engine. In 1947, an American engineer named Ralph Miller patented an MCE [6,7].
In the original MCE, a compression control valve was placed in the cylinder head. A servo mechanism
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operated by the inlet manifold pressure controls the lift of the compression control valve during part
of the compression stroke to release partial air from the cylinder to the exhaust manifold. In this way,
the effective CR decreases and is less than the expansion ratio. The original MCEs were mainly used in
ships or stationary power-generating plants aimed at reducing the NOx emissions. In recent years,
the ACEs realized through variable valve timing technology have been widely employed in hybrid
cars. With the variable valve timing mechanism, an LIVC (late intake valve closure (LIVC)) operation
can be carried out to make the expansion stroke longer than the compression stroke. The MCEs can
be realized with the same method. However, the ACEs are naturally aspirated, while the MCEs are
generally equipped with a super-/turbocharger [6,7]. Thus, a modern MCE is essentially the same as a
modern ACE [8,9].

There are three types of over-expansion cycles, which are the full expansion Atkinson cycle,
the over-expansion Miller cycle and the LIVC Miller cycle [4]. The full expansion Atkinson cycle is
realized by fully expanding to the barometric pressure to draw the full working potential of in-cylinder
working fluids. The over-expansion Miller cycle is realized by making the expansion stroke longer than
the compression stroke. The LIVC Miller cycle is realized by an LIVC (or EIVC) operation based on a
normal Otto cycle. The expansion stroke is the same as the Otto cycle, while the effective compression
stroke shortens. In this simple way, an over-expansion cycle is realized. In those previous publications,
many investigations have been conducted for over-expansion Miller cycles. In [10], Gonca conducted a
performance analysis for an air-standard irreversible dual-Miller cycle with an LIVC version. However,
the Miller cycle is still essentially an over-expansion type; and the modeling process is basically the
same as in the other investigations. The over-expansion cycle was realized by way of extending the
expansion stroke; and the mixture backflow process because of the LIVC operation was not considered.

Many investigations on the thermodynamic analyses, comparisons and optimizations for the
ACEs and MCEs have been conducted based on the FTT (finite-time thermodynamics (FTT)) [11–25]
or the classical thermodynamics [26,27]. Ge and Chen et al. investigated the performances of the
Atkinson cycles [12,13] and an irreversible Miller cycle [14] by using the FTT method, respectively.
In [12], the efficiency of an Atkinson cycle engine at the maximum power density was studied.
The results showed that the efficiency at the maximum power density was greater than that at the
maximum power. In [13], an Atkinson cycle was analyzed with the consideration of the heat-transfer
and friction-like losses; and some relations such as the power output and the CR were derived.
The results showed that the heat-transfer and friction-like losses had significant negative influences
in the cycle performances and should be taken into account in building the FTT models. Al-Sarkhi
et al. evaluated the performances of the Miller cycles under various specific-heat models such as
constant, linear and forth-order polynomial [15,16]. Lin and Hou et al. performed some studies on
the performances and influences of the heat loss, friction and variable specific-heats for Atkinson and
Miller cycles [17,18,26]. In [26], Wang and Hou conducted a performance analysis and comparison
based on MP (maximum power (MP)) and MPD (maximum power density (MPD)) conditions for an
Atkinson cycle by using the classical thermodynamic method. In [17,18], the effects of the heat loss,
derived as a percentage of the fuel’s energy, on the performances of an Atkinson cycle and a Miller cycle
were investigated, respectively. The influences of some other engine parameters such as the friction and
intake temperature on the performances were also studied. Gonca et al. carried out a thermodynamic
analysis on the performances of a dual-Atkinson cycle considering the heat-transfer with the influences
of the design and operation parameters, friction, temperature-dependent specific-heat and internal
irreversibilities based on the classical thermodynamics and the FTT methods, respectively [27].
The influences of important engine design and operation parameters such as the engine speed,
stroke length and CR on the performances were deeply analyzed. Lin et al. [19] applied the FTT
method to analyze the performances of a free piston MCE considering heat-transfer, friction and
internal irreversibilities. They stated that the heat-transfer and friction losses had negative effects on
the performances. Ebrahimi R investigated the effects of mean piston speed, equivalence ratio and
cylinder wall temperature on the performances of an ACE considering the heat-transfer, friction and
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internal irreversibilities [20]. Dobrucali E showed that the engine design and running parameters
had significant effects on the performances of an Otto–Miller cycle engine; and the friction and inlet
temperature had a negative effect on the performances [21]. Mousapour A et al. analyzed the effects of
key engine design parameters such as the minimum and maximum cycle temperatures and CR on
the power output and the first and second law efficiencies of an irreversible Miller cycle considering
heat-transfer, friction and internal irreversibilities [22]. Ust Y et al. conducted a performance analysis
and optimization based on exergetic performance criterion, total exergy output and exergy efficiency
for an irreversible dual-Miller cycle cogeneration system with finite-rate of heat-transfer, heat-leak and
internal irreversibilities; and the optimum design parameters such as the cut-off ratio and Miller cycle
ratio that maximize the exergy output and exergetic performance were investigated [23]. Curto-Risso
PL et al. [24] justified that an FTT model of an Otto cycle with irreversibilities from friction, heat-transfer
through the cylinder walls and internal irreversible losses was capable of qualitatively reproducing
the performance results of a real spark ignition heat engine by comparing to a quasi-dimensional
simulation model. Moreover, they also showed that the inclusion of the corresponding polynomial fit
in the FTT model for some key parameters such as the internal irreversibility was necessary to precisely
reproduce the results of the quasi-dimensional simulation. In [25], Curto-Risso PL et al. further studied
the effect of spark advance, fuel ratio and cylinder internal wall temperature on the power output and
efficiency of spark ignition engines by combining quasi-dimensional simulations and FTT analysis.
The optimal dependence on rotational speed of these operation parameters was achieved in order
to maximize efficiency under any power output. Some studies specially conducted the comparative
analyses and performance optimizations among different thermodynamic cycles such as Otto, Miller
and Atkinson [14,28–30]. Hou [30] compared the performances of Atkinson and Otto cycles. The results
illustrate that the Atkinson cycle has a greater work output and a higher thermal efficiency than the
Otto cycle at the same operation condition. The compression ratios maximizing the work of the Otto
cycle are always higher than the Atkinson cycle at the same operation condition. Ge et al. [14] analyzed
the performances of an air-standard Miller cycle with the considerations of heat-transfer and friction
loss. Furthermore, they compared the performances of an Otto cycle, a Miller cycle and an Atkinson
cycle. It is found that the Atkinson cycle can achieve the highest output work and cycle efficiency
while those for the Otto cycle are the lowest at the same running condition. Gonca et al. [29] conducted
comprehensive performance analyses and comparisons for air-standard thermodynamic cycle engines
considering internal irreversibility based on some criteria such as MP. The thermodynamic cycles
include the Otto cycle, dual-Atkinson, Otto–Atkinson, dual-Miller, etc. The results show that the diesel
cycle has the greatest MPD and the Atkinson cycle has the least MPD; the MP of the diesel cycle is the
minimum, and the MP of the Atkinson cycle is the maximum. However, the Miller cycle has the best
values in terms of thermal efficiency, as the diesel cycle has the lowest values. In [28], Gonca performed
comparative performance analyses of the irreversible OMC engine, diesel Miller cycle engine and dual
Miller cycle engine based on the MP, MPD and MEF criteria.

In most of the previous publications related to the FTT methods, the losses for the heat-transfer
and friction were not considered or treated as particularly simple forms. The heat loss through the
cylinder wall was assumed to be proportional to the difference of the average temperature between
the working fluids and cylinder wall, or as a percentage of the energy of the fuel in the cylinder.
The heat-transfer coefficients did not change with the changes of the engine design parameters and
cycle conditions. Furthermore, for the friction lost power, all only considered the viscous friction with
respect to the mean piston speed; and did not consider the effects of important engine parameters
such as the cylinder pressure and the stroke length. In [31], Zhao et al. demonstrated that the engine
design parameters and cycle conditions had significant effects on the heat-transfer coefficient, thus
the heat losses through the cylinder wall; and the boundary friction primarily related to the cylinder
pressure also had non-negligible influences on the engine cycle performances. In comparative analyses
of different thermodynamic cycles as in [14,29], the comparative results and change characteristics for
the energy losses and performances may have significant differences from real engine processes if the
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heat-transfer and friction are not considered or only handled with simple relations. As a result, it is not
capable of precisely clarifying the respective advantages and disadvantages of each thermodynamic
cycle studied; and the comparative analysis studies may lose real meaning and cannot give correct
guidance for the cycle selection and performance optimization of real engines.

The objective of this paper is to carry out a comparative analysis on the energy losses and
performances for an Atkinson cycle, an Otto cycle, an over-expansion Miller cycle, an LIVC Miller cycle
realized through late intake valve closure and an LIVC Miller cycle with CCR (constant compression
ratio (CCR)) in order to clarify their respective advantages and disadvantages; and expected to provide
more correct guidance for the cycle selection and performance optimization of practical engines.
For this purpose, the FTT models for these cycles are first developed with the irreversible losses from the
heat-transfer to the cylinder wall and the friction. The influences of the cycle conditions, the geometrical
parameters and running variables on the heat-transfer and friction are all considered. Especially,
thermodynamic models of the two LIVC Miller cycles different from the previous over-expansion
versions are originally developed considering the process of the mixture backflow. Then, a deep
analysis and a comparative study for the energy losses and performances of these cycles are conducted;
and some important findings have been achieved.

2. Cycle Models

Figure 1 shows the P-V diagrams for an Otto cycle, an over-expansion Miller cycle, an Atkinson
cycle and two LIVC Miller cycles. All the cycles and the respective abbreviations have been listed in
Table 1.

Table 1. The cycles examined.

Cycle Names Otto Cycle Over-Expansion
Miller Cycle

Atkinson
Cycle LIVC Miller Cycle LIVC Miller Cycle

with CCR

Abbreviations Otto M1 Atkinson M2 M3
Process 1-2-3-4O-1 1-2-3-4M1-5-1 1-2-3-4A-1 1-1L-2M2-3M2-4M2-1 1-1L-2M3-3M3-4M3-1
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In the figure, 1-2-3-4O-1 is an Otto cycle, and 1-2-3-4A-1 is an Atkinson cycle process. The other
three processes that are 1-2-3-4M1-5-1, 1-1L-2M2-3M2-4M2-1 and 1-1L-2M3-3M3-4M3-1 are an
over-expansion Miller cycle (M1), an LIVC Miller cycle (M2) and an LIVC Miller cycle with CCR
(M3), respectively.

1-1L is an LIVC process with a charge backflow. 1-2, 1L-2M2 and 1L-2M3 are reversible adiabatic
compression processes. 2-3, 2M2-3M2 and 2M3-3M3 are isochoric heat-addition processes. 3-4A, 3-4O,
3-4M1, 3M2-4M2 and 3M3-4M3 are reversible adiabatic expansion processes. 4O-1, 4M3-1, 4M2-1 and
4M1-1 are isochoric heat rejection processes. 4A-1 and 5-1 are isobaric heat rejection processes.

For the process 1-1L, intake charges are not compressed because of the LIVC and mixture backflow;
and pressure and temperature of the intake charges remain nearly constant. In this process, the net
mass of intake charges and real compression ratio decreases. By defining:

rm2 = rc_M2/rc, (1)

maintaining constant equivalence ratio and applying the ideal gas equation:

pV = mRgT, (2)

the net mass flow rate of the intake charges for the M2 cycle can be obtained:

.
mc_M2 = rm2

.
mc (3)

where rc = V1/V2 is the compression ratios of the cycles shown in Figure 1 except the M2 cycle;
.

mc is the intake mass flow rate for the Otto, M1 Miller and Atkinson cycles; rc_M2 = V1L/V2M2 is the
compression ratio of the M2 cycle; and rm2 is the ratio of rc_M2 to rc.

As for the M3 cycle, the net mass flow rate of the intake charges is the same as that of the M2 cycle
since their start points of compression processes are the same (rm3 = rm2). The compression ratio is
maintained constant by way of adjusting combustion chamber volume according to the LIVC value.
As shown in Figure 1, the P′ − 0′ axis in the form of a dashed line is specially set for the M3 cycle and
indicates the decrement of the combustion chamber volume in order to maintain a constant CR. In this
situation, the relevant parameters for the M3 cycle are written as:

rc_M3 = rc (4)

re_M3 =
rc

rm3
(5)

where rc_M3 and re_M3 are the compression ratio and the expansion ratio of the M3 cycle, respectively.
Displacement volumes are all the same for the Otto, M2 and M3 cycles; and can be computed as:

Vd =
1
4

πB2L (6)

where B is the cylinder bore and L is the stroke length for the Otto, M2 and M3 cycles.
Piston strokes and displacement volumes for the other cycles shown in Figure 1 can be computed as:

LM1 =
rm1rc − 1

rc − 1
L (7)

Vd_M1 =
1
4

πB2 (re_M1 − 1)L
rc − 1

(8)

where:
re_M1 = rm1rc (9)
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is the expansion ratio of the M1 cycle; and rm1 is the ratio of re_M1 to rc. The Otto and Atkinson cycles
are two special conditions of the M1 cycle; and the range for the re_M1 is:

rc ≤ re_M1 ≤
T4A
T1

rc (10)

The piston stroke length and displacement volume of the Atkinson cycle can be obtained by
substituting the expansion ratio re_At (= T4A

T1
rc) into Equations (7) and (8).

In a real ICE, the cylinder gas temperature changes greatly in the cycle processes; and the
specific-heat of working fluids also accordingly changes with the cylinder gas temperature [32,33]. It is
assumed that the working fluids are the ideal gas; and a temperature-dependent specific-heat model
with second order form for constant pressure processes can be written as [21]:

Cp = 2.506× 10−11T2 + 1.454× 10−7T1.5 − 4.246× 10−7T + 3.162× 10−5T0.5 + 1.3303
−1.512× 104T−1.5 + 3.063× 105T−2 − 2.212× 107T−3 (11)

Accordingly, a variable specific-heat model for constant volume processes can be achieved by the
following relation:

Cv = Cp − Rg (12)

where Rg = 0.287 kJ/kgK is the state constant of the ideal gas.
The input rate of total heat energy in the heat addition processes shown in Figure 1 can be

computed as:

QT =
.

m f QLHV (13)

where
.

m f and QLHV are the mass flow rate and the lower heat value of the fuel, respectively. The mass
flow rate of the fuel injected into the cylinder can be computed as:

.
m f = φ

.
ma(

.
ma
.

m f
)

s

−1 (14)

Then, the total working fluids flowing into the cylinder can be computed as:

.
mc =

.
ma +

.
m f =

.
m f (φ

−1(

.
ma
.

m f
)

s

+ 1) (15)

where φ and (
.

ma.
m f

)
s

are the equivalence ratio and the stoichiometric air-fuel ratio, respectively. The rate

of heat energy added to the working fluids by combustion during the process 2-3 can be written as:

.
Qin =

.
mc

∫ T3

T2

CvdT (16)

Similarly, the heat added to the working fluids per second for the process 2M2-3M2 and
2M3-3M3 can be computed by substituting T2 and T3 in Equation (16) with T2M2, T2M3 and T3M2,
T3M3, respectively.

The heat rejection rate into the environment during the process 4M1-5 can be computed as:

.
Qout_4M1−5 =

.
mc

∫ T4M1

T5

CvdT (17)
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The heat rejection rate into the environment during the process 5-1 can be computed as:

.
Qout_5−1 =

.
mc

∫ T5

T1

CpdT (18)

T5 = re_M1T1 (19)

Similarly, the heat rejection rate into the environment during the process 4M2-1 and 4M3-1 can be
respectively computed as:

.
Qout_4M2−1 =

.
mc

∫ T4M2

T1

CvdT (20)

.
Qout_4M3−1 =

.
mc

∫ T4M3

T1

CvdT (21)

According to [34], the heat-transfer rate through cylinder walls to coolant can be computed as:

.
Qtr = hc Acc(Tm − Tw) (22)

where the Acc, Tm and Tw are the approximate surface area of the combustion chamber, mean
in-cylinder gas temperature and cylinder wall temperature, respectively; and the hc is the heat-transfer
coefficient, which can be computed as:

hc = CB−0.2 p0.8w0.8Tm
−0.55 (23)

where C is a constant, p is instantaneous cylinder pressure and w is average in-cylinder charge velocity,
which can be written as [34]:

w =

[
C1Sp + C2

VdTr

PrVr
(p− Pm)

]
(24)

where C1 and C2 are constants; Sp is average piston speed; Pr, Vr, Tr are the pressure, volume and
temperature at the reference state; and Pm is the cylinder pressure at the same crank angle as p as the
engine works in motored conditions. It is shown in Figure 1 that Pm is equal to the cylinder pressure
at the end of compression stroke under ideal conditions. As shown in Figure 1, select the points
2, M2 and M3 as reference states for the Otto (M1 and Atkinson), M2 and M3 cycles, respectively.
The instantaneous cylinder pressure in Equations (23) and (24) is substituted by the respective mean
value. Then, the corresponding values in Equations (23) and (24) for the Otto, M1 and Atkinson cycles
can be changed as:

Pm = P2 (25)

p =
(P3 + P2)

2
(26)

Pr = P2 (27)

Vr = V2 =
1
4

πB2 L
rc − 1

(28)

Tr = T2 (29)

The corresponding values for the M2 and M3 cycles are similar as that for the Otto cycle (or M1
and Atkinson cycles), which can be achieved by replacing P2, P3 and T2 with (P2M2, P2M3), (P3M2, P3M3)
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and (T2M2, T2M3), respectively. The Vr of the M2 cycle is the same as that in the Equation (28); the Vr of
the M3 cycle is less than the other cycles and can be expressed as:

Vr_M3 = V2_M3 =
1
4

πB2 rm3L
rc − rm3

(30)

The combustion chamber surface area for the Otto, M1, Atkinson and M2 cycles can be
approximately estimated as:

Acc =
1
2

πB2 + πBL
1

r− 1
(31)

Additionally, the combustion chamber surface area for the M3 cycle can be expressed as:

Acc_M3 =
1
2

πB2 + πBLrm3
1

rc − rm3
(32)

The rate of heat energy added into working fluids can also be computed as:

.
Qin = ηcom

.
m f QLHV − hc Acc(Tm − Tw) (33)

in which the combustion efficiency ηcom and mean gas temperature Tm can be written as [20]:

ηcom = −1.44738 + 4.18581φ−1 − 1.86876φ−2 (34)

Tm =
T2 + T3

2
(35)

The energy conservation equation for a close system can be written as:

TdS = δQw + pdV = CvdT + pdV = CpdT −Vdp (36)

where the δQw represents the increased amount of heat energy as the temperature changes by dT.
Apply the ideal gas state equation to the Equation (36), and divide T for both sides; then, the following
equation can be achieved by integrating the Equation (36):

Sj − Si =
∫ Tj

Ti

Cv

T
dT + Rg ln

Vj

Vi
=
∫ Tj

Ti

Cp

T
dT − Rg ln p|pj

pi = 0 (37)

The following two equations can be achieved for the processes 1-2 of the Otto, M1 and Atkinson cycles:

∫ T2

T1

Cv

T
dT = Rg ln rc (38)

∫ T2

T1

Cp

T
dT = Rg ln

P2

P1
(39)

The corresponding equations for the M2 and M3 cycles can be obtained by way of replacing T2,
P2, rc in Equations (38) and (39) with T2M2, P2M2, rc_M2 and T2M3, P2M3, rc, respectively.

The following two equations can be achieved for the process 3-4M1:

∫ T3

T4M1

Cv

T
dT = Rg ln re_M1 (40)

∫ T3

T4M1

Cp

T
dT = Rg ln

P3re_M1T1

T4_M1
(41)
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The corresponding equations for the Otto and Atkinson cycles can be obtained by replacing T4M1,
re_M1 in Equations (40) and (41) with T4O, rc and T4A, re_AT , respectively. The corresponding equations
for the M2 and M3 cycles can be obtained by replacing T3, T4M1, re_M1 in Equation (40) with T3M2, T4M2,
rc and T3M3, T4M3, re_M3, respectively. The corresponding equations for the M2 and M3 cycles can be
obtained by setting re_M1 = 1 and replacing T3, T4M1, P3 in Equation (41) with T3M2, T4M2, P3M2 and
T3M3, T4M3, P3M3, respectively.

The studies in [31] show that the total friction losses include the losses from the boundary friction
and the viscous friction. The boundary friction is mainly influenced by the engine design parameters
and the peak cylinder pressure; and the viscous friction is mainly influenced by the engine design
parameters and the average piston speed. Therefore, the FMEP (friction mean effective pressure
(FMEP)) under boundary conditions can be written as:

(FMEP)boundary = a× L
B2 × Pmax (42)

where the coefficient a can be calibrated to consider the pressure-affected friction in the camshaft and
crankshaft system of a real engine.

Additionally, the viscous FMEP can be expressed by:

(FMEP)hydrodyn = b×
Ap,e f f

LB2 × Sp (43)

where Ap,e f f represents the effective piston-skirt area in contact with cylinder liner. The coefficient
b can be calibrated to consider speed-dependent friction in the camshaft and crankshaft system of a
real engine.

Then, the lost power from friction can be computed as [34]:

Pf (kW) =
FMEP(kpa)×Vd(dm3)× N(r/s)

2× 103 (44)

whereFMEP is the sum of the (FMEP)boundary and (FMEP)hydrodyn; and the engine rotational speed N
can be written as:

N = Sp/2L (45)

Therefore, the effective output power for any cycle in Figure 1 can be written as:

Pe =
.

Qin −
.

Qout − Pf (46)

Accordingly, the energy efficiency and the power density can be computed as follows:

η =

.
Qin −

.
Qout − Pf
.

QT

(47)

Pd =
Pe

Vd
(48)

when rc and T1 are known and T2 and P2 can be achieved by solving Equations (38) and (39) for the
Otto, M1 and Atkinson cycles. Similarly, when rc, rm2 and T1L are known, T2M2, T2M3, P2M2 and P2M3

can be obtained for the M2 and M3 cycles. When rm1, a, b, φ, B, L,
.

m f and Sp are known, T3, P3 and T4M1

can be obtained by combining Equations (16), (33), (40) and (41) for the M1 cycle. The corresponding
values for the Otto and Atkinson cycles can be obtained by making rm1 = 1 and rm1 = T4A

T1
, respectively.

T3M2, T3M3, P3M2, P3M3, T4M2 and T4M3 for the M2 and M3 cycles can also be obtained by solving the
corresponding equations described above.

.
Qin for the M1 cycle can be obtained by substituting T2 and
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T3 into Equation (16).
.

Qout can be obtained by substituting T1, T4M1 and T5 into Equations (17)–(19).
The lost power from friction can be obtained by substituting Pmax and Sp into Equation (44). At last,
the effective output power, the cycle efficiency and the power density can be computed by substituting
.

Qin,
.

Qout, Pf and Vd_M1 into Equations (46)–(48). The corresponding values can be obtained for the
Otto, Atkinson and M2 and M3 cycles in a similar manner.

3. Assumptions and Simplifications

The objective of the paper is to qualitatively compare the energy losses and the performances
of the cycles shown in Figure 1. The usability is to provide the knowledge about the influences of
the cycle types on the ratios of various energy losses and the cycle performances; and the respective
advantages and disadvantages of these cycles. These cycles are essentially irreversible considering the
irreversibilities associated with the heat-transfer and friction; and the air and fuel rate, the heat-transfer
rate and the lost power of friction are all related to the mean piston speed (temporal variable).

In [24], an irreversible parameter IR multiplied by the exhaust loss is introduced to quantify the
internal irreversibility such as the fluid friction and combustion. It has been proven in the reference
that an FTT model could qualitatively reproduce the behaviors and characterizations of real processes
with some simplifications and assumptions such as a constant irreversibility parameter. In some other
references such as [20], the internal irreversibility is described by a compression and an expansion
efficiency. If the irreversible processes in the compression and expansion strokes are also marked in
Figure 1, the cycle figures will appear too confused and difficult to identify. Therefore, in order to
simplify the modeling process, we take the internal irreversible parameter or the compression and
expansion efficiency as one considering that the objective of this paper is to perform a comparative
study among the cycles, and the irreversibility in the compression and expansion processes has no
obvious effect on the comparative analysis results.

At last, all compression and expansion processes are assumed adiabatic. All instantaneous values
for cylinder pressure and charge temperature in the models are replaced by respective average values
such as in Equation (22). The cylinder wall temperature is assumed constant in the heat-addition and
heat-transfer processes.

4. Results and Discussions

A cycle calculation has been performed in order to study and compare the performances of
those cycles shown in Figure 1. Some model parameters are fixed in the calculation: T1 = 350 K,
Tw = 400 K, (

.
ma.
m f

)
s
= 14.7, QLHV = 44, 000 (kJ/kg),

.
ma = 0.00082 ∗ Sp (kg/s), φ = 0.9, Sp = 8 (m/s),

B = L = 0.08 m; and all the other model parameters are calibrated to make the computed results
approach a real engine.

A heat-transfer weight coefficient ch multiplied by the heat-transfer term in Equation (22),
is defined to weigh the importance of the heat-transfer losses in the total input energy. Figures 2–4
demonstrate the performances of the five thermodynamic cycles in Table 1 at different heat-transfer
weights. The subfigures (a) in Figures 2–4 show the performances of normal conditions with ch = 0.08;
the subfigures (b) and (c) show the performances with lower heat-transfer weights in order to
investigate the performance difference at different heat loss degrees.

Figure 2 demonstrates a comparison of the effective power (Pe) at different heat-transfer weights.
The peak power of the Atkinson cycle is the maximum among the Otto, M1 and Atkinson cycles
(Pe_At > Pe_M1 > Pe_Otto). In the low CR range, the Pe of the Atkinson cycle is always higher than
the other cycles. In the high CR range, the Pe of the Otto cycle becomes the maximum. The Pe of the
M2 and M3 cycles are far less than the Otto, Atkinson and M1 cycles in the full CR range examined,
which is because of the LIVC operation leading to the reduction of the net fuel amount in the cylinder.
The peak Pe of the M3 cycle is comparable to the M2 cycle, but the corresponding CR for the M3 cycle
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is lower, which may have some thermodynamic and dynamic advantages in a real engine such as NOx
reduction and low vibration.
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Figure 3 demonstrates a comparison of the energy efficiency (η) at different heat-transfer weights.
The change tendency of the η for all cycles is basically the same as the effective power in Figure 2.
In the low CR range, the η of the Atkinson cycle is always the maximum, and that of the M2 cycle is
the lowest. In the high CR range, the η of the Otto cycle is the highest, while the one of the M3 cycle is
the lowest. As the heat-transfer weights decrease, the η differences between the Otto, M1 and Atkinson
cycles and the M2, M3 cycles decrease. As shown in Figure 3a, in the CR range less than 10, the η of
the M3 cycle is higher than the Otto cycle. As the ch decreases from 0.08 to 0.03 to 0, the effective CR
range that makes the η of the M3 cycle higher than the Otto cycle increases. Moreover, in the full CR
range, the η of the M2 and M3 cycles are always lower than the M1 cycle; and the η of the M2 cycle are
always lower than the Otto cycle.
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Figure 3. Energy efficiency at different heat-transfer weights.

Figure 4 shows a comparison of the power density (Pd) at different ch values. The peak power
density for the Atkinson cycle is the lowest and even lower than the M2 and M3 cycles because of the
largest displacement volume Vd. In the full CR range examined, the power density for the Otto cycle is
always the highest because of the modest effective power and Vd.
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Figure 4. Power density at different heat-transfer weights.

The power density for the M1 cycle falls between the Otto and Atkinson cycles; and always higher
than the M2 and M3 cycles in the full CR range. Although the peak η of the Atkinson cycle is higher
than the M1 cycle, its power density is too low. The Otto cycle has the highest power density, but a
lower peak η than the M1 cycle. Moreover, as shown in Figure 2, the η of the M1 cycle are always
higher than the M2 and M3 cycles in the full CR range. Therefore, the comprehensive performances of
the M1 cycle are the optimum.

The performance results shown in Figures 2–4 are together influenced by the cycle types and the
energy losses. Investigation on the energy losses can provide guidance for improving the performances
of a real engine. In this section, the parameters Rh, Re and R f are defined to denote the energy loss
ratios of the heat-transfer, exhaust and friction in the total input energy, respectively.

Figure 5 is a comparison of the heat-transfer loss ratios (Rh) for all cycles examined. As shown in
Figure 5a,b, the Rh of the Otto cycle is the lowest; and the one for the M3 cycle is the highest in the full
CR range examined (Rh_Otto < Rh_M1 < Rh_At < Rh_M2 < Rh_M3).
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Figure 5. Ratios of heat-transfer loss for different heat-transfer weights.

It is shown in Figure 6 that the peak cylinder pressure (Pmax) of the Otto cycle is slightly higher
than the M1 and Atkinson cycles. A higher Pmax increases the heat-transfer coefficient (hc) and thus
the heat-transfer loss. Moreover, the peak charge temperature (Tmax) of the Otto cycle is higher than
the M1 and Atkinson cycles (Tmax_Otto > Tmax_M1 > Tmax_At), as shown in Figure 7. The high Tmax can
lead to more heat-transfer loss and a high Rh. As a result, the only reason leading to the high Rh for M1
and Atkinson cycles is a bigger displacement volume Vd. A bigger Vd can increase the hc (Equations
(23) and (24)) and thus the heat-transfer loss. Therefore, the Rh of the Atkinson cycle is higher than the
M1 and Otto cycles (Rh_Otto < Rh_M1 < Rh_At).
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Figure 7. Peak in-cylinder gas temperature for different heat-transfer weights.

As shown in Figure 5a,b, the Rh for the M3 cycle is higher than the M2 cycle in the full CR range,
which is because of the obviously higher in-cylinder mean pressure (P2, Pmax) increasing the hc for the
M3 cycle. Furthermore, in the full CR range, the Rh of the M2 cycle is higher than the Otto, M1 and
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Atkinson cycles even though the (P2, Pmax) and (T2, Tmax) of the M2 cycle are lower. The major reason
is the less net fuel amount in the cylinder for the M2 cycle because of the LIVC operation. As a
result, the Rh of the M2 cycle is higher even with the same amount of heat loss as the Otto, M1 and
Atkinson cycles.

Figure 8 is a comparison of the exhaust loss ratios (Re) for all cycles examined. The Re is primarily
influenced by the charge temperature at the end of the expansion stroke. Therefore, the expansion
ratio (re) is the determining factor of the Re. The bigger the re is, the lower the charge temperature at
the end of the expansion stroke is. The Re of the Atkinson cycle is the lowest (Re_At < Re_M1 < Re_Otto)
among the Otto, M1 and Atkinson cycles. The Re of the M3 cycle is obviously lower than the M2 cycle.
Moreover, the Re of the M3 cycle is lower than the Atkinson cycle in the high CR range and lower than
the M1 and Otto cycles in the full CR range even with a lower net fuel amount in the cylinder, which is
because of the high re and the low Tmax.
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Figure 9 shows a comparison of friction loss ratios (R f ) for all cycles examined. According to
Equations (42)–(44), the following equations can be achieved:

Pf _b =

(
aπ

16× 103

)
PmaxL, (49)



Entropy 2018, 20, 75 17 of 24

Pf _V =

 bAe f f S2
pπ

16× 103

 1
L

. (50)

In the low CR range, the Pf _V dominates. According to Equation (50), the R f of the Atkinson
cycle is the lowest (R f _At < R f _M1 < R f _Otto) because of having the longest expansion stroke. As the
CR increases, the LAt increases fast, and Pf _b is gradually dominating R f . Thus, the R f of the Atkinson
cycle is the highest in this range (R f _At > R f _M1 > R f _Otto). As shown in Figure 6, the Pmax of the
Atkinson cycle is slightly lower than the M1 and Otto cycles in the full CR range. According to
Equation (49), the reason for the highest R f of the Atkinson cycle can only be the biggest expansion
stroke increasing the boundary friction losses. The change characteristics of the M1 cycle are similar to
the Atkinson cycle.
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Figure 9. Ratios of friction loss for different heat-transfer weights.

As shown in Figure 6, the Pmax of the M3 cycle is greatly higher than the M2 cycle. According
to Equation (49), the high Pmax leads to a high Pf _b. The Pf _V of the M2 and M3 cycles is equal. As a
result, the R f of the M3 is obviously higher than the M2 cycle in the full CR range.

It is shown in Figure 9a,b that the R f of the M2 cycle is always higher than the Otto, M1 and
Atkinson cycles in the full CR range. As shown in Figure 6, the Pmax of the M2 cycle is lower than the
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Otto, M1 and Atkinson cycles. The expansion strokes (L) of the M2 and Otto cycles are also the same.
Therefore, the Pf _M2 is less than the Otto cycle, and the reason for the higher R f of the M2 cycle is the
less net fuel amount in the cylinder. As a result, the load (more fuel amount injected) can also be raised
in order to reduce the R f and improve the mechanical efficiency in a real engine.

As shown in Figure 9, the difference between R f _At and R f _M2 gradually decreases as ch decreases
in the high CR range. R f _At is even higher than R f _M2 as the ch = 0. Reducing the ch until zero, a part
of the energy from the heat-transfer loss is converted to the effective power output; and another part is
converted to the exhaust energy. In this situation, the Atkinson cycle must have a big expansion stroke
in order to expand to the barometric pressure and temperature, leading to the fast increment of the
Pf _b (Equation (49)).

The performance results of the thermodynamic cycles are together determined by the ratios of
the energy losses (Rh, Re, R f ) and the cycle types. As an example of the Atkinson cycle, in the low
CR range, the decrement of the Re + R f of the Atkinson cycle is larger than the increment of the Rh
compared to the M1 and Otto cycles. The efficiency of the Atkinson cycle is obviously higher and
reaches the maximum in this range. The advantage of the Re of the Atkinson cycle gradually decreases
as the CR further increases; and the R f of the Atkinson cycle begins higher than the M1 and Otto cycle.
The increment of the R f + Rh of the Atkinson cycle is higher than the decrement of the Re; and the
energy efficiency is lower than the M1 and Otto cycles. Therefore, the optimum CR ranges for the
efficiency and effective power of the Atkinson, M1 and Otto cycles are different.

The influence characteristics of the energy losses on the efficiency of the M2 and M3 cycles are
similar to the Atkinson cycle. As shown in Figure 8, the Re of the M2 cycle is less than the Otto cycle
in the full CR range; and even less than the M1 and Atkinson cycle in the high CR range. However,
the R f and Rh of the M2 cycle are obviously higher than the Otto, M1 and Atkinson cycle in the full
CR range. The increment of the R f + Rh of the M2 cycle is higher than the decrement of the Re. Thus,
the efficiency of the M2 is lower than the Otto, M1 and Atkinson cycles. The Re of the M3 cycle is
greatly lower than the other cycles; and the obviously higher R f and Rh of the M3 cycle discount the
advantage of the Re. Therefore, in a real engine, a high load (more fuel amount injected) under specific
engine speed and equivalence ratio generally means a high energy efficiency.

Figures 10 and 11 demonstrate the energy efficiency and friction loss of the thermodynamic cycles
in Table 1 at different friction factors and without heat loss (ch = 0). The change characteristics of the
effective power (Pe) and power density (Pd) are similar to the energy efficiency (η) and that in Figure 4,
respectively. Additionally, the results of the Re, Rh, Tmax and Pmax (ch = 0.08) with no relation to the
friction factors have been presented in Figures 5–8. These results are not presented here again.

As shown in Figure 10a, in the full CR range, the energy efficiency of the Atkinson cycle is always
higher than the M1 and Otto cycles in the case of no boundary friction (a = 0) (η_At > η_M1 > η_Otto).
As shown in Figure 10b, in the high CR range, the η of the Atkinson cycle is less than the M1 and Otto
cycles with only the boundary friction (b = 0) (η_At < η_M1 < η_Otto). It is worth noting that when
there is only the boundary friction (b = 0), the η of the M2 cycle has less difference with the Atkinson
cycle especially in the middle CR range.

The performance characteristics described above are primarily influenced by R f . For the Otto,
M1 and Atkinson cycles in the full CR range as shown in Figure 11a, the R f _Otto is the highest and
constant, while the R f _At increases as the CR increases and is always less than the M1 and Otto cycles.
Therefore, in the high CR range, the η of the Atkinson cycle are not as in Figure 3 and always higher
than the M1 and Otto cycles. As shown in Figure 11b, the R f _At is obviously higher than the M1 and
Otto cycles; and even higher than the M3 cycle in the middle to low CR range. Therefore, the η of the
Atkinson cycle sharply drop down as the CR increases.

As shown in Figure 10c, the η of all the cycles monotonously increase as the CR increases;
and approach the ideal values. Furthermore, the η of the M3 cycle is higher than the M1, M2 and Otto
cycles in the full CR range; and even slightly higher than the Atkinson cycle in the high CR range.
This is primarily the high expansion ratio of the M3 cycle reducing the Re_M3. Therefore, in a real
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engine, some new techniques can be adopted to greatly reduce the heat-transfer and friction losses in
order to improve the performances of the thermodynamic cycle, especially the M3 cycle. For example,
a ceramic cylinder liner can be used to avoid the heat-transfer loss. Novel pistons and piston rings [35],
symmetric crankshafts, low tension piston rings and low viscosity lubricating oil can be used to reduce
the friction loss.

Moreover, the effect of the in-cylinder charge temperature on the combustion efficiency is not
considered in Equation (32). As a result, the maximum energy efficiency of the M2 cycle is almost
the same as the M3 cycle even though the effective CR of the M3 cycle is higher. In a real engine,
the in-cylinder charge temperature at the end of compression stroke is higher for the M3 cycle;
and higher combustion efficiency can be achieved. Therefore, in a real engine, the energy efficiency of
the M3 cycle is certainly higher than the M2 cycle; and the usage of the M3 cycle is better.
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engine, some new techniques can be adopted to greatly reduce the heat-transfer and friction losses in 

order to improve the performances of the thermodynamic cycle, especially the M3 cycle. For 

example, a ceramic cylinder liner can be used to avoid the heat-transfer loss. Novel pistons and 

piston rings [35], symmetric crankshafts, low tension piston rings and low viscosity lubricating oil 

can be used to reduce the friction loss.  
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5. Conclusions

The FTT models for an Otto cycle, an over-expansion Miller cycle (M1), an Atkinson cycle, an LIVC
Miller cycle (M2) and an LIVC Miller cycle with CCR (M3) are first established. The irreversible
losses from heat-transfer and friction are considered in the models. The change characteristics and
comparisons of the performances (Pe, η, Pd) and energy losses (R f , Re, Rh) with respect to the CR,
the different heat-transfer weights and friction factors and the cycle types are deeply investigated.
Some important conclusions have been obtained.

(1) The optimum CR ranges for the efficiency and effective power of the Atkinson, M1 and Otto
cycles are different. The peak Pe and η of the Atkinson cycle are the maximum, but the Pd is
particularly low. In the full CR range, the comprehensive performances of the M1 cycle are
the optimum.

(2) In the full CR range, the Pe of the M2 and M3 cycles is always lower than the Otto, M1 and
Atkinson cycles because of the less net fuel amount in the cylinder. The Pd is basically higher
than the Atkinson cycle; and the η of the M3 cycle is higher than the Otto cycle in the low CR
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range. The maximum η of the M2 and M3 cycles are nearly the same because the effect of the
charge temperature on the combustion efficiency is not considered in this study.

(3) The comparative results of cycle performances are influenced together by the ratios of the energy
losses (Rh, Re, R f ) and the cycle types. A long expansion stroke (Atkinson or M1 cycles) or a large
expansion ratio (M3 cycle) can reduce the Re, but has an adverse effect on the Rh and R f . In any
CR range, the cycle performances improve if the advantages in the ratios of energy losses exceed
the disadvantages. A large displacement volume is always adverse for the Pd especially for the
Atkinson cycle. The less net fuel amount and the high Pmax (M3 cycle) have significantly adverse
effect on the Rh and R f of the M2 and M3 cycles; and the η is always lower than the M1 and
Atkinson cycles in the full CR range.

(4) When there is only the boundary or viscous friction, the change characteristics of the performances
for the Otto, M1 and Atkinson cycles are different. When reducing the heat-transfer and friction
to zero, the M3 cycle has an obvious advantage in the η. In a real engine, some techniques such
as a ceramic cylinder liner can be adopted to greatly reduce the heat-transfer and friction losses
in order to improve the performances of thermodynamic cycles, especially the M3 cycle.
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Nomenclature

NVH Noise Vibration Harshness
ACE Atkinson cycle engine
MP maximum dimensionless power
MPD maximum dimensionless power density
MEF maximum thermal efficiency
TDC top dead center
CR compression ratio
rm2 ratio of two compression ratios (-)
mc mass rate of intake charges (kg/s)
rc compression ratio (-)
pe effective power (kW)
T temperature (K)
pd power density (kW/L)
cv constant volume specific heat (kJ/kg·K)
N engine rotating speed (r/s)
QLHV low heat value of fuel (kJ/kg)
.

Q rate of heat added (kJ/s)
Acc surface area of combustion chamber (m2)
p instantaneous cylinder pressure (bar)
a, b, C constants (-)
MCE Miller cycle engine
FTT finite-time thermodynamics
OMC Otto–Miller Cycle
LIVC late intake valve closure
CCR constant compression ratio
FMEP friction mean effective pressure
R ratio of energy loss (-)
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re expansion ratio (-)
B cylinder bore (m)
L stroke length (m)
rm1 ratio of two expansion ratios (-)
V volume (m3)
Cp constant pressure specific heat (kJ/kg·K)
Sp mean piston speed (m/s)
Rg gas constant (kJ/kg·K)
hc convective heat-transfer coefficient (Kj/m2·K·s)
w average in-cylinder charge velocity (m/s)
Ap_e f f effective area of piston skirt (m2)
Pf friction lost power (kW)
P cylinder pressure (bar), power (kW)
Greek Letters
η effective efficiency (-)
φ equivalence ratio (-)
Subscripts
M2 M2 cycle
M3 M3 cycle
T Total
c charges
in input
tr transfer
r reference
m mean
d displacement, density
h heat-transfer
max maximum
M1 M1 cycle
f fuel, friction
a air
out output
m motored
com combustion
w wall
at Atkinson
e exhaust, effective
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