
entropy

Article

k-Same-Net: k-Anonymity with Generative Deep
Neural Networks for Face Deidentification †
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Abstract: Image and video data are today being shared between government entities and other
relevant stakeholders on a regular basis and require careful handling of the personal information
contained therein. A popular approach to ensure privacy protection in such data is the use of
deidentification techniques, which aim at concealing the identity of individuals in the imagery while
still preserving certain aspects of the data after deidentification. In this work, we propose a novel
approach towards face deidentification, called k-Same-Net, which combines recent Generative Neural
Networks (GNNs) with the well-known k-Anonymitymechanism and provides formal guarantees
regarding privacy protection on a closed set of identities. Our GNN is able to generate synthetic
surrogate face images for deidentification by seamlessly combining features of identities used to train
the GNN model. Furthermore, it allows us to control the image-generation process with a small set
of appearance-related parameters that can be used to alter specific aspects (e.g., facial expressions,
age, gender) of the synthesized surrogate images. We demonstrate the feasibility of k-Same-Net
in comprehensive experiments on the XM2VTS and CK+ datasets. We evaluate the efficacy of the
proposed approach through reidentification experiments with recent recognition models and compare
our results with competing deidentification techniques from the literature. We also present facial
expression recognition experiments to demonstrate the utility-preservation capabilities of k-Same-Net.
Our experimental results suggest that k-Same-Net is a viable option for facial deidentification that
exhibits several desirable characteristics when compared to existing solutions in this area.

Keywords: face deidentification; generative neural networks; k-Same algorithm

1. Introduction

In recent years, an ever-increasing amount of image and video data is being recorded, stored or
processed worldwide. A key factor that contributes towards this development is the wide-spread
availability of personal gadgets, such as mobile phones or tablets, as well as other imaging devices
(such as surveillance systems, security cameras and web-cams), which make capturing images and
video footage an easy task. While these trends have contributed towards making peoples lives easier
in many aspects, care needs to be taken that the captured data are not misused and the privacy of
people visible in the imagery is adequately protected.

Privacy protection is especially important, when image and video data are recorded and shared
between government entities and other relevant stakeholder, which may be inclined to exploit the
data for purposes different from those for which they were recorded. Driver’s licenses, for example,
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which are used in certain countries as a means of identification, may be exploited for screening purposes
against existing watch lists by security agencies; traffic cameras may be used for surveillance purposes;
and so on. This kind of function creep can be seen everywhere today and has major repercussions on
our privacy and daily lives. While it is necessary to have the technology in place to ensure appropriate
levels of security for people, measures also need to be taken to ensure a sufficient level of privacy
protection. The outlined issues typically boil down to a single problem: how to perform secure data
sharing, while at the same time preventing possible cases of misuse.

As illustrated in Figure 1, a common solution to address this problem is deidentification, a process
that conceals personal identifiers present in image and video data and thus prevents the recovery and
misuse of identity information (e.g., prevents face recognition). Deidentification commonly strives
to hide personal information both from human inspection, as well as from automatic recognition
techniques and, when applied to image and video data, is typically focused on face deidentification,
as the appearance of the human face is by far the most prevalent personal identifier in this type of data.

Data sharing with privacy protection

Deidentification

Figure 1. The motivation behind deidentification: to prevent misuse of personal information and ensure
privacy protection when data are shared between government entities or other relevant stakeholders,
the data need to be appropriately deidentified before being shared.

According to [1,2], early face deidentification techniques mostly centered around naive
approaches, such as blacking-out, pixelation or blurring, which are generally considered not to
be very effective or suitable for this task. Blacking-out, for example, puts a black patch over the
original face image to conceal identity. While this does guarantee anonymity, it also removes all of the
non-identity-related information, including characteristics that could be useful for further analysis,
but do not rely on identity information. Pixelation and blurring are also considered unsuitable for
deidentification, as they are prone to imitation attacks (i.e., parrot attack [1]), where a probe image is
simply subjected to the same degradation process as the deidentified images and can then be again
recognized reliably (see [3] for empirical examples).

More recent techniques from the literature try to overcome the limitations outlined above
and provide formal guarantees regarding the anonymity of the deidentified data, e.g., [4–6].
These techniques try to reduce the amount of information that is removed from the imagery,
while ensuring upper bounds on the so-called reidentification risk: the risk of reidentifying an image
after deidentification. We build on these techniques and present in this paper a novel deidentification
approach called k-Same-Net. The proposed approach exploits a recent class of generative models,
i.e., Generative Neural Networks (GNNs), and combines them with a formal anonymity scheme, i.e.,
k-Anonymity [4]. The generative model is capable of synthesizing natural, realistic-looking surrogate
faces for deidentification and parameterizes some of the visual characteristics of the synthesized
data. This property makes it possible to retain certain aspects of the original data (i.e., enabling
data utility of describable non-identity-related attributes, such as facial expressions, age or gender),
while replacing sensitive personal traits with synthetic content. We demonstrate the feasibility of
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the proposed approach on a closed set of facial images and show comparative results for competing
techniques from the literature. We observe that k-Same-Net generates convincing surrogate faces
without artifacts and is flexible enough to ensure that selected aspects of the data can be retained even
after deidentification if needed.

To summarize, the main contributions of this work are:

• We introduce a novel algorithm for face deidentification, called k-Same-Net, that is based on
a formal privacy protection scheme and relies on GNNs.

• We introduce an additional (proxy) image set that can be used for model training in the
deidentification approach, but preserves the formal guaranties that come with k-Anonymity-based
privacy protection schemes.

• We present an in-depth analysis of the proposed approach centered on reidentification and facial
expression recognition experiments.

Note that a preliminary version of this work appeared in [7]. Here, we extend the previous paper
by presenting a more comprehensive literature review, providing a more in-depth discussion of key
concepts and by adding an extensive experimental section that includes several important experiments
aimed at demonstrating the merits of the proposed k-Same-Net deidentification approach.

The remainder of the paper is structured as follows. In Section 2, we review the related
work including existing deidentification approaches and generative neural networks. In Section 3,
we introduce our novel deidentification approach, k-Same-Net, that combines generative models
with a formal anonymity model. In Section 4, we present qualitative, as well as quantitative
experiments exploring different aspects of the proposed deidentification technique and also provide
visual deidentification results to highlight the merits of our approach. We conclude the paper with
some suggestions for future research in Section 5.

2. Background and Related Work

In this section, we describe relevant work from the literature. We discuss deidentification and
existing privacy protection schemes, elaborate on existing face deidentification approaches (ad hoc
and formal) and present a short overview of generative deep models.

Deidentification and privacy protection schemes: A plethora of privacy protection schemes
emerged from the need to protect sensitive data mostly in relational databases, where the data reside in
tables of columns (known as attributes or quasi-identifiers) and rows (also known as records). Private
data holdings, such as hospital data, insurance records or bank-accounting data, are some well-known
examples of such data corpora [4].

While large amounts of data are often desired, especially for analytical and data mining purposes,
the main problem here is that the processed data may also contain sensitive information, which
represents a threat to privacy. Because of that, numerous techniques for privacy-preserving data mining
were presented in the literature, which proposed effective mining approaches without compromising
privacy. Most of these techniques use some kind of data transformations that result in a trade-off
between information loss and privacy. One early example of such techniques is the randomization
method, which adds noise to the database entries with the goal of masking the attribute values [8].
A comprehensive review of existing privacy protection schemes can be found in the excellent survey
by Aggrawal and Yu [9]. In the remainder of this section, we only focus on formal privacy protection
schemes, which are also closely related to the topic of this paper.

Before going further, we note that formal privacy protection schemes, which are at the focus of
this work, are currently limited to deidentification of the facial area only. If other biometric traits are
present in the data (which is especially the case in video surveillance scenarios), then these schemes are
less suitable, since re-identification can be conducted by analyzing the original biometric information
beyond the facial area (e.g., gait, posture, clothes, etc.) using either hand-crafted feature extraction
methods [10–12] or deep learning [13].
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In [4], Sweeney introduced the k-Anonymity model for deidentifying entries in a relational
database. According to her definition, a table adheres to k-Anonymity (after deidentification) if
and only if each sequence of values for each attribute within that table appears with at least k
occurrences. Because there are k copies of the same sequence in the dataset, the probability of linking
an individual sequence to the original is bounded by 1/k. A constrained version of k-Anonymity was
later proposed by Miller et al. [14] and refined by Campan et al. [15] with the p-Sensitivek-Anonymity
model, which limits the amount of allowed generalization when masking microdata. Recently, new
extensions focusing on flexible k-Anonymity were proposed in [16,17] to enable the deployment of
k-Anonymity to other application scenarios by defining a semantic ontology to generate suitable
k-blocks of data.

Other privacy protection schemes (not based on k-Anonymity) have also been proposed
in the literature with two of the better known being L-Diversity [5] and t-Closeness [6].
Machanavajjhala et al. [5] introduced three versions of L-Diversity: Distinct L-Diversity (which ensures
at least L distinct values for the sensitive attribute in each equivalence class), Entropy L-Diversity
(which incorporates entropy and ensures that the entropy of each equivalence class is greater or equal
to log(L)) or Recursive (C-L)-Diversity (which is an alternative definition that ensures meaningful
appearances of the most common and the least common attribute values) [5]. t-Closeness, proposed by
Li et al. [6], on the other hand, is defined as a property that holds for an equivalence class if the distance
between the distribution of a sensitive attribute in this class and the distribution of the attribute is not
greater than a threshold t [6].

Face deidentification: Several techniques have been presented in the literature that focus on face
deidentification. While some of these build on the formal privacy protection schemes covered in
the previous section, many are ad hoc and do not come with anonymity guarantees. We defer the
discussion on the first group of techniques to the next section and focus here on the second group of
ad hoc methods.

Examples of ad hoc methods include video scrambling [18], image puzzling [19], filtering [20],
image foveation [21] or encryption. Face transfer, on the other hand, deals with a similar problem
in the field of computer graphics, but is usually not considered in the area of face deidentification,
although it could be applicable to this area as well [22,23].

Deidentification is not limited solely to static images, but is applicable to video data as well.
Especially with the rise in Unmanned Aerial Vehicles (UAVs), this topic is receiving increased
attention in the literature. Works that utilize deidentification on video data exploit JPEG encoding [24]
or other compression approaches, e.g., based on the Discrete-Cosine-Transform (DCT) perceptual
model [25]. Transform domain scrambling methods were also proposed [18], as well as warping [26],
chaos-cryptography [27], blurring [28], pixelation and masking [29].

An example of using foveation in the DCT domain for the purpose of face deidentification was
recently proposed by Alonso-Perez et al. [21]. Here, the authors report that DCT-foveation-based
deidentification protects the individual’s identity, while preserving gender and expression. The level
of privacy-protection ensured by the approach was compared to other naive ad hoc methods
(pixelation, blurring, randomization using Gaussian noise and eigen-features) by performing
recognition experiments using the (2D)2 PCA-based algorithm at different deidentification strength
levels. To evaluate awareness and data utility, the authors used an SVM classifier to classify gender
and facial expressions.

A q-far deidentification technique is proposed by Samarzija et al. in [30]. The techniques uses
Active Appearance Models (AAMs) for deidentification and swaps faces by mapping the texture
triangles from the surrogate faces to the target faces. The authors argue that a many-to-many type
of deidentification scheme is better than the standard many-to-one scheme (such as k-Anonymity),
because it does not require knowledge about other identities and the facial replacement looks more
natural [30].
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Mosaddegh et al. [31] propose a part-based deidentification scheme by aggregating different
donors’ face components. The proposed approach uses a bank of face components and Poisson
image blending, which mitigates artifacts. Experiments show descriptor-based recognition tests and
a qualitative evaluation.

Farrugia et al. [32] presents a reversible deidentification approach for losslessly compressed
images, which is compatible with formal privacy protection schemes. Reversible deidentification in
this case allows for the recovery of the original content containing private information. Deidentification
is achieved using a two-level reversible watermarking scheme. The proposed method is compared
with deidentification based on scrambling of DCT coefficients and encryption of pixel values.

Letournel et al. [20] presents a face deidentification method with expression preservation
capabilities on the basis of variational adaptive filtering, where the filtering preserves the most
important facial regions (i.e., the eyes, the gaze, the lips and their corners). The authors compare
the proposed technique with the k-Same-Pixel and k-Same-M methods. Their evaluation includes
software-based recognition tests, as well as the analysis of human recognition performance.

Brkic et al. [33] recently demonstrated face, hair and color deidentification on video data from
the ChokePoint dataset. A follow-up work from the same authors using Generative Adversarial
Networks (GANs) [34] demonstrated body and face deidentification of people in videos. The authors
use human-figure segmentation and replace the segmented contents with synthetic human images
with alternative appearance. Although the proposed approach relies on GANs, it is not formulated
around any of the formal privacy schemes. Their generative network uses segmentation and replaces
the original content with the generated content from the learned data distribution.

k-Anonymity and face deidentification: Formal face deidentification schemes are typically based
on the k-Anonymity model [4], though many are compatible with related privacy protection schemes,
such as L-Diversity [5] or t-Closeness [6] as well. The k-Anonymity model inspired the family of
so-called k-Same deidentification algorithms, e.g., [1,2,35], which are among the most well-known
techniques in this area.

The main idea of the k-Same family of algorithms is illustrated in Figure 2. The algorithms take
a closed set of N images as input I = {I1, I2, . . . , IN} and produce a set of N deidentified images
D = {D1, D2, . . . , DN} that cannot be linked to the inputs in an unambiguous manner. Here, anonymity
is ensured by identifying clusters of k images in the input-image set I and replacing all k images of
each cluster with the corresponding cluster centroid. As a result, the deidentified image set D contains
k copies of each computed centroid, and consequently, each image (or centroid) in D bears similarities
to all k images in the corresponding cluster. The outlined procedure makes it impossible to link any
individual from D to the individuals from I with a probability higher than 1/k and provides formal
guarantees with respect to the anonymity of the deidentified data. Note that these guarantees apply
only if the images in I belong to exactly N identities, and hence, each subject in I is represented with
a single image only.

The original k-Same algorithm, proposed by Newton et al. in [1], operates directly in the pixel
space and, therefore, preserves visual characteristics of all k images of each cluster in the cluster
centroids. The motivation for the algorithm comes from the fact that: (i) replacement of all images
in the k-sized clusters of I with the same surrogate images ensures anonymity; and (ii) selecting the
cluster centroids (of similar faces) as the surrogates minimizes information loss during deidentification.
These properties are illustrated in Figure 2, where sample deidentification results for the original
k-Same approach are presented. As can be seen, the deidentified images still preserve some of the
visual information contained in the original images, but also exhibit ghosting effects that appear as
a consequence of poor alignment of the images in I .
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Input Image Set Deidentified Image Set

Deidentification

Figure 2. Illustration of the idea behind the k-Anonymity mechanisms. The input image set I on the
left is mapped to the deidentified image set D on the right. Anonymity is ensured by replacing k
images from I with the same surrogate image. To preserve some of the information content of the
original images, the surrogate images are computed as cluster centroids of the original images in I .
The figure shows an example for k = 2.

To address these limitations, an extension of the k-Same algorithm was presented by
Gross et al. in [36]. The algorithm, named k-Same-Model or k-Same-M, extends the idea of k-Anonymity
to Active Appearance Models (AAMs) and applies the deidentification procedure in the AAM
parameter space. Because AAMs ensure better alignment between images, the surrogate faces feature
almost no ghosting effects and appear more realistic. Nevertheless, some potentially useful information
(pertaining, for example, to facial expressions) may still get lost during the deidentification process
due to the averaging step.

Many extensions of the above approach have been proposed in the literature focusing mainly
on improving the naturalness of the deidentified faces and preservation of as much of the
non-identity-related information in the original images as possible. These include the k-Same-Eigen [1],
k-Same-Select [2], k-Same-furthest-FET (FET stands for Facial Expression Transfer) [37], k-Diff-furthest
(“Diff” in method name denotes that this method generates different deidentified face for each of the k
original faces in a cluster) [38], k-SameClass-Eigen [39] and GARP-Face (“GARP” stands for Gender,
Age, Race attribute Preservation) [40] algorithms, to name a few. A high-level overview of these
algorithms is given in Table 1. For more information on face deidentification, the reader is referred
to [41], where a recent survey on this topic is presented.

Generative deep neural networks: GNNs represent recent generative models capable of
synthesizing artificial, but natural looking images of any object and are, therefore, also highly suitable
for the task of deidentification.

Goodfellow et al. [42], for example, proposed the so-called Generative Adversarial Networks
(GANs), which combine two competing deep architectures: a generative model that synthesizes
artificial images and a second discriminator network that tries to classify the synthesized image
as either real or artificially generated. The main idea here is to train the discriminator network as
a standard classifier to distinguish between two image sources (real or artificial) and the generative
network as a generative model capable of fooling the discriminator network. Back-propagation is used
with both the discriminator and the generator network to find how the generator’s parameters should
be changed in order to make the generated samples slightly more challenging for the discriminator.
Once the training is completed, the generator network outputs images that are indistinguishable from
real images for the discriminator and also look visually convincing for human observers.
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Mirza and Osindero [43] added conditioning to the original GAN architecture (and called it
cGAN), since in an unconditioned generative model, there is no control over the generated data.
If the model is conditioned on additional information (such as labels, some part of data or even
different modalities), it is possible to direct the generation process. The added information can
be fed into both the discriminator and generator as an additional input layer during training.
Sricharan et al. [44] recently presented a Semi-Supervised version of cGAN (SS-GAN). Their approach
extends the discriminator to a pair of separated discriminators. One of the discriminators is
unsupervised and distinguishes only between real and fake images, while the other is trained in
a supervised manner (this means it distinguishes between real and fake pairs of images and relies on
both the labeled and unlabeled data).

Radford et al. presented a DC-GAN architecture [45], which can be trained in an unsupervised
manner. The network takes 100 random numbers (latent variables) drawn from a uniform distribution
as input and outputs an image (in this case of size 64× 64× 3 pixels). As the input variables are
changed incrementally, the generated images are too, which shows that the model has learned features
to describe how the world looks, rather than just memorizing examples. The experiments demonstrate
real-life examples of generated bedroom images and also show promising vector arithmetic operations
for visual concepts.

Arjovsky et al. [46] presented improved GANs called Wasserstein Generative Adversarial
Networks (WGAN). This work improves the training of the discriminator in such a way that it
achieves optimality during training by using a more meaningful loss metric (an approximation of the
earth mover distance; also called the Wasserstein-1 metric) before each generator update. The new loss
deals with the problem of vanishing gradients and converges to a linear function that gives remarkably
clean gradients everywhere [46]. This process is beneficial for the generator due to the higher quality
of the provided gradients during training. As reported in this work, none of the experiments showed
a collapse of the model for the proposed WGAN algorithm, which shows improved training stability
in comparison with the current DC-GAN architecture [45] that the authors used as a baseline.

Nowozin et al. [47] improves on the DC-GAN idea from [45] and shows that f -divergences can
be used for training GANs. The authors derive GAN training objectives and demonstrate examples
with Kullback–Leibler and Pearson divergences. They also simplify the saddle-point optimization
procedure from [42] and suggest activation functions for the final layer for the proposed f -divergence
functions. The use of this upgrade is reported to be limited, since after training, these models cannot
be conditioned on the observed data.

Tran et al. [48] presented DR-GAN, which can produce a unified identity representation from
one or multiple in-the-wild face images supplied as an input along with information about pose (in
the form of pose code). The produced result is generated by virtually rotating the face to an arbitrary
pose. This means that the generative part of the network is able to synthesize frontalization of the
input face. The discriminative part can be, on the other hand, used as a predictor to infer the identity
and pose of a face image.

Karras et al. [49] proposed a novel training methodology based on progressive training and
growing of the GAN architecture. This means that both the generator and discriminator start from
a low resolution, and during training, new layers are added to increase the image resolution and
improve image details. As reported, this process increases the training speed and stabilizes the training
process as well. Results show high resolution (1024× 1024) generated facial images, and the authors
conclude that there is still room for improvement in the micro-structure of the generated images and
a long way to true photorealism.

Dosovitskiy et al. [50] introduce a GNN, capable of drawing 2D images of 3D objects given the
object style, viewpoint and color. The network architecture used in this work is identical to the standard
Convolutional Neural Network (CNN) architectures commonly used for classification, but is turned
“upside-down”, which makes it possible to generate synthetic images given high-level information.
Thus, instead of learning a classification problem, the authors demonstrate how to generate images
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from their high-level descriptions. The input parameters consist of three vectors: one-hot encoding
of the model identity (which defines the style), azimuth and elevation of the camera position and
the parameters of additional artificial transformations applied to the images. The higher network
layers first build a shared, high dimensional hidden object representation from the input parameters,
whereas the latter layers generate an image and object segmentation mask from the shared hidden
representation.

While other generative models have been introduced recently in the literature, e.g., [45,51,52],
we build on the work of Dosovitskiy et al. [50] in this paper and devise our k-Same-Net algorithm
around this class of GNNs. Note, however, that the same idea could be extended to other model
architectures as well.

3. Neural-Network-Based Deidentification

In this section, we introduce the proposed k-Same-Net algorithm. We first present a short overview
of the approach, then discuss how deidentification and information preservation is achieved and
finally describe the generative part of k-Same-Net including its architecture and training.

3.1. k-Same-Net Overview

A high-level overview of the k-Same-Net approach is presented in Figure 3. Similar to other
algorithms from the k-Same family, our approach operates on a closed set of N input images I
corresponding to N distinct identities. The algorithm maps the input set I to a target set of deidentified
images D, but unlike existing techniques relies on an additional proxy set of images P to implement
the mapping. With our approach, formal anonymity guarantees are again ensured by replacing clusters
of k-images from I with the same surrogate faces. However, different from competing techniques
from the literature (such as [1] or [36]), these surrogate faces are not generated through image or
model-parameter averaging, but are synthesized with a GNN and, therefore, bear no visual similarities
to the original images from I . More importantly, potentially useful information of the original images
is preserved with k-Same-Net by exposing a set of appearance-related parameters at the input side of
the GNN that affect the visual characteristics of the synthesized images (e.g., facial expression, age,
gender, etc.), but not the identity. This approach differs significantly from competing solutions in
this field, as useful information is “added back” to the deidentified images (as needed), instead of
preserving parts of the appearance of the original images explicitly.

Input Image Set

Clustered Input Image Set Clustered Proxy Image Set

Generative
neural Network

(GNN)

Identity-related parameters
(from proxy image set)

Non-identity-related parameters
(from input images)

Deidentified Image Set

I P D

Figure 3. Overview of the k-Same-Net deidentification approach. Similar to other k-Same algorithms,
each image in the input set I on the left is mapped to an image in the deidentified image set D on the
right with k images from I mapping to the same image in D. The surrogate faces in D are generated
by a Generative Neural Network (GNN) that is trained to produce identities from a proxy image set
P . Other visual characteristics of the generated surrogate faces (pertaining, for example, to facial
expressions, age, gender, etc.) are defined by a set of non-identity-related parameters of the GNN and
depending on the application can be easily modified during the deidentification with k-Same-Net.
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3.2. Deidentification with k-Same-Net

Consider a set of N input images I = {I1, . . . , IN} belonging to N identities and a second (proxy)
set of M images P = {P1, . . . , PM} corresponding to Q identities, where M, Q ≥ N. Furthermore,
assume that our goal is to map the images in I to a target set of deidentified images D = {D1, . . . , DN}
in such a way that no relation between the subjects in I and the images in D can be established
without ambiguity.

With the original k-Same algorithm, clusters of k images are generated from I based on image
similarities and used to define surrogate faces Di (for i = 1, . . . , N) for deidentification (see Section 2
for details). It is straightforward to extend this approach to proxy clusters defined over P as long as the
number of generated clusters for the image sets I and P is the same and a one-to-one correspondence
between the clusters is established. Replacing all k images of each cluster of I with the same surrogate
images achieves so-called k-Anonymity, where linking a deidentified image to one of the identities in I
is limited to a guess with a success probability of 1/k, regardless of how the surrogate faces are defined
(refer to [1] for a formal proof). It is, therefore, possible to compute surrogate faces for deidentification
from a proxy image set P that can in general contain an arbitrary number identities, Q, as long as the
same number of clusters can be computed as for the image set I , i.e., Q ≥ N. Under these conditions,
the proxy set P can be used as the training set for the GNN, and synthetic face images produced by
the GNN can serve as surrogate faces for deidentification.

Table 1. Overview of some of the existing formal deidentification techniques based on the k-Anonymity
scheme (AAM stands for Active Appearance Model, PCA is Principal Component Analysis and FET is
abbreviation for Facial Expression Transfer).

Year Algorithm Domain # Assumptions

2005 k-Same-Pixel [1] Pixel Client specific image set.

2005 k-Same-Eigen [1] PCA space Client specific image set.

2005 k-Same-Select [2] AAM, PCA space Need to specify selection criteria
prior to deidentification.

2008 k-Same-Model (or k-Same-M for short) [35] AAM Model parameters obtained during
(also known as the (ε, k)-map algorithm) fitting are not unique due to ambiguities.

2013 Driessen–Durmuth’s algorithm [53] PCA space, Gabor wavelets Not achieving very strong k-Anonymity;
human recognition is still possible.

2014 k-Same-furthest-FET [37] AAM, PCA space
Neutral emotion not available explicitly;
FET not satisfying k-Anonymity;
efficacy experimentally proven.

2014 GARP-Face [40] AAM Utility-specific AAMs for
(Gender, Age, Race Preservation) ethnicity, gender, expression.

2015 k-Diff -furthest [38] AAM Distinguishable client specific image set.

2017 k-SameClass-Eigen [39] PCA, LDA space Depends on LDA classifier accuracy;
may fail on unknown faces.

It needs to be noted that surrogate faces could also be generated based on a single identity from
the proxy set P for each cluster of I . However, for practical reasons, we generate the synthetic
images of the k-Same-Net approach based on multiple (i.e., k) identities and, therefore, deal only with
artificial identities and not synthetic images of real people present in our training data. We are able
to generate images with multiple identities due to the fact that the input parameter, which denotes
identity, is one-hot encoded. This means that we enable k identities on the Identityinput, and the GNN
incorporates these identities into the resulting output image (see Figure 4).

3.3. k-Same-Net and Data Utility

While the main goal of deidentification is facilitating data anonymity, the current trend in this
area is to also ensure suitable levels of data utility after deidentification. With k-Same-Net, we preserve
(or better said retain) some of the information content in the original images by probing the input
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images for certain characteristics and then feed the results of this probing procedure to the GNN to
generate images in accordance with the identified (or desired) characteristics. For example, if our
goal is to preserve facial expressions after deidentification, we first recognize the facial expressions
in the input data and then generate the surrogate faces in accordance with the identified expressions.
This procedure is performed for each image separately, so after, deidentification images from the
same cluster of I are deidentified with a surrogate face of the same target identity, but may differ in
terms of facial expressions. Such an approach allows us to devise selective deidentification schemes
tailored towards specific target applications, where only certain visual attributes of the input images
are preserved, while others are removed completely.

3.4. GNN Architecture and Algorithm Summary

The main component of our k-Same-Net approach is the GNN recently proposed in [50] and later
extended for face synthesis by M.D. Flynn (https://zo7.github.io/blog/2016/09/25/generating-faces.
html). The network consists of a hierarchy of fully-connected and deconvolutional layers and once
trained is able to generate synthetic surrogate faces D given: (i) information about the k identities in the
relevant proxy cluster of P encoded in the vector x; and (ii) information about the non-identity-related
appearance characteristics of D encoded in the appearance-parameter vector y:

D = GNN(x, y). (1)

Figure 4. Our GNN architecture is built using fully connected (dense) layers (denoted as FC1, FC2,
FC3) and concatenation layer (denoted as C1), followed by six deconvolutional layers (performing
upsampling and convolution, from layer UP1 to UP6 as denoted in the figure). Final layers in the
network include combination of max pooling and upsampling (denoted as MaxUP) layers and the
three-channel convolution (denoted as ToRGB) layer, respectively. Inputs to the GNN are one-hot
encoded, which means that many input combinations are possible (e.g., multiple identities). On the
output, GNN renders a colored face image through the layer ToRGB as illustrated in the figure.

We present the employed generative architecture in Figure 4, where our network with
six deconvolution layers (denoted as UP1 to UP6) is illustrated. It is worth noting that the number
of deconvolution layers (consisting of upsampling and convolution operations) is arbitrary and can
be increased if larger images need to be generated. On the other hand, the number of layers can
also be decreased if a more lightweight model is needed. As it is shown for up-sampling layers,
the number of filters decreases deeper into the network while the spatial dimensions are doubled
with each deconvolution layer. The max pooling layer (denoted as MaxUP) uses a kernel size of
1× 1 for dimensionality reduction (essentially reducing the number of channels) just before the last

https://zo7.github.io/blog/2016/09/25/generating-faces.html
https://zo7.github.io/blog/2016/09/25/generating-faces.html
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up-sampling is performed. This is followed by two convolutions, first one uses kernel size 5× 5, and
second uses kernel size 3× 3. The last convolutional layer (denoted as ToRGB) performs 3× 3 sized
filtering over three channels and produces the final output image. The inputs of the network consist of
an identity-encoding vector and high-level parameters encoding non-identity-related characteristics.
Although we focus solely on facial expressions (or emotions) in this work, it is trivial to extend the
architecture to other characteristics, as well (this is illustrated with the lowest part of the network input
in Figure 4).

Training of the GNN requires an appropriately annotated training set with labels spanning all
appearance characteristics that need to be altered during image generation. While there is no strict
limit with respect to the number of input parameters and appearance variations our GNN can handle,
it is necessary that suitable labels exist for all images present in the training set. Note, however, that if
the network model is extended, it must be retrained and adapted for each additional input.

A summary of the complete k-Same-Net algorithm is given by Algorithm 1.

Algorithm 1: k-Same-Net.
Input : Input image set I , proxy image set P , parameter k, trained GNN
Output : Deidentified image set D

1 Compute clusters of k-images from I
2 Compute clusters of k-identities from P
3 Define correspondence f between clusters of I and P
4 for Ii ∈ I do
5 Encode k-identities from P in identity vector x based on cluster correspondence f
6 Define appearance-parameter vector y based on relevant recognition procedure applied to

Ii (e.g., we define y as one-hot encoded facial expression labels)
7 Generate deidentified surrogate face Di based on GNN and add to D
8 end

4. Experiments and Results

In this section, we present experiments to demonstrate the feasibility of our k-Same-Net
deidentification approach. We first discuss the datasets used for network training and experimentation
and then present comprehensive experiments that illustrate some of the key characteristics of
k-Same-Net.

4.1. Datasets

For our experiments, we use three publicly available datasets of face images, i.e., Radboud Faces
Database (RaFD) [54], The Extended Multi Modal Verification for Teleservices and Security database
(XM2VTS) [55] and The Extended Cohn-Kanade Dataset (CK+) [56,57]. We employ the first dataset to
train our GNN and the latter two to demonstrate the deidentification and data utility-preservation
capabilities of k-same-Net. Some example images from the three datasets are shown in Figure 5.

To train the generative network needed for k-Same-Net, we use the RaFD dataset [54],
which contains high-quality images of 67 subjects with eight different facial expression (i.e., anger,
disgust, fear, happiness, sadness, surprise, contempt and neutral) per subject. In RaFD, each subject
is captured under three different gaze directions and from five camera angles under all eight facial
expressions. From these images, we select the frontal images displaying 57 adult subjects for our
training procedure, resulting in a training set size of 456 facial images. The RaFD dataset represents
a suitable choice for the training of the generative network of k-Same-Net, as it includes aligned
high-resolution facial images taken in controlled environments and most importantly because it ships
with facial-expression annotations that can be used to demonstrate some of the advantages of the
proposed deidentification approach.
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We evaluate the deidentification performance of k-Same-Net on the XM2VTS dataset [55].
XM2VTS again contains images of good quality taken against a uniform background (see Figure 5b)
and features mostly faces with a neutral facial expression. While there is a total of 2360 frontal face
images of 295 subjects in the dataset (eight images per subject), we select a subset of the images for our
experimentation. In particular, for each experimental run, we experiment with images of 50 subjects
to conform with the requirement of k-Same-Net that the number of identities in the subject-specific
image set I that needs to be deidentified, N, is lower than the number of identities, Q, in the proxy set
P (see Section 3.2 for details). The relatively small number of subjects selected for our experiments
makes recognition experiments fairly easy (as shown in the following sections), but at the same time
results in a more difficult task for the deidentification procedure, which needs to conceal the identities
more effectively to avoid reidentification.

We use the third dataset, CK+ [56,57], to demonstrate the data-utility-preservation capabilities
of k-Same-Net. Specifically, we show how information on facial expressions can be preserved
despite deidentification, thus enabling expression recognition on the deidentified data. The CK+
dataset comprises video sequences of 123 subjects expressing posed and non-posed (or natural)
facial expressions/emotions, i.e., anger, disgust, fear, happiness, sadness, surprise and contempt.
The sequences start with a neutral expression and proceed to a peak expression (a frame or still image)
that is fully coded in accordance with the Facial Action Coding System (FACS) [58]) and associated with
an emotion label. We use these peak-expression images for our expression-recognition experiments
with the deidentified data. A few examples of these peak images in cropped form are shown in
Figure 5c.

(a) RaFD samples (b) XM2VTS samples (c) CK+ samples

Figure 5. Sample images from the three datasets used for our experiments: (a) RaFD [54];
(b) XM2VTS [55]; and (c) CK+ [56]. We use the RaFD dataset to train our generative network and the
XM2VTS and CK+ datasets to highlight the merits of k-Same-Net.

4.2. Network Training

We train our GNN with selected 456 images (displaying eight emotions from 57 adults) from the
RaFD dataset and rely on the implementation of M.D. Flynn (https://github.com/zo7/deconvfaces) for
the training. We crop the images to remove some of the background from the images and down-sample
them to a manageable size before feeding them to the network for training. We train the network
with back-propagation using stochastic gradient descent and the Adam optimizer. We set the batch
size to 16, the learning rate to 0.001 and limit the number of epochs to 500 [3]. The training requires
approximately 24 h on a desktop PC with 32GB of RAM and a TitanX GPU.

Once the network is trained, it is able to output realistic, natural-looking facial images of size
640× 512 corresponding to the identities from the training data or artificial, non-existing identities
and displaying various facial expressions as seen in the examples in Figure 6. The synthesized images
shown here are generated by mixing two identities from the training set (or in other words, selecting
k = 2), so none of the depicted subjects represents a real person. The blue boxes show the image area
that represents the surrogate faces, Di, needed for deidentification. For the experiments presented in
the remainder of the paper, the size and location of the bounding boxes are determined manually in
the images, which are simply cropped to include only the facial area.

https://github.com/zo7/deconvfaces
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AngryAnger Disgust Fear Happyness Neutral Sadness Surprise

Figure 6. Examples of synthetic images generated by the GNN. The GNN can produce various facial
expressions for every identity. Each synthesized face shown is a mixture of k identities from the training
(or proxy) set with k = 2 for the presented examples. Note that all images appear natural and show no
visible artifacts (such as ghosting or other non-natural looking distortions).

4.3. Qualitative Evaluation

We now present a few illustrative deidentification results based on a selection of images from
the XM2VTS dataset. In Figure 7, the top row shows original XM2VTS face images that form our
subject-specific input set I . The second row shows the same image set, but deidentified with a naive
approach, where the images in I are simply down-sampled (i.e., pixelated) to hide the identities.
Note that while some facial features are concealed, a simple imitation attack may suffice to successfully
link the naively deidentified images to the originals as shown in [3]. The third row of images shows
sample results for the original k-Same-Pixel [1] algorithm for k = 2. Here, anonymity is guaranteed,
and as emphasized in Section 2, it is impossible to link any image from the deidentified image set to the
originals with a probability higher than 0.5 (i.e., 1/k = 1/2). However, the quality and naturalness of
the deidentified images is questionable as artifacts appear due to misalignment of the original images.
The fourth row shows images deidentified with the k-Same-Model (also referred to as k-Same-M)
approach using AAMs and k = 2. The images here appear more natural than images deidentified
through pixelation or k-Same-Pixel and exhibit no ghosting effects as the facial texture is mapped to
a common shape, but further modifications are needed to ensure that the utility of the data is preserved
after deidentification. Our approach, shown in the last row of Figure 7, also comes with anonymity
guarantees and again produces natural and realistic deidentification results without any artifacts.
These findings are amongst other qualitative pros and cons also summarized in Table 2.

Table 2. Qualitative pros and cons comparison of the evaluated deidentification methods (based on the
opinion of the authors).

Type Method Pros Cons

Naive Pixelization [1] Easy to implement. Training not required. No formal privacy guarantees.attack Blurring [1]

Formal
k-Same-Pixel [1] Easy to implement. Ghosting effect, visible artifacts.
k-Same-M [35] Visually convincing. Training required.k-Same-Net (ours) Visually convincing. Offering data utilization.
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Original

Pixelated

k-Same-Pixel 

k-Same-Net 

k-Same-M 

Figure 7. Qualitative deidentification results (from top to bottom): the original images, pixelated
images, the k-Same-Pixel algorithm (k = 2), the k-Same-M algorithm (k = 2) and the k-Same-Net
approach (k = 2). Note how the deidentification schemes differ in the visual quality of the deidentified
images, as well as the amount of preserved information content.

Original

k-Same-Net 

k-Same-Net
(data utility)

Figure 8. Preserving data utility. The top row shows the original images from the subject-specific input
set I ; the second row shows images deidentified with k-Same-Net without preserving any of the input
information; and the last row shows k-Same-Net results where the facial expressions of the originals
are retained in the deidentified images. Note that the two images that are marked red belong to the
same cluster (k = 2) and have been deidentified in the last row using the same artificial target identity,
but a different facial expression.

A key characteristic of the k-Same-Net approach is the possibility of preserving specific
non-identity-related information (such as facial expressions) of the original images, while concealing
facial identity information with the artificially-generated surrogate faces. Figure 8 illustrates this
characteristic on a second subject-specific set of images from the XM2VTS dataset. Here, the top
row again shows original images with two new images that were not present in Figure 7 that are
highlighted in red. These two images form a cluster and are, therefore, replaced with the same
surrogate face images during deidentification, as shown in the second row of Figure 7, where our
k-Same-Net approach was applied, but the same appearance-parameter vector y (see Equation (1))
was used for all images. The last row shows an oracle-type of experiment under the assumption
that the facial expression of the input images is known. The images in this row illustrate how facial
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expressions can be preserved if needed. The two images from the input set that are marked with red
are still deidentified using the same artificial target identity, but now exhibit different facial expressions.
Note that under the assumption that the facial expressions cannot be exploited for identity inference,
the upper bound on the reidentification performance still equals 1/k in this case.

4.4. Recognition and Reidentification Experiments with k-Same-Net

To evaluate the efficacy of deidentification techniques, reidentification experiments are commonly
conducted on the deidentified images. The goal of these experiments is to establish the risk of
successfully identifying a subject included in the input set I based on the deidentified data in D.
The common assumption here is that the identities in I are known, and the task is to link the
deidentified images to the subjects in I .

We quantify the reidentification risk through recognition experiments with images from the
XM2VTS dataset. We randomly sample 50 identities from the dataset during each experimental
run and select one image per subject to include in the subject-specific image set (or probe set) to be
deidentified and one image to serve as the gallery. We then perform identification experiments with
the constructed probe and gallery sets. We repeat this process five times and report the identification
performance in the form of the average rank one recognition rates (Rank-1) and corresponding standard
deviations computed over the five experimental repetitions. Most importantly, we conduct the outlined
experiments before and after deidentification to assess the level of privacy ensured by k-Same-Net.

To cover a broad range of recognition approaches, we select recognition techniques that exploited
learned, as well as hand-crafted features for identity inference. Specifically, we include four recent
state-of-the-art deep models in the experiments, i.e., AlexNet [59], VGG-Face [60], InceptionV3 [61]
and SqueezeNet [62], and two techniques based on dense image descriptors, i.e., LBP (Local Binary
Patterns) [63] and POEM (Patterns of Oriented Edge Magnitudes) [64]. We use pretrained publicly
available deep models from [65] https://github.com/kgrm/face-recog-eval) and the descriptor-based
techniques from the AWE MATLAB toolbox [66] http://awe.fri.uni-lj.si/) for our experiments. With
all recognition methods, we simply extract features using the publicly available code and then use the
computed feature vectors with the cosine similarity for recognition.

The results of the recognition experiments on the unaltered XM2VTS images are shown in
Figure 9a in the form of Cumulative Match Characteristics (CMC) curves and in Table 3 as mean
Rank-1 rates with corresponding standard deviations. As can be seen, all reported approaches
achieve high recognition rates, which suggests that the original images are relatively easy to identify.
Figure 9b shows the recognition performance of the tested recognition approaches after deidentifying
the subject-specific image set (the probes) with k-Same-Net. Here, the mean Rank-1 recognition
rate is plotted against different values of k. For reference purposes, the theoretical upper bound
on the reidentification risk is also included in the plots. Note that k-Same-Net is able to ensure
effective deidentification for all values of k, as the average recognition performance of all methods
is always around 2% regardless of k. These results are also supported by the last column of Table 3,
where the mean Rank-1 recognition performance and standard deviations are tabulated for k-Same-Net
deidentification with k = 2. All in all, the empirical evaluation suggests that the risk of reidentification
for images deidentified with k-Same-Net is low, as a random pick from a gallery of 50 subjects is also
expected to result in an average rank one recognition rate of 2%. The recognition performance of all
tested recognition techniques has, hence, dropped to close to random after k-Same-Net deidentification.

https://github.com/kgrm/face-recog-eval
http://awe.fri.uni-lj.si/
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Figure 9. Recognition and reidentification experiments: (a) average Cumulative Match Characteristics
(CMC) curves of the recognition experiments on the original images of the XM2VTS dataset with five
recognition techniques; (b) average Rank-1 recognition rates for all tested recognition approaches after
deidentification as a function of k. The results show that the original identities are correctly determined
most of the time on the original images with all techniques considered, while the performance is close
to random after k-Same-Net deidentification regardless of the value of k. The graphs are best viewed
in color.

Table 3. Recognition performance over five repetitions of recognition experiments with images form
the XM2VTS dataset before and after k-Same-Net deidentification. Six different recognition approaches
are included in the comparison exploiting learned, as well as hand-crafted features. The results suggest
that the k-Same-Net deidentification approach ensures a high-level of privacy protection.

Feature Type Method Rank-1 (µ ± σ)—Before deid. Rank-1 (µ ± σ), k = 2—After deid.

Learned

Inception V3 [61] 0.928± 0.035 0.020± 0.000
VGG-Face [60] 0.916± 0.040 0.016± 0.012

SqueezeNet [62] 0.844± 0.055 0.019± 0.016
AlexNet [59] 0.786± 0.131 0.021± 0.015

Hand-crafted LBP [63] 0.828± 0.094 0.021± 0.016
POEM [64] 0.892± 0.055 0.019± 0.015

4.5. Comparison with Competing Deidentification Techniques

We compare our k-Same-Net deidentification approach with a number of competing techniques
from the literature using the same data and experimental protocol as described in the previous section.
We deidentify the subject-specific probe sets using two naive and two formal techniques based on
the k-Anonymity scheme. From the naive methods we select blurring and pixelation, and from the
formal methods we choose: k-Same-Pixel [1] (applied in pixel space), k-Same-Model [36] (or k-Same-M,
uses AAMs) for our experiments and compare them with our k-Same-Net procedure. We implement
the blurring-based deidentification technique by filtering the probe sets with a Gaussian kernel of
size 121× 121 with σ = 15 and the down-sampling-based approach by subsampling the images to
10× 10 pixels and upscaling them back to the initial size (320× 320 pixels) using nearest neighbor
interpolation. To keep the results section uncluttered, we select the two best performing recognition
techniques from the previous section for the experiments, i.e., InceptionV3 from the group of methods
relying on learned features and the POEM-based approach from the group of methods exploiting
hand-crafted features. We again report the average Rank-1 recognition rates on deidentified probe sets
for both recognition approaches and all tested deidentification methods.

The results for the comparative experiments described above are shown in Figure 10.
The performance of the formal methods is presented with respect to the parameter k. The upper
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bound of the reidentification risk (i.e., the guaranteed recognition limit of 1/k) is also displayed to
illustrate the theoretical recognition probability of the k-Same family of algorithms. In general, all tested
deidentification techniques are well below the theoretical upper bound in terms of reidentification
performance for both recognition procedures considered. The k-Same-Pixel approach ensures the
lowest level of privacy protection, but the reidentification performance decreases with higher values
of k, making the deidentification procedure more effective. The same behavior can be observed for
the k-Same-M approach, though the reidentification risk is much lower here than with k-Same-Pixel.
The naive techniques are independent of k and offer a good level of privacy protection, albeit at the
expense of loosing most of the information content of the images. The k-Same-Net approach also
ensures a low risk of reidentification for both tested recognition techniques, but the reidentification rate
does not seem to be dependent on k, as faces from the input set I are replaced with artificially-generated
surrogate faces that contain different identities from those being deidentified. As emphasized several
times in the paper, the k-Same-Net approach still allows preserving certain aspects of the input
data after deidentification, which may not necessarily be the case with the competing techniques.
We evaluate this characteristic in the next section.
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Figure 10. Average Rank-1 recognition (reidentification) rates obtained on the deidentified probe sets
over five experimental repetitions with five competing deidentification approaches as a function of k:
(a) results with the InceptionV3 face recognition model; (b) results for the POEM-based recognition
approach. The results show that k-Same-Net is effective and offers high levels of privacy protection
compared to competing techniques, while having desirable properties as shown in Section 4.6.
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4.6. Utility Preservation

We demonstrate the ability of k-Same-Net to preserve certain characteristics of the data through
facial expression (or emotion) recognition experiments. Our goal with this series of experiments
is to demonstrate that with k-Same-Net, the deidentified data can still be used for applications
where facial-expression information is important, but there is no need to retain identity-related
cues. Similar experiments could also be performed for other aspects of the input data by
incorporating additional modules into the analytical part of k-Same-Net that estimate salient visual
characteristics of the input facial images. Due to recent advancements in different areas, such as facial
landmarking [67–72], facial expression recognition [73–78], age estimation [79–83], gender recognition
[84,85] and alike [86,87], there are several techniques with open-source implementations available that
can be used for this task.
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(f) k = 9

Figure 11. Confusion matrices of the utility-preservation experiments for the DeXpression model:
(a) the reference matrix generated on the original CK+ images; confusion matrices after deidentification
with k-Same-Net for: (b) k = 2; (c) k = 3; (d); k = 5; (e) k = 7; and (f) k = 9. Note that a high expression
recognition performance can still be achieved on the deidentified data.

For the experiments presented in this section, we integrate the DeXpressionmodel [88], a deep
convolutional neural network for emotion recognition, into our pipeline and use the expression
labels produced by the model to guide the generation process of our GNN. We train the model to
recognize the seven established expression classes (i.e., anger, contempt, disgust, fear, happiness,
sadness and surprise) on all 327 labeled peak-expression images of the CK+ dataset and the 399
annotated RaFD facial images. To test the performance of the expression recognition model, we again
generate five probe sets, each comprised of a single peak-expression image of 50 randomly selected
subjects from the CK+ dataset. We apply the trained DeXpression model and compare the predicted
expression labels to the annotated ground truth. The results of this experiment are presented in the
form of a confusion matrix in Figure 11a. As can be seen, the recognition performance of the trained
model is 100%, which is expected, as all images used in this experiment were also included in the
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training data. The generated confusion matrix serves as the ground truth for demonstrating the utility
preservation capabilities of k-Same-Net in the following experiments.

Next, we deidentify the five probe sets from CK+ with k-Same-Net using different values of k
and observe how the DeXpression model performs on the deidentified data. Since all of the surrogate
face produced by k-Same-Net corresponds to artificial identities, none of the subjects produced
were included in the training data. From Figure 11b–d, we can see that the expression recognition
performance is still very high for all values of k. Overall, we achieve an accuracy of 81.2% for k = 2,
an accuracy of 86.4% for k = 3, 92.4% for k = 5, 90.4% for k = 7 and an accuracy of 90.4% for k = 9.
It is interesting to observe that the performance peaks at k = 5, which also comes with better privacy
protection guarantees than the implementations with the lower k. This may be explained by the
fact that with k = 5, the appearance of the generated surrogate faces is already quite similar to an
average face. Thus, with limited variations in identity-related appearance, there is more room to better
synthesize more explicit facial expressions.

5. Conclusions

In this work, we have presented a new approach to face deidentification that combines
Generative Neural Networks (GNNs) and a formal privacy protection scheme based on k-Anonymity.
The approach named k-Same-Net utilizes a GNN to generate synthetic face images for deidentification,
but enables preservation of selected non-identity-related features (such as facial expressions, gender or
age). Our future work will focus on assessing issues related to contextual information, which are
known to degrade the effectiveness of deidentification. Since generative models represent the current
state-of-the-art in the field of content generation, we expect that more generative deidentification
approaches will be seen in the future following a similar methodology.
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