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Abstract: Minimization of the Euclidean distance between output distribution and Dirac delta
functions as a performance criterion is known to match the distribution of system output with
delta functions. In the analysis of the algorithm developed based on that criterion and recursive
gradient estimation, it is revealed in this paper that the minimization process of the cost function has
two gradients with different functions; one that forces spreading of output samples and the other one
that compels output samples to move close to symbol points. For investigation the two functions,
each gradient is controlled separately through individual normalization of each gradient with their
related input. From the analysis and experimental results, it is verified that one gradient is associated
with the role of accelerating initial convergence speed by spreading output samples and the other
gradient is related with lowering the minimum mean squared error (MSE) by pulling error samples
close together.
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1. Introduction

Adaptive signal processing is carried out by minimizing or maximizing an appropriate
performance criterion for adjusting weights of algorithms designed based on that criterion [1].
The mean squared error (MSE) criterion that measures the average of the squares of the error signal is
widely employed in the Gaussian noise environment. However in non-Gaussian noise like impulsive
noise, the averaging process of squared error samples that may mitigate the effects of the Gaussian
noise is defeated because a single large, impulse can dominate these sums. As recent signal processing
methods, the information-theoretic learning (ITL) is based on the information potential concept that
data samples can be treated as physical particles in an information potential field where they interact
with each other by information forces [2]. The ITL method usually exploits probability distribution
functions constructed by the kernel density estimation method with the Gaussian kernel.

Among the ITL criteria, Euclidian distance (ED) between two distributions has been known to
be effective in signal processing fields demanding similarity measure functions [3–5]. For training of
adaptive systems for medical diagnosis, the ED criterion has been successfully applied to distinguish
biomedical datasets [6]. For finite impulse response (FIR) adaptive filter structures in impulsive
noise environments, ED between the output distribution and a set of Dirac delta functions has been
used as an efficient performance criterion taking advantage of the outlier-cutting effect of Gaussian
kernel for output pairs and symbol-output pairs [7]. In this approach with output distribution and
delta functions, minimization of the ED (MED) leads to adaptive algorithms that adjust weights so
as for the output distribution to be formed into the shape of delta functions located at each symbol
point, that is, output samples concentrate on symbol points. Though the blind MED algorithm shows
superior performance of robustness against impulsive noise and channel distortions, a drawback
of heavy computational burden lies in it. The computational complexity is due in large part to the
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double summation operations at each iteration time for its gradient estimation. A follow-up study [8],
however, shows that the drawback can be reduced significantly by employing a recursive gradient
estimation method.

The gradient in ED minimization process of the MED algorithm has two components; one for
kernel function of output pairs and the other for kernel function of symbol-output pairs. The roles
of these two components have not been investigated or analyzed in scientific literature. In this
paper, we analyze the roles of the two components and prove the analysis through controlling
each component individually by normalizing each component with component-related input power.
Through simulation in multipath channel equalization under impulsive noise, their roles of managing
sample pairs are verified, and it is shown that the proposed method of controlling each component
through power normalization increases convergence speed and lowers steady state MSE significantly
in multipath and impulsive noise environment.

2. MSE Criterion and Related Algorithms

Employing the tapped delay line (TDL) structure, the output yk becomes yk = WT
k Xk at time k with

the input vector Xk = [xk, xk−1, . . . , xk−L+1]
T and weight Wk = [w0.k, w1,k, . . . , wL−1,k]

T . Given the
desired signal dk chosen randomly among the M symbol points (A1, A2, . . . , AM), the system error is
calculated as ek = dk − yk. In blind equalization, the constant modulus error eCME,k = |yk|2 − R2 where
R2 = E[|dk|4]/E[|dk|2] is mostly used [9].

The MSE criterion, one of the most widely used criteria, is the statistical average E[·] of error

power e2
k in supervised equalization and of CME power (|yk|2 − R2)

2
in a blind one. For practical

implementation we can use the instant squared error e2
k as a cost function in supervised equalization.

With the gradient ∂e2
k

W = −2ekXk and a step size µLMS, minimization of e2
k leads to the least mean square

(LMS) algorithm [1]:

Wk+1 = Wk − µLMS
∂e2

k
∂W

= Wk + µLMS2ekXk (1)

As an extension of the LMS algorithm, the normalized LMS (NLMS) algorithm has been
introduced where the gradient is normalized as proportional to the inverse of the dot product of
the input vector with itself ‖Xk‖2 = XT

k Xk = ∑L−1
m=0 x2

k−m as a result of minimizing weight perturbation
‖Wk+1 −Wk‖2 of the LMS algorithm [1]. Then the NLMS algorithm becomes:

Wk+1 = Wk + µNLMS
ekXk

L−1
∑

m=0
x2

k−m

(2)

The NLMS algorithm is known to be more stable with unknown signals and effective in real
time adaptive systems [10,11]. We can see under impulsive noise environments that a single large
error sample induced by impulsive noise can generate large weight perturbations. The perturbation
becomes zero only when the error ek is zero. So we can predict that the weight update process (1)
may be unstable so that it requires a very small step size in impulsive noise environment. Also the
LMS and NLMS algorithms utilizing instant error power e2

k may cause instability in an impulsive
noise environment.

3. ED Criterion and Entropy

Unlike the MSE based on error power, probability distribution functions can be used in
constructing performance criterion. As one of the criteria utilizing distributions, the ED between
the distribution of transmitted symbol fD(d) and the equalizer output distribution fY(y) is defined
as (3) [3,6].

ED =
∫

[ fD(α)− fY(α)]
2dα (3)
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Assuming that modulation schemes are known to receivers beforehand and all the M symbol
points (A1, A2, . . . , AM) are equally likely, the distribution of the transmitted symbols can be
expressed as:

fD(α) =
1
M

[δ(α− A1) + δ(α− A2) + . . . + δ(α− Am) + . . . + δ(α− AM)] (4)

The output distribution can be estimated based on kernel density estimation method
fY(y) = 1/N ∑N

i=1 Gσ(y− yi) with a set of available N output samples {y1, y2, . . . , yN} [6].
Then the ED can be expressed as:

ED =
1
M

+
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(yj − yi)− 2
1
M

1
N

M

∑
m=1

N

∑
i=1

Gσ(Am − yi) (5)

The first term 1/M in (5) is a constant which is not adjustable, so the ED can be reduced to the
following performance criterion CED [7]:

CED =
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(yj − yi)−2
1
M

1
N

M

∑
m=1

N

∑
i=1

Gσ(Am − yi) (6)

In ITL methods, data samples are treated as physical particles interacting with each other.
If we place physical particles in the locations of yi and yj, the Gaussian kernel Gσ

√
2

(
yj − yi

)
produces an exponentially decaying positive value as the distance between the two particles increases.
This leads us consider the Gaussian kernel Gσ

√
2

(
yj − yi

)
as a potential field-inducing interaction

among particles. Then ∑N
j=1 Gσ

√
2

(
yj − yi

)
corresponds to the sum of interactions on the i-th particle

and 1/N2 ∑N
i=1 ∑N

j=1 Gσ
√

2

(
yj − yi

)
is the averaged sum of all pairs of interactions. This summed

potential energy is referred to as information potential in ITL methods [2]. Therefore, the term
1
M

1
N ∑M

m=1 ∑N
i=1 Gσ(Am − yi) in (6) is the information potential between symbol points and output

samples, and 1/N2 ∑N
i=1 ∑N

j=1 Gσ
√

2

(
yj − yi

)
in (6) indicates the information potential among output

samples themselves.
On the other hand, the information potential can be interpreted in the concept of entropy that can

be described in terms of “energy dispersal” or the “spreading of energy” [11]. As one of the convenient
entropy definitions, Reny’s entropy of order 2, HReny(y) is defined in (7) as logarithm of the sum of the
power of probability which is much easier to estimate [2]:

HReny(y) = − log(
N

∑
i=1

p2
i ) (7)

When the Reny’s entropy is used along with the kernel density estimation method
fY(y) = 1/N ∑N

i=1 Gσ(y− yi), we obtain a much simpler form of Reny’s quadratic entropy as:

HReny(y) = − log(
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(yj − yi)) (8)

This leads to:
1

N2

N

∑
i=1

N

∑
j=1

Gσ
√

2(yj − yi) =
1

2HReny(y)
(9)

Likewise:
1
M

1
N

M

∑
m=1

N

∑
i=1

Gσ(Am − yi) =
N
M

1

2HReny(Am,x)
(10)
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Therefore the cost function CED becomes:

CED =
1

2HReny(y)
− 2

N
M

1

2HReny(Am,x)
(11)

Equations (9) and (11) indicate that the entropy of output samples increases as the distance
(yj − yi) between the two information particles yj and yi increases. Therefore, (yj − yi) can be
referred to as entropy-governing output and we can notice that (9) controls the spreading of output
samples. Likewise, the term 2 1

M
1
N ∑M

m=1 ∑N
i=1 Gσ(Am − yi) in (6), that is, 2 N

M
1

2HReny(Am ,x) in (11) governs

dispreading or recombining the sample pairs of symbol points and output samples.

4. Entropy-Governing Variables and Recursive Algorithms

When defining yj,i = (yj − yi) and em,i = (Am – yi) and Xj.i = (Xj – Xi) for convenience’s sake,
yj,i, em,i and Xj,i can be referred to as entropy-governing output, entropy-governing error and
entropy-governing input, respectively. Using these entropy-governing variables and the on-line
density estimation method fX.k(y) = 1

N ∑k
i=k−N+1 Gσ(y− yi) instead of fY(y), the cost function at time

k, CED,k can be written as:
CED,k = Uk −Vk (12)

where:

Uk =
1

2HReny(y)
=

1
N2

k

∑
i=k−N+1

k

∑
j=k−N+1

Gσ
√

2(yj,i) (13)

Vk = 2
N
M

1

2HReny(Am,x)
= 2

1
M

1
N

k

∑
i=k−N+1

k

∑
j=k−N+1

Gσ(em,i) (14)

Minimization of CED,k indicates that Uk forces spreading of output samples and −Vk compels
output samples to move close to symbol points. Considering that initial-stage output samples which
may have clustered about wrong places due to channel distortion, Uk is associated with the role
of getting the output samples to move out in search of each destination, that is, accelerating initial
convergence speed. On the other hand, Vk is related with compelling output samples near a symbol
point to come close lowering the minimum MSE.

On the other hand, the double summation operations for Uk and Vk impose a heavy computational
burden. In the work [8] it has been revealed that each component Uk+1 and Vk+1 of CED,k+1 = Uk+1 −
Vk+1 can be recursively calculated so that the computational complexity of (12) is significantly reduced
as in the following equations (15) and (16):

Uk+1 = Uk +
2

N2

k
∑

j=k−N+1
Gσ
√

2(yi,k+1)− 2
N2

k
∑

j=k−N+1

1
2σ
√

π
exp[−(yi,k−N+1)

2

4σ2 ]

− 2
N2

1
2σ
√

π
exp[−(yk+1,k−N+1)

2

4σ2 ] + 2
N2

1
2σ
√

π

(15)

Similarly, Vk+1 can be divided into the terms with yk+1 and the terms with yk−N+1:

Vk+1 = Vk +
2

NM

M

∑
m=1

[
1

σ
√

2π
exp[
−(em,k+1)

2

2σ2 ] − 1
σ
√

2π
exp[
−(em,k−N+1)

2

2σ2 ]

]
(16)
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The gradients ∂Uk
∂W and ∂Vk

∂W are calculated recursively by using Equations (15) and (16) as:

∂Uk
∂W =

∂Uk−1
∂W + 1

N2σ2

k−1
∑

j=k−N
(yk,i)· 1

2σ
√

π
exp[−(yk,i)

2

4σ2 ]·Xi,k

− 1
N2σ2

k−1
∑

j=k−N
(yk−N,i)· 1

2σ
√

π
exp[−(yk−N,i)

2

4σ2 ]·Xi,k−N

− 1
N2σ2 (yk−N,k)· 1

2σ
√

π
exp[−(yk−N,k)

2

4σ2 ]·Xk,k−N

(17)

Similarly, ∂Vk
∂W is calculated recursively as described below:

∂Vk
∂W =

∂Vk−1
∂W + 2

NMσ2

M
∑

m=1

[
(em,k)· 1

σ
√

2π
exp[−(em,k)

2

2σ2 ]·Xk

− (em,k−N)· 1
σ
√

2π
exp[−(em,k−N)2

2σ2 ]·Xk−N

] (18)

Since the argument yk,i
1

2σ
√

π
exp

[
(yk,i)

2

4σ2

]
in (17) is a function of the entropy-governing output yk,i,

we can define yk,i
1

2σ
√

π
exp

[
(yk,i)

2

4σ2

]
as the modified entropy-output ŷk,i, which becomes a significantly

mitigated value through the Gaussian kernel when the entropy-governing output yk,i is a large value.

∧
yk,i = yk,i

1
2σ
√

π
exp[
−(yk,i)

2

4σ2 ] (19)

Then (17) becomes

∂Uk
∂W

=
∂Uk−1

∂W
+

1
N2σ2

k−1

∑
j=k−N

∧
yk,i·Xi,k−

1
N2σ2

k−1

∑
j=k−N

∧
yk−N,i·Xi,k−N−

1
N2σ2

∧
yk−N,k·Xk,k−N (20)

Similarly, we see that the argument em,k
1

σ
√

2π
exp

[
−(em,k)

2

2σ2

]
in (18) is a function of

entropy-governing error em,k, so that we have the modified entropy-error êm,k as:

∧
em,k = em,k·

1
σ
√

2π
exp[
−(em,k)

2

2σ2 ] (21)

The modified entropy-error êm,k also becomes a significantly reduced value through the Gaussian
kernel when the entropy-governing error em,k is large. Then (18) becomes:

∂Vk
∂W

=
∂Vk−1

∂W
+

2
NMσ2

M

∑
m=1

[ ∧
em,k·Xk −

∧
em,k−N ·Xk−N

]
(22)

Through minimization of CED,k = Uk − Vk with the gradients ∂Uk
∂W and ∂Vk

∂W obtained by (20) and
(22), the following recursive MED (RMED) algorithm can be derived [7]:

Wk+1 = Wk − µRMED
∂(Uk −Vk)

∂W
= Wk − µRMED(

∂Uk
∂W
− ∂Vk

∂W
) (23)

Comparing the gradients of RMED to the gradient ∂e2
k

∂W = −2ekXk of the LMS algorithm in (1)
which is composed of error and input, we may find that the gradients ∂Uk

∂W and ∂Vk
∂W in (20) and

(22) have similar terms ŷk,i·Xi,k (modified entropy-output multiplied by entropy-input) and êm,k·Xk
(modified entropy-error multiplied by input), respectively. Considering that impulsive noise may
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induce large entropy-governing output yk,i or entropy-governing error em,k, modified entropy-output
ŷk,i and modified entropy-error êm,k which are significantly mitigated by the Gaussian kernel can be
viewed as playing a crucial role in obtaining stable gradients under strong impulsive noise. Therefore
we can anticipate that the RMED algorithm (23) can have a low weight perturbation in impulsive
noise environments.

5. Input Power Estimation for Normalized Gradient

For the purpose of minimizing the weight perturbation ‖Wk+1 −Wk‖2 of the LMS algorithm in
(1), the NLMS algorithm has been introduced where the gradient is normalized by the averaged power
of the current input samples ‖Xk‖2 = XT

k Xk = ∑L−1
m=0 x2

k−m [1].

Wk+1 = Wk + µNLMS
ekXk

‖Xk‖2 (24)

Applying this approach to RMED we propose in this section to normalize the gradients in some
ways. Since the role of Uk (spreading output samples) is different from that of Vk (moving output
samples close to symbol points), the gradients of (23) can be normalized separately as:

Wk+1 = Wk − µRMED
∂Uk
∂W

1
PU(k)

+µRMED
∂Vk
∂W

1
PV(k)

(25)

where PU(k) is the average power of Xi,k and PV(k) is the average power of Xk as:

PU(k) =
1
N

k

∑
i=k−N+1

k

∑
j=k−N+1

∣∣∣xi,j

∣∣∣2 (26)

PV(k) =
1
N

k

∑
i=k−N+1

|xi|
2 (27)

Since defeating the impulsive noise contained in the input by way of the average operation

1
N

k
∑

i=k−N+1
is considered to be ineffective, the denominators of (26) and (27) are likely to be fluctuating

under impulsive noise. This may cause the algorithm to be sensitive to impulsive noise. Also the
summation operators make the algorithm demand computationally burdensome. To avoid these
drawbacks, we can track the average power PU(k) and PV(k) recursively with the balance parameter β

(0 < β <1) as:

PU(k) = βPU(k− 1) + (1− β)
k

∑
j=k−N+1

∣∣∣xi,j

∣∣∣2 (28)

PV(k) = βPV(k− 1) + (1− β)|xk|
2 (29)

With the recursive power estimation (28) and (29), we may summarize the proposed algorithm in a
more formal one as in the Table 1. In the following section, we will investigate the new RMED algorithm
(25) with separate normalization by PU(k) in (28) and PV(k) in (29) in the aspect of convergence speed
and steady state MSE.
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Table 1. A summary of the proposed algorithm.

Process Equations

Initialization ∂U0
∂W = 0, ∂V0

∂W = 0, PU(0) = 1, PV(0) = 1, W0 = [0, . . . , 0, wL/2,0 = 1, 0, . . . , 0]T

Update of gradient function ∂Uk
∂W

∂Uk
∂W =

∂Uk−1
∂W + 1

N2σ2

k−1
∑

j=k−N

∧
yk,i·Xi,k − 1

N2σ2

k−1
∑

j=k−N

∧
yk−N,i·Xi,k−N − 1

N2σ2

∧
yk−N,k·Xk,k−N

Update of gradient function ∂Vk
∂W

∂Vk
∂W =

∂Vk−1
∂W + 2

NMσ2

M
∑

m=1

[ ∧
em,k·Xk −

∧
em,k−N ·Xk−N

]
Update of PU(k) PU(k) = βPU(k− 1) + (1− β)

k
∑

j=k−N+1

∣∣∣xi,j

∣∣∣2
Update of PV(k) PV(k) = βPV(k− 1) + (1− β)

∣∣xk

∣∣2
Update of Wk Wk+1 = Wk − µRMED

∂Uk
∂W

1
PU(k)

+ µRMED
∂Vk
∂W

1
PV (k)

6. Results and Discussion

A base-band communication system with multipath fading channel and impulsive noise used
in the experiment is depicted in Figure 1. The symbol set in the transmitter is composed of equally
probable four symbols (−3, −1, 1, 3). The transmitted symbol is to be distorted by the multipath
channel H(z) = 0.26 + 0.93z−1 + 0.26z−2 [12]. The channel output is added by impulsive noise nk.
The distribution function of nk, f (nk) is expressed in Table 2 where σ2

IN is the variance of impulses
which are generated according to Poisson process (occurrence rate ε) and σ2

GN is that of the background
Gaussian noise [13]. The simulation setup and parameter values are described in the Figure 1 and the
Table 2.
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Figure 1. Base-band communication system for simulation.

Table 2. Simulation setup and parameter values.

Features Parameters

The symbol points in the transmitter (A1, A2, A3, A4) = (−3, −1, +1, +3)

The channel transfer function H(z) H(z) = 0.26 + 0.93z−1 + 0.26z−2

The noise distribution function f (nk)
f (nk) =

1−ε
σGN

√
2π

exp[−nk
2

2σ2
GN

] + ε√
2π(σ2

GN+σ2
IN)

exp[ −nk
2

2(σ2
GN+σ2

IN)
], ε = 0.03,

σ2
GN = 0.001, σ2

GN + σ2
IN = 50.001

NNumber of weights 11

4 Step size µCMA = 0.000001, µLMS = 0.0002, µRMED = 0.005

Sample size N 6

Kernel size σ 0.6
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An example of impulsive noise being used in this simulation is depicted in Figure 2.
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It has in Section 4 been analyzed that Uk is associated with the role of spreading output samples
which are clustered to wrong positions due to distorted channel characteristics and Vk is related with
moving output samples close to symbol points. This process can be explained through initial-stage
investigation of what happens in the error distribution and observing how the distribution of output
samples changes in the experimental environment.

Figure 3 shows the error distribution in the initial stage with 200 error samples and ensemble
average of 500 runs. Considering the four symbol points are (−3, −1, 1, 3), error values greater than
1.0 are associated with output samples which can be decided as wrong symbols. The cumulative
probability of initial output samples placed in the wrong regions in this respect is calculated to be 0.35
from the Figure 3 (35% output samples are not in place). The peaks or ridges in the error distribution
are about 6 on each side. This observation may indicate that output samples are clustered or grouped
in some regions (two groups are within the correct range but 4 groups are in the incorrect positions
on each side of the distribution). This result coincides clearly with the initial output distribution in
Figure 4. The output distribution showing about 12 peaks indicates that the initial output samples are
clustered into 12 groups mostly located out of place, that is, not around −3, −1, 1, 3.
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Figure 3. The error distribution at time k = 200 with 200 error samples.
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On the 35% output samples clustered in the wrong symbol regions, the spreading force has a
positive effect in order for them in blind search to move out for finding their correct symbol positions.
This process is observed in the graph of k = 700 in Figure 4. The output distribution at time k = 700 has
an evenly spread shape, indicating that the clustered output samples have moved out and mingled
with one another. At the sample time k = 1800 the output samples start to position at their correct
symbol areas. From this phase, the force moving output samples close to the symbol points is in effect
on lowering steady state MSE.

These results imply that Uk is related with convergence speed and Vk with steady state MSE.
To verify this analysis we experiment the proposed algorithm in the following three modes with
respect to convergence speed and steady state MSE (we assume that steady state MSE is close to
minimum MSE):

Mode 1 Wk+1 = Wk − µRMED
∂Uk
∂W

1
PU(k)

+ µRMED
∂Vk
∂W

(30)

Mode 2 Wk+1 = Wk − µRMED
∂Uk
∂W

+ µRMED
∂Vk
∂W

1
PV(k)

(31)

Mode 3 Wk+1 = Wk − µRMED
∂Uk
∂W

1
PU(k)

+ µRMED
∂Vk
∂W

1
PV(k)

(32)

Mode 1 of RMED-SN algorithm in (30) is for observing changes in initial convergence speed by
normalizing only ∂Uk

∂W by the average power PU(k) of entropy-input Xi,k compared to the not-normalized
RMED. Mode 2 is to observe whether the normalization of ∂Vk

∂W by PV(k) of input Xk without managing
Uk lowers the steady state MSE of RMED. Finally we see if Mode 3 employing normalization of ∂Uk

∂W
and ∂Vk

∂W simultaneously yields both of the two performance enhancements; faster convergence and
lowered steady state MSE.
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Figure 5 shows the MSE learning performance for CMA, LMS, RMED and Mode 1 of the proposed
algorithm. As discussed in Section 2, the learning curves of the MSE-based algorithms, CMA and LMS
do not fall down below −6 dB being defeated by the impulsive noise. On the other hand, the RMED
and proposed algorithm show a rapid and stable convergence. The difference of convergence speed
between RMED and Mode 1 is clearly observed. While the RMED converges in about 4000 samples,
the Mode 1 does in about 2000 samples. Therefore, Mode 1 shows faster convergence than the RMED
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algorithm by 2 times verifying the analysis of the role of Uk since only ∂Uk
∂W is normalized but ∂Vk

∂W is not,
and we see little difference (about 1 dB) in the steady state MSE.

In Figure 6 RMED and Mode 2 are compared. Both algorithms have similar convergence speed
with difference of only 500 samples. But after convergence the Mode 2 yields much lower steady state
MSE than the original RMED by over 2 dB. These findings indicate that the role of Vk is definitely
related with lowering minimum MSE. This is in accordance with the analysis that Uk plays the role of
pulling error samples close together.Entropy 2018, 20, 48  10 of 13 
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Furthermore, Mode 3 employing normalization of ∂Uk
∂W and ∂Vk

∂W simultaneously proves to yield the
two merits of performance enhancement revealing increased speed and lowered steady state MSE as
depicted in Figure 7. While the RMED converges in about 4000 samples and leaves its steady state
MSE at about 25 dB, the Mode 3 converges in about 2000 samples and has about 27 dB of steady state
MSE. By employing Mode 3, we obtained faster convergence by about 2 times and lower steady state
MSE by over 2 dB.



Entropy 2018, 20, 48 11 of 13
Entropy 2018, 20, 48  11 of 13 

 

0 2000 4000 6000 8000 10000
-28
-26
-24
-22
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4

10
 lo

g 
of

 M
SE

Number of samples (iterations)

 RMED
 Mode3

 
Figure 7. MSE convergence performance for normalization of both Uk and Vk. 

In Mode 3, it is still not clear whether the normalization to Uk for speeding up the initial 
convergence may have a negative influence in later iterations, so we try to reduce the Uk 
normalization gradually after convergence (k ≥ 3000) by using ௎ܲ° (݇) in place of PU(k) as: 

3000 3000( ) ( ) (1 )k k
U UP k P k c c− −= ⋅ + −  (303

) 

where k ≥ 3000 and a constant c is 0 ≤ c ≤ 1. 
The results for c = 0.8, 0.9, 0.99, 1.0 are shown in Figure 8 in terms of error distribution since the 

learning curves for the various constant values are not clearly distinguishable. 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
0.0224

0.0226

0.0228

0.0230

0.0232

0.0234

P
ro

ba
bi

lit
y

Error value

 0.8
 0.9
 0.99
 1.0

 
Figure 8. Error distribution with respect to the values of c for normalization of Uk.  

  

Figure 7. MSE convergence performance for normalization of both Uk and Vk.

In Mode 3, it is still not clear whether the normalization to Uk for speeding up the initial
convergence may have a negative influence in later iterations, so we try to reduce the Uk normalization
gradually after convergence (k ≥ 3000) by using P◦U(k) in place of PU(k) as:

P◦U(k) = PU(k)·ck−3000 + (1− ck−3000) (33)

where k ≥ 3000 and a constant c is 0 ≤ c ≤ 1.
The results for c = 0.8, 0.9, 0.99, 1.0 are shown in Figure 8 in terms of error distribution since the

learning curves for the various constant values are not clearly distinguishable.
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The value of c in (33) may be related with the degree of gradual reduction in the normalization
to Uk, that is, c = 1 indicates no reduction (Mode 3 as it is) and c = 0.8 means comparatively rapid
reduction. From the Figure 8, we observe that the error performance becomes better and then worse
as the degree of reduction decreases from 0.8 to 1.0. This implies that the gradual reduction of the
normalization to Uk is effective but not much. We may conclude that the normalization to Uk for
speeding up the initial convergence has a slight negative influence in later iterations and this can be
overcome by employing the gradual reduction of the Uk normalization.

7. Conclusions

Minimization of the Euclidean distance between output distribution and Dirac delta function as
a performance criterion is known to force the distribution of system output to come to a set of delta
functions located at each symbol point. In the analysis of the algorithm RMED developed based on that
criterion and recursive gradient estimation, it has been revealed in this paper that the minimization
process of the cost function uses its two gradients with different functions; one for Uk that forces
spreading of output samples and the other one for Vk that compels output samples to move close
to symbol points. In order to verify the roles of Uk and Vk explained in the analysis by controlling
Uk and Vk separately, we proposed to normalize ∂Uk

∂W with the averaged power of entropy-governing
input and to normalize ∂Vk

∂W with that of input. From the results through simulation for the separate
normalization of the gradients of RMED in multipath channel equalization under impulsive noise,
faster convergence by about two times through normalization of ∂Uk

∂W and lower steady state MSE by
over 2 dB by normalization of ∂Vk

∂W have been observed. From the analysis and experimental results, we
can conclude that Uk is associated with the role of accelerating initial convergence speed by spreading
output samples which may have clustered around wrong places in the initial-stage due to channel
distortions, and Vk is related with lowering the minimum MSE by pulling error samples close together
through the minimization of CED,k. Also it can be concluded that through applying normalization
to the two factors ∂Uk

∂W and ∂Vk
∂W separately with each related input power, significant performance

enhancement can be achieved.
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