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1. A Numerical Study of the Convergence of the Estimated Entropy1

The aim of this section is to show the convergence of the entropy estimation under the parametric2

approach through a Monte Carlo experiment. To this end, we consider the Gaussian processes of3

Example 1: Xptq “
ř3

i“1 ξieiptq and Yptq “
ř3

i“1 ζieiptq; where eiptq is a Fourier basis in T “ r0, 1s,4

ξi „ Npµ “ 0, σ2 “ 0.5q, and ζi „ Npµ “ 0, σ2 “ 2q are independent normally-distributed r.v. for5

i “ 1, 2, 3.6

7

The Shannon-entropies (α “ 1) of these two stochastic processes are as follows:

H1pX, d “ 3q “
1
2

logp2πeq3 detpΣXq and H1pY, d “ 3q “
1
2

logp2πeq3 detpΣYq,

where ΣX and ΣY are the respective covariance matrices. The Monte Carlo experiment was8

carried out with M “ 10,000 samples from the distribution of ξi and ζi, for different sample sizes9

N “ t5, 10, 50, 100, 200, 500, 750, 1000, 1500, 2000, 3000u. The results, illustrated in Figure 1, show that in10

both cases, the estimated Shannon-entropy converges relatively fast to the true values, H1pXq “ 1.42811

and H2pYq “ 91.420.12

2. Order Invariance Property and Robustness13

The entropy measure of a stochastic process is a ‘K-entropy’, which means that the estimated14

entropy depends on the choice of a particular kernel. In this sense, is the order in the sampled curves15

(from most to least depth curves) induced by the entropy measure invariant to changes in the kernel16

function? What we numerically show next is that the order induced by the entropy does not depend on17

the the kernel function (or its parameters) when representing the functional data at hand. To illustrate18

this, we constructed an experiment considering Scenario A in Section 4.1 of the paper when n “ 100019

and ν “ 0.05. As the aim of this section is to show the order invariance property, we consider two20

different kernel function and different parameters, namely:21

i) The Gaussian kernel function:

KGptl , tkq “ e´σ}tl´tk}
2
, with σ “ 5, 10, 15.
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Figure 1. Entropy estimation in black (“—”), entropy true value in blue (“- · -”) and mean squared
error in red (“- -”) for the two Gaussian processes Xptq (left) and Yptq (right).

ii) The spline kernel function:

KSptl , tkq “

D
ź

d“1

1` tltk ` tltk minptl , tkq ´
tl ` tk

2
minptl , tkq

2 `
tl ` tk

3
minptl , tkq

3.

The results, displayed in Figure 2 in the case of the parametric approach and Figure 3 for the22

non-parametric approach, show that the order induced in the sample curves by the entropy measure23

is invariant to changes in the kernel function considered. This property makes the method robust in24

terms of the selection of the kernel and regularization parameters. This exercise was also carried out25

for different sample sizes, N “ t2000, 3000, 5000u and different values of parameter ν, with similar26

results (the R code to replicate the experiment is available upon request).27

3. Supplementary Empirical Report28

3.1. An Additional Single Run Simulation Study29

The aim of this experiment is to illustrate the performance of the proposed methodology when
the atypical data cannot be inferred considering particular extreme points in the curves and under
different assumptions about the noise in the observed data. To this aim, a fraction 1´ ν “ 90% of
n “ 400 curves comprises the realizations of the following stochastic model:

Xlptq “ sinptq ` cospt` ε lq ` al ` blt2, for l “ 1, . . . , p1´ νqn, and t P r0, 2πs,

where the random coefficients pε l , al , blq are independently and normally distributed with means:
µε “ 0, µa “ 5 and µb “ 1 and variances σ2

ε “ σ2
b “ 0.25 and σ2

a “ 0.2. The remaining proportion of the
data comprises outliers that contaminate the sample according to the following stochastic model:

Ylptq “ sinptq ` cospt` ε lq `
1
2
psinp2πtq ` cospπt` ε lqq ` al ` blt2, for l “ 1, . . . , nν, and t P r0, 2πs,

where the random coefficients pε l , al , blq are independently and normally distributed with the same30

means and variances as in the case of Xptq. In Figure 4, we show simulated raw data on the left and31
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Figure 2. Order induced by the entropy estimation (parametric approach) for different kernel functions,
with ν “ 5%. The regular curves, corresponding to Xptq, in (‚) and the detected outliers, corresponding
to Yptq, in (‚).

the corresponding functional data on the right, as in the paper, we use a Gaussian kernel and choose32

the parameters by cross-validation.33

In Figure 5, we illustrate the outliers captured with the proposed method in red (—), false positives34

in blue (—) and false negatives in green (—). The parametric approach (Figure 5 (left)) captures all the35

atypical curves in the sample without any false positive, nor false negative finding. The non-parametric36

approach (Figure 5 (right)) shows slightly worse performance incurring four false positive detections37

and four false negative occurrences. In Table1, we report the TPR, the TNR and the aROC; as can be38

seen, the proposed methods clearly outperform the other methods in the literature.39

Table 1. Different methods sensitivities, specificities and precisions.

Method TPR TNR aROC
MBD 5.0 89.4 0.452
HMD 12.5 90.3 0.701
RTD 10.0 90.0 0.591
FSD 7.5 89.7 0.645
Entropy-PA 100.0 100.0 1.000
Entropy-NPA 90.0 98.9 0.992
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Figure 3. Order induced by the entropy estimation (non-parametric approach) for different kernel
functions, with ν “ 5%. The regular curves, corresponding to Xptq, in (‚) and the detected outliers,
corresponding to Yptq, in (‚).

3.2. Outliers in the Context of Mortality Rate Curve Extended Analysis40

In this section, we present an extended analysis of the empirical exercise of outlier detection in
the context of mortality rate curves. In Table 2, we present the full results of the anomaly detection
exercise considering entropy-PA and entropy-NPA and the results obtained with other measures
described in Section 4 for ν “ t0.50, 0.25, 0.15, 0.10, 0.05, 0.01u. In the first three scenarios, that is when
ν “ t0.50, 0.25, 0.15u, the results for the competitor measures show that only the HMD is able to capture
almost all curves corresponding to the First and Second World War (except year 1941) and the influenza
pandemic for a value of ν “ 0.25. As is expected, the use of an inappropriate value for ν increases
the number of false positives in the analysis. A convenient criterion for choosing the value of ν is to
consider the ratio:

DMpzris, pµzq{

n
ÿ

i“1

DMpzris, pµzq,

where DMpzris, pµzq represents the Mahalanobis distance sorted in deceasing order of the vector zris41

representing a curve in the sample (in the case of non-parametric approach, we consider the sorted42

sequence of estimated local entropies). Using this criterion, in Section 4.2, we have decided to fix43

ν “ 10%, since, as can be seen in Figure 6, the distributions of the estimated robust Mahalanobis44

distances (left) and the local entropies (right) show an elbow at Points 10 and 4 respectively, and this45
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Figure 4. Raw data on the left and functional data on the right. The curves in black (—) are the
realization of Xptq and paths in red (—) are the realizations of Yptq.

Figure 5. Experimental data: in black (—), normal paths corresponding to the realizations of Xptq, in
red (—), true outlier detected corresponding to the realizations of Yptq in blue (—) and false negative in
green (—).

corresponds to a value of ν “ 10% in both cases.46

47
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Figure 6. Distribution of the estimated robust Mahalanobis distances (left) and local entropies (right)
for the mortality rate dataset. The vertical red line (´´´) denotes the ‘elbow’ in the distribution of
Mahalanobis distance and local entropies, respectively, and corresponds to ν “ 10% in both cases.

When ν “ 10%, most of the competitor measures identify as anomalous curves the years that48

correspond to the First World War and the last years of the sample. Only the HMD is able to partially49

identify as outliers some years corresponding to the Second World War. Even though it is true that for50

the early 2000s, the mortality rates are the lowest ones, they present the same dynamic as the rest of51

the years of the sample, so they could be considered as false-positive identifications. The temporal52

dynamic implicit in the data shows that the mortality rate decreases systematically every year for all53

the cohorts. This means that a curve that is far from the “center” of the distribution is not necessarily an54

anomalous curve, but follows the natural dynamics of the process that generates the samples every year.55

56

With respect to the proposed entropy methods, these are able to identify as anomalous curves57

those years corresponding to the First and Second World War, except for the year 1941. Additionally,58

the entropy methods are the only ones capable of identifying the year 1919 (influenza pandemic) as an59

outlying curve. Last, but not least, it is important to mention that for the NPA, the obtained results are60

robust with respect to the number of neighbors k considered in the method.61

62
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Table 2. Anomalous years detected by the different methods for different values of ν.

Anomalous years

Metric ν “ 50% ν “ 25% ν “ 15% ν “ 10% ν “ 5% ν “ 1%

MBD 1900–1919; 1922; 1925–1926; 1929;
1940–1944; 1982–2006

1900–1901; 1905–1907; 1909; 1911;
1914–1918; 1940; 1944; 1994–2006

1900; 1907; 1914–1915;
1917–1918; 1940; 1998–2006

1900; 1915; 1918; 1940;
2000–2006

1900;
2002–2006

2004;2006

HMD 1900–1907; 1914–1919; 1934–1954; 1956;
1989–2006

1900; 1914–1919; 1939–1940;
1943–1951; 1998–2006

1914–1919; 1940; 1943–1944;
1946–1948; 2003–2006

1914–1918; 1940; 1943;
1944; 1946; 1947; 2006

1914–1918;
1940; 1944

1918; 1940

RTD 1900–1921; 1925; 1929; 1940; 1943–1945;
1981–2006

1900–1907; 1911; 1914;1919; 1940;
1944; 1996–2006

1900–1901; 1914–1919; 1944;
1998; 2000; 2002–2006

1900; 1914–1918;
2002–2006

1915; 1918;
2003–2006

2005;2006

FSD 1900–1921; 1925–1926; 1940; 1943–1945;
1981–2006

1900–1907; 1914–1919; 1940; 1944;
1995–2006

1900; 1914–1918; 1944;
1998–2006

1914–1918; 2002–2006 1914; 1915;
1918;

2004–2006

1915; 2006

Entropy–PA 1901; 1904; 1906; 1912; 1914–1922; 1925;
1931–1932; 1934; 1940–1951; 1954; 1959;

1969; 1986–2006

1914–1919; 1940; 1942–1945;
1991–2006

1914–1919; 1925; 1934;
1940–1945; 2004; 2006

1914–1919; 1940;
1942–1945

1914–1918;1940 1914; 1915

Entropy–NPA 1900–1902; 1911; 1914–1919; 1925–1926;
1931; 1940–1945; 1949; 1955; 1957; 1958;
1961–1965; 196–1982; 1988–1995; 1999;

2004–2006

1901; 1914–1919 1931; 1940–1945;
1958; 1970–1971; 1974–1975;
1977–1979; 1990–1993; 2006

1914–1919; 1931; 1940;
1942–1945; 1970; 1975; 1978;

1992

1914–1919; 1940;
1942–1945

1914–1918;1940 1914; 1915

The neighbors considered for the NPA were 50.
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