
Supplementary material for Proposition 3.1

1 Notations and preliminaries
The functions log and ln denote respectively the base 2 and the natural logarithms. By con-
vention, 0 log 0 = 0 = 0 ln 0. For x ∈ R, bxc (resp. dxe) denotes the greatest (resp. smallest)
integer not greater (resp. not smaller) than x. For integers a ≤ b, [[a , b]] denotes the set of
integers between a and b, bounds included. Let D = {2µ : µ ∈ N}.

Let (X, Y ) ' PX,Y be an arbitrary pair of random variables over B × Y with B = {0, 1}
and Y an arbitrary countable set. We regard (X, Y ) as a memoryless source S, with X as the
part to be compressed and Y in the role of “side-information” about X. We consider a sequence
S = {(Xi, Yi) : i ∈ N∗} of independent drawings from (X, Y ) – which can be interpreted as a
representation of the source S – and we introduce the two transformations − and + applied to
the source S and defined by

S− =
{(
X2i−1 ⊕X2i, (Y2i−1, Y2i)

)
: i ∈ N∗

}
(1)

S+ =
{(
X2i, (Y2i−1, Y2i, X2i−1 ⊕X2i)

)
: i ∈ N∗

}
. (2)

With these notations, S− (resp. S+) is the memoryless source that takes its values in B× (Y2)
(resp. in B × (Y2 × B)), with X1 ⊕ X2 (resp. X2) as the part to be compressed and (Y1, Y2)
(resp. (Y1, Y2, X1 ⊕X2)) in the role of “side-information”.

The process that constructs S− and S+ from S can be written S(0)
0 = S,

S
(0)
1 =

(
S

(0)
0

)−
= S− and S

(1)
1 =

(
S

(0)
0

)+

= S+. (3)

Applied recursively, this process leads to the sequence of memoryless sources (S
(i)
µ )µ∈N,i∈[[0 , 2µ−1]],

where S(i)
µ takes its values in a set B×

(
Y2µ × BK(i)

)
with K(i) ∈ [[0 , 2µ− 1]] and is defined by

S
(i)
µ+1 =


(
S

(bi/2c)
µ

)−
if i is even(

S
(bi/2c)
µ

)+

if i is odd.
(4)

Let us introduce the sources’ conditional entropies expressed in bits:

H(S) = H(X1 |Y1) = H(X2 |Y2), (5)
H(S−) = H(X1 ⊕X2 |Y1, Y2), (6)
H(S+) = H(X2 |Y1, Y2, X1 ⊕X2). (7)

For any m ∈ D (m = 2µ with µ ∈ N) and for any θ ∈
]
0 , 1

2

]
, let

HX|Y = HX|Y (θ) = H(m)
X|Y (θ) =

{
i ∈ [[0 , m− 1]] : H

(
S(i)
µ

)
> θ
}

(8)

VX|Y = VX|Y (θ) = V(m)
X|Y (θ) =

{
i ∈ [[0 , m− 1]] : H

(
S(i)
µ

)
> 1− θ

}
. (9)

For any memoryless source S = (X, Y ) ' PX,Y , we introduce its Bhattacharyya parameter:

Z(S) = 2
∑
y∈Y

√
PX,Y (0, y)PX,Y (1, y) (10)

=
√

4PX(0)PX(1)
∑
y∈Y

√
PY |X(y | 0)PY |X(y | 1)

which is the inner product between the unit vectors whose components are the square root
of the distributions PY |X=0 and PY |X=1, under equiprobability PX(0) = PX(1) = 1

2
. This
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quantity informs about the similarity between the side-information Y when X is 0 and 1,
under equiprobability PX(0) = PX(1) = 1

2
.

Let
h(x) = −x log x− (1− x) log(1− x) (11)

be the entropy function expressed in bits, which admits an inverse h−1 : [0 , 1] 7→ [0 , 1
2
] when

we restrict x to be in [0 , 1
2
].

Proposition 1.1 (Properties of Bhattacharyya parameter) Let (X, Y ) ' PX,Y be an
arbitrary pair of random variables over B × Y with B = {0, 1} and Y an arbitrary count-
able set. For any memoryless source S = (X, Y ) ' PX,Y , with X as the part to be compressed
and Y in the role of “side-information” about X, we have

Z(S)2 ≤ H(S) ≤ log
(
1 + Z(S)

)
(12)

Z(S+) = Z(S)2 and
√

2Z(S)2 − Z(S)4 ≤ Z(S−) ≤ 2Z(S) (13)

The proof of the left inequality in (13) can be found in the paper1 by Chou et al. and the proofs
of Proposition 1.1 and Theorem 1.2 can be find in the paper by Şaşoğlu2.

Theorem 1.2 (Şaşoğlu) Let (X1, Y1) and (X2, Y2) be independent pairs of discrete random
variables taking their values in B × Y1 and respectively in B × Y2 with B = {0, 1}, and let
H(X1 |Y1) = α and H(X2 |Y2) = β. Then, the conditional entropy H(X1 ⊕ X2 |Y1, Y2) is
minimized when H(X1 |Y1 = y1) = α and H(X2 |Y2 = y2) = β for all (y1, y2) ∈ Y1 × Y2 such
that PY1(y1)PY2(y2) > 0. Moreover, if β = α = h(x) with x ∈ [0 , 1

2
] and if 0 < α < 1, then

min
(
H(X1 ⊕X2 |Y1, Y2)−H(X1 |Y1)

)
= h

(
2x(1− x)

)
− h(x) > 0, (14)

where the minimum in (14) is taken on the set {PX1Y1 , PX2Y2 : H(X1 |Y1) = H(X2 |Y2) = α}.

Finally, let us introduce
Z ′(S) = 1− Z(S)2. (15)

The next proposition results straightforwardly from Proposition 1.1 and definition (15).

Proposition 1.3 For any memoryless source S with binary part to be compressed and discret
“side-information”, we have

Z ′(S+) = 2Z ′(S)− Z ′(S)2 and Z ′(S−) ≤ Z ′(S)2. (16)

2 Rough polarization
The following corollaries and theorems are adaptations to source polarization of results given
by Guruswami and Xia3 for channel polarization.

Corollary 2.1 (Guruswami & Xia) There exists a constant θ0 with 0.799 < θ0 < 0.8 such
that for any memoryless source S with binary-part to compress and discrete side-information,

H(S−)−H(S) = H(S)−H(S+) ≥ θ0H(S)(1−H(S)). (17)
1The left inequality in (13) corresponds to Lemma 16 in “Polar coding for secret-key generation”, Rémi Chou,

Matthieu Bloch and Emmanuel Abbe, IEEE Trans. on Information Theory, vol. 61, no. 11, pp. 6213–6237,
2015.

2Proposition 1.1 corresponds to Proposition 2.8 and Lemma 2.9 and Theorem 1.2 corresponds to Lemma 2.2
in “Polarization and polar codes”, Eren Şaşoğlu, Fundations and Trends in Communications and Information
Theory, vol. 8, no. 4, pp. 259–381, 2011.

3Corollary 2.1, Theorem 2.3, Corollary 2.4 and Theorem 2.8 correspond respectively to Lemma 6, Lemma 8,
Corollary 9 and Proposition 5 in “Polar codes: speed of polarization and polynomial gap to capacity”, by
Venkatesan Guruswami and Patrick Xia, IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 3–16,
2015.
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Proof. We write S = {(Xi, Yi) : i ∈ N∗}, a sequence of independent drawings from (X, Y ) '
PX,Y , as in Section 1. According to the definitions of H(S−) and H(S), we have

H(S−)−H(S) = H(X1 ⊕X2 |Y1, Y2)−H(X1 |Y1). (18)

Using the entropy function h defined in equation (11) and setting H(X1 |Y1) = H(X2 |Y2) =
h(x), with x ∈ [0 , 1

2
], it results from Theorem 1.2 that

H(S−)−H(S) ≥ h
(
2x(1− x)

)
− h(x). (19)

Therefore

H(S−)−H(S)

H(S)
(
1−H(S)

) ≥ h
(
2x(1− x)

)
− h(x)

h(x)
(
1− h(x)

) ≥ min
x∈[0 , 12 ]

h
(
2x(1− x)

)
− h(x)

h(x)
(
1− h(x)

) = θ0 (20)

and numerical simulations give 0.799 < θ0 < 0.8. In order to end the proof, let us remark that
the transformation (X1, X2) 7→ (X1 ⊕ X2, X2) is invertible, hence H(S+) + H(S−) = 2H(S),
i.e., H(S)−H(S+) = H(S−)−H(S). �

Remark 2.1 It results from Theorem 1.2 and its proof that for any x ∈
[
0 , 1

2

]
, the in-

equality (19) can be an equality, hence the constant θ0 is the greatest value θ ∈ R such that
H(S−)−H(S) ≥ θH(S)

(
1−H(S)

)
for any memoryless source S with binary-part to compress

and discrete side-information.

Lemma 2.2 The function
g : [0 , 1] →

[
0 , 1

2

]
η 7→

√
η(1− η)

(21)

is strictly concave and for any η ∈ ]0 , 1 [, the function

Gη : [0 , min(η, 1− η)] → [0 , 1]

δ 7→ g(η+δ)+g(η−δ)
2g(η)

(22)

is strictly decreasing.

Proof. The functions g and Gη are well defined for any η ∈ ]0 , 1[. Moreover, the two first
derivatives of g are

g′(η) =
1− 2η

2g(η)
and g′′(η) =

−1

g(η)

[
1 +

(1− 2η)2

4η(1− η)

]
< 0 (23)

hence g is strictly concave and finally for any η ∈ ]0 , 1[ and δ ∈ [0 , min(η, 1− η)]

G′η(δ) =
g′(η + δ)− g′(η − δ)

2g(η)
≤ 0, (24)

with equality if and only if δ = 0, which completes the proof. �

Theorem 2.3 (Guruswami & Xia) Let g be the function defined in (21). There exists a
constant Λ < 1, with 0.9165 < Λ < 0.9166, such that for any memoryless source S with
binary-part to compress and discrete side-information

1

2

[
g
(
H(S−)

)
+ g
(
H(S+)

)]
≤ Λg

(
H(S)

)
. (25)
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Proof. For a memoryless source S with binary-part to compress and discrete side-information,
let η = H(S), ε0(η) = θ0η(1 − η), where θ0 has been introduced in Corollary 2.1 and ε =
H(S−)−H(S) = H(S)−H(S+). It results from Corollary 2.1 that ε ≥ ε0(η), which implies,
according to Lemma 2.2, that

g
(
H(S−)

)
+ g
(
H(S+)

)
2g
(
H(S)

) =
g(η + ε) + g(η − ε)

2g(η)

≤ g(η + ε0(η)) + g(η − ε0(η))

2g(η)

=
1

2

(√
Aθ0(η) +

√
Aθ0(1− η)

)
(26)

with Aθ0(η) = [1+θ0(1−η)](1−θ0η) = θ2
0(η−θ−1

0 )
[
η− (1+θ−1

0 )
]
. The two roots of polynomial

Aθ0(η) are both outside the interval [0 , 1], therefore the function η 7→
√
Aθ0(η) is strictly

convexe for η ∈ [0 , 1]. As a result, its derivative is injective and the term (26) is maximum for
η ∈ [0 , 1] if and only if

A′θ0(η)√
Aθ0(η)

=
A′θ0(1− η)√
Aθ0(1− η)

, (27)

i.e., if and only if η = 1
2
. Hence, it comes

g
(
H(S−)

)
+ g
(
H(S+)

)
2g
(
H(S)

) ≤ 1

2

√
[1 + θ0(1− η)](1− θ0η) +

1

2

√
[1− θ0(1− η)](1 + θ0η)

∣∣∣∣
η= 1

2

=

√
1− θ2

0

4
= Λ. (28)

Numerical simulations give 0.9165 < Λ < 0.9166. �
A recursive application of Theorem 2.3 gives

∀µ ∈ N,
1

2µ

2µ−1∑
i=0

g
[
H
(
S(i)
µ

)]
≤ Λµg

[
H(S)

]
≤ Λµ max

η∈[0 , 1]
g(η) =

1

2
Λµ. (29)

This last equation can be interpreted as

E
{
g
[
H
(
S(J)
µ

)]}
≤ 1

2
Λµ, (30)

where J is a uniform random variable over [[0 , 2µ − 1]]. Hence, the next corollary results from
Markov’s inequality.

Corollary 2.4 (Guruswami & Xia) For any memoryless source S, with binary-part to com-
press and discrete side-information, and the associated sequence introduced in equation (4), for
any µ ∈ N, if J is a uniform random variable over [[0 , 2µ − 1]], then

∀θ > 0, P
(
g2
[
H
(
S(J)
µ

)]
≥ θ
)
≤ Λµ

2
√
θ
. (31)

We conclude this section by proving an adaptation to source polarization of the Guruswami
and Xia rough (channel) polarization theorem. For any θ ∈ ]0 , 1

2
], let

x1 = x1(θ) =
1−
√

1− 2θ

2
and x2 = x2(θ) =

1 +
√

1− 2θ

2
= 1− x1 (32)

be the solutions of x(1− x) = θ
2
. We have 0 ≤ x1 ≤ 1

2
≤ x2 ≤ 1 and{

x ∈ [0 , 1] : x(1− x) ≥ θ

2

}
= [x1(θ) , x2(θ)] . (33)
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Moreover, 0 ≤ 1 − 2θ ≤
√

1− 2θ ≤ 1 implies x1(θ) ≤ θ. Hence, for any m ∈ D (m = 2µ),
for any θ ∈ ]0 , 1

2
[ and for any memoryless source S with binary-part to compress and discret

side-information, we have{
i ∈ [[0 , m− 1]] : g2

[
H
(
S(i)
µ

)]
<
θ

2

}
=

{
i ∈ [[0 , m− 1]] : H

(
S(i)
µ

)
∈ [0 , x1[∪ ]x2 , 1]

}
⊂ VX|Y (x1) ∪Hc

X|Y (x1) (34)

and the following partition of [[0 , m− 1]]:

[[0 , m− 1]] = VX|Y (x1) ∪Hc
X|Y (x1) ∪

[
VcX|Y (x1) ∩HX|Y (x1)

]
, (35)

implies, by setting A = VX|Y (x1), B = Hc
X|Y (x1) and C = VcX|Y (x1) ∩HX|Y (x1),

1−H(S) = 1− 1

m

m−1∑
i=0

H
(
S(i)
µ

)
=

1

m

[∑
i∈A

(
1−H

(
S(i)
µ

))
+
∑
i∈B

(
1−H

(
S(i)
µ

))
+
∑
i∈C

(
1−H

(
S(i)
µ

))]
(36)

≤ |A|
m

(
1−min

{
H
(
S(i)
µ

)
: i ∈ VX|Y (x1)

})
+
|B|+ |C|

m
(37)

≤ x1(θ) +
|B|+ |C|

m
≤ θ +

|B|
m

+ P(J ∈ C), (38)

where J is a random variable uniformly distributed over [[0 , m − 1]]. Now, the contraposition
of (34) gives

C ⊂
{
i ∈ [[0 , m− 1]] : g2

[
H
(
S(i)
µ

)]
≥ θ

2

}
, (39)

hence it results from Corollary 2.4 that

P(J ∈ C) ≤ Λµ

2
√
θ/2

, (40)

and this implies, with inequality (38) where |B|
m

= P
(
J ∈ Hc

X|Y (x1)
)
, that

P
(
J ∈ Hc

X|Y (x1)
)
≥ 1−H(S)− θ − Λµ

2
√
θ/2

. (41)

Proposition 2.5 There exists Λ ∈ ]0 , 1[ such that for any θ ∈ ]0 , 1
2
], for any memoryless

source S with binary-part to compress and discrete side-information, for any m ∈ D (m = 2µ),
the subsets defined in equations (8–9) satisfy

|HX|Y (θ) ∩ VcX|Y (θ)|
m

≤
√

2Λµ

2
√
θ

(42)

H(S)− θ ≤
|HX|Y (θ)|

m
≤ H(S) + θ +

√
2Λµ

2
√
θ

(43)

H(S)− θ −
√

2Λµ

2
√
θ
≤
|VX|Y (θ)|

m
≤ H(S) + θ. (44)

Proof. Since x1 = x1(θ) ≤ θ, we have Hc
X|Y (x1) ⊂ Hc

X|Y (θ) and VX|Y (x1) ⊂ VX|Y (θ). There-
fore: firstly HX|Y (θ) ∩ VcX|Y (θ) ⊂ HX|Y (x1) ∩ VcX|Y (x1) and inequality (42) results from (40);
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secondly |Hc
X|Y (x1)| ≤ |Hc

X|Y (θ)| and the right inequality in (43) comes directly from (41).
Furthermore, the conditions max

i∈Hc
X|Y (θ)

H
(
S(i)
µ

)
≤ θ and max

i∈HX|Y (θ)
H
(
S(i)
µ

)
≤ 1 give

H(S) =
1

m

m−1∑
i=0

H
(
S(i)
µ

)
≤ θ P

[
J ∈ Hc

X|Y (θ)
]

+ P
[
J ∈ HX|Y (θ)

]
≤ θ +

|HX|Y (θ)|
m

, (45)

which proves the left inequality in (43). Similarly, condition min
i∈VX|Y (θ)

H
(
S(i)
µ

)
≥ 1− θ implies

H(S) ≥ (1− θ)P
[
J ∈ VX|Y (θ)

]
≥
|VX|Y (θ)|

m
− θ, (46)

which proves the right inequality in (44). Finally, note that VX|Y (θ) ⊂ HX|Y (θ) implies
VX|Y (θ) = HX|Y (θ) \

[
HX|Y (θ) ∩ VcX|Y (θ)

]
, so the left inequality in (44) results from (42–43).�

Let us now consider ρ ∈ ]0 , 1[ and µ ∈ N∗ such that 4ρ2µ < 1
2
, i.e., µ > 3

2 log(1/ρ)
. For

any memoryless source S with binary-part to compress and discrete side-information, since

according to Proposition 1.1 for all i ∈ [[0 , 2µ − 1]], Z
(
S

(i)
µ

)
≤
√
H
(
S

(i)
µ

)
, we have{

i ∈ [[0 , 2µ − 1]] : H
(
S(i)
µ

)
≤ 4ρ2µ

}
⊂

{
i ∈ [[0 , 2µ − 1]] : Z

(
S(i)
µ

)
≤ 2ρµ

}
, (47){

i ∈ [[0 , 2µ − 1]] : H
(
S(i)
µ

)
≤ x1(4ρ2µ)

}
⊂

{
i ∈ [[0 , 2µ − 1]] : H

(
S(i)
µ

)
≤ 4ρ2µ

}
; (48)

therefore with θ = 4ρ2µ in (41), we obtain the following Proposition.

Proposition 2.6 With the notations introduced in this subsection, for any ρ ∈ ]0 , 1[, for any
integer µ > 3

2 log(1/ρ)
we have

P
(
Z
(
S(J)
µ

)
≤ 2ρµ

)
≥ 1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ
, (49)

where J is a random variable uniformly distributed over [[0 , 2µ − 1]].

Let us remark that

∀θ ∈

[
0 ,

√
5− 1

2

[
,
√

1− θ ≤ 1− θ2 (50)

and for any ρ ∈ ]0 , 1[, for any µ ∈ N such that

µ >
2− log(

√
5− 1)

log(1/ρ)
' 1.69

log(1/ρ)
i.e., 2ρµ <

√
5− 1

2
, (51)

we have

log

(
1

1− 2ρ2µ

)
<

1

2
i.e., µ >

[
3

4
− log(

√
2− 1)

2

]
1

log(1/ρ)
' 1.38

log(1/ρ)
, (52)

and it results from the right inequality in (12) that(
H(S) > log(2− 4ρ2µ)

)
⇒
(

1 + Z(S) > 2− 4ρ2µ
)
. (53)

Now, log(2 − 4ρ2µ) = 1 − log
[
(1 − 2ρ2µ)−1

]
, moreover 1 + Z(S) > 2 − 4ρ2µ if and only if

Z(S) > 1− 4ρ2µ and 1− 4ρ2µ ≥
√

1− 2ρµ according to (50–51), hence(
H(S) > 1− log

[
1

1− 2ρ2µ

])
⇒
(
Z(S) >

√
1− 2ρµ

)
i.e., Z ′(S) = 1− Z(S)2 < 2ρµ.

(54)
Finally,

1− log

[
1

1− 2ρ2µ

]
= 1 +

ln(1− 2ρ2µ)

ln 2
≤ 1− 2ρ2µ

ln 2
. (55)

Therefore the next proposition results from the left inequality in (44).
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Proposition 2.7 With the notations introduced in this subsection, for any ρ ∈ ]0 , 1[, for any
integer µ > 2−log(

√
5−1)

log(1/ρ)
we have

P
(
Z ′
(
S(J)
µ

)
< 2ρµ

)
≥ H(S)− 2

ln 2
ρ2µ −

√
ln 2

2

(
Λ

ρ

)µ
, (56)

where J is a random variable uniformly distributed over [[0 , 2µ − 1]].

%%%%%%%%%%%%
We add this paragraph to prove the Rough polarization theorem.

Let ρ ∈ ]Λ , 1[ and ε ∈ ]0 , 1
2
[; let

bρ = max

(
2

ln(1/ρ)
,

1

ln(ρ/Λ)

)
, (57)

and let µ ∈ N such that µ > bρ ln(1/ε). Then, we have ln(1/ε)−(ln 2)/2
ln(ρ/Λ)

< ln(1/ε)
ln(ρ/Λ)

≤ bρ ln(1/ε) < µ

and ln(1/ε)+3 ln 2
2 ln(1/ρ)

≤ 4 ln(1/ε)
2 ln(1/ρ)

≤ bρ ln(1/ε) < µ, which imply

1

2
√

2

(
Λ

ρ

)µ
<
ε

2
and 4ρ2µ <

ε

2
, hence 4ρ2µ +

1

2
√

2

(
Λ

ρ

)µ
< ε. (58)

We proved the following theorem by Guruswami and Xia.

Theorem 2.8 (Rough polarization) There exists Λ ∈ ]0 , 1[ such that for any ρ ∈ ]Λ , 1[,
there exists bρ > 0 such that for any memoryless source S with binary-part to compress and
discrete side-information, for any ε ∈ ]0 , 1

2
[ and for any µ ∈ N, such that µ > bρ ln(1/ε), there

exists a roughly polarized set
Sr ⊂

{
S(i)
µ : 0 ≤ i < 2µ

}
(59)

such that for any M ∈ Sr, Z(M) ≤ 2ρµ and P
(
S

(J)
µ ∈ Sr

)
≥ 1−H(S)−ε, where J is a random

variable uniformly distributed over [[0 , 2µ − 1]].

%%%%%%%%%%%%

3 Fine polarization

This section is an adaptation of the reasoning given by Guruswami and Xia (see footnote 3) to
prove their fine polarization theorem.

3.1 Preliminaries

Lemma 3.1 For any β ∈ ]0 , 1
2
[, the function ζ : R∗+ → R+ defined by

ζ(y) =
byc
2y

+
2β2y

dye
=

{
1+4β2

2
if y ∈ N∗

q
2(q+α)

+ 2β2(q+α)
q+1

if y = q + α with q ∈ N and 0 < α < 1,
(60)

satisfies the condition:

∀y,

(
byc ≥ 4β2

1− 4β2
⇒ min{ζ(byc+ α) : α ∈ [0 , 1]} =

byc
2
(
byc+ 1

) + 2β2

)
. (61)
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Proof. For q ∈ N∗, let us introduce the continuously differentiable function of α

fq : R+ → R∗+
α 7→ q

2(q+α)
+ 2β2(q+α)

q+1
,

(62)

which satisfies fq(α) = ζ(q + α) (∀α ∈ ]0 , 1[) and

fq(0) =
1

2
+ 2β2 q

q + 1
<

1

2
+ 2β2 and fq(1) =

q

2(q + 1)
+ 2β2 <

1

2
+ 2β2, (63)

f ′q(α) =
2β2

q + 1
− q

2(q + α)2
and f ′q(α) = 0 ⇔ α =

√
q(q + 1)

2β
− q. (64)

Let us remark that β ∈ ]0 , 1
2
[ implies f ′q(0) = −1

2q
+ 2β2

q+1
< 0 and the zero of the derivative

function is always greater than zero. Moreover, the zero of the derivative function is smaller
than 1 if and only if

q(q + 1)

4β2
< (q + 1)2 ⇔ q <

4β2

1− 4β2
. (65)

Hence, if byc = q ≥ 4β2

1−4β2 , then min{fq(α) : α ∈ [0 , 1]} = fq(1) = byc
2
(
byc+1

) + 2β2. �

The proofs of the following three lemmas are straightforward.

Lemma 3.2 The function

ζ : R+ → R−
y 7→ −α02y + y

with α0 =
2

e ln 2
' 1.06 (66)

is maximum at the point y0 = − ln(α0 ln 2)
ln 2

= 1
ln 2
− 1 ' 0,44 and ζ(y0) = −1.

Lemma 3.3 For any β ∈ ]0 , 1
2
[, the function

ϕ : R∗+ → R∗+
y 7→ 1−β+y−1

1−2−βy
(67)

is strictly decreasing, ϕ(1/β) = 2 and ϕ(y) approaches to 1 − β < 1 when y approaches to
infinity. Hence, there exists cβ > 0 such that

∀y, (y ≥ cβ ⇒ ϕ(y) < 1) . (68)

Lemma 3.4 ∀β ∈ ]0 , 1
2
[, ∀γ ∈ R∗+, ∀ξ > 1 and ∀ρ ∈ ]0 , 1[ the function

ψ : R+ → R∗+
y 7→

√
e
(

1 + γξ
log(1/ρ)

)
exp

[
−(1−2β)2y

2

] (69)

is strictly decreasing on R+, ψ(0) > 1 and ψ(y) approaches to 0 when y approaches to infinity.

3.2 Introduction of parameters, constants and notations

Let δ ∈ ]0 , 1
2
[ and β ∈ ]δ , 1

2
[ such that γ = δ

β−δ is a rational number. We put γ = γn
γd

with γn
and γd co-prime integers (γ can take any value in Q∗+).
Let ρ ∈ ]Λ , 1[, ξ > 1 (the x parameter used by Guruswami and Xia is connected to ξ with the
relation x = log(1/ρ)

ξ log(2/ρ)
) and

c =

⌈
γξ

log(1/ρ)

⌉
. (70)
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Using the constant cβ introduced in lemma 3.3, let

c′β =

(
ξ

log(1/ρ)
+

1

γ

)
max

{
cβ,

1

(1− 2β)

}
, (71)

cδ = max

(
(1 + α0)ξ

(ξ − 1) log(1/ρ)
, c′β

)
. (72)

Let µ be a natural integer multiple of γd such that

µ > cδ. (73)

Finally, let us introduce

ν = γµ and ν0 = (γ + 1)µ = ν + µ, (74)

which are natural integers because µ is a multiple of γd.
For any j ∈ [[1 , c]], let us note Ij =

[
(j−1)ν

c
, jν
c

[
∩ N, nj = |Ij| and

Gj(ν) =

i =
ν−1∑
k=0

bk2
k :

∑
k∈Ij

bk ≥
βν

c

 , G′j(ν) =

i =
ν−1∑
k=0

bk2
k :

∑
k∈Ij

(1− bk) ≥
βν

c


(75)

where b0, . . . , bν−1 are the binary digits of i. It comes⌊ν
c

⌋
≤ nj ≤

⌈ν
c

⌉
and

c∑
j=1

nj = ν. (76)

Finally, let us put

G(ν) =
c⋂
j=1

Gj(ν) and G′(ν) =
c⋂
j=1

G′j(ν). (77)

3.3 Proof of the fine polarization theorem

Lemma 3.5 (Guruswami & Xia) With the notations introduced in the previous subsections,
if J2 is a random variable with uniform distribution over [[0 , 2ν − 1]], then

P
(
J2 ∈ G(ν)

)
≥ 1− ψ

(ν
c

)
, (78)

P
(
J2 ∈ G′(ν)

)
≥ 1− ψ

(ν
c

)
. (79)

Proof. If we write J2 =
ν−1∑
k=0

Bk2
k, then the ν bits Bk are independent Bernoulli random vari-

ables with parameter 1
2
. If J2 takes its values in Gj(ν), we have∑

k∈Ij

Bk −
nj
2
≥ −

(
nj
2
− βν

c

)
. (80)

Moreover

nj
2
− βν

c
≥ 1

2

⌊ν
c

⌋
− βν

c
>

1

2

(ν
c
− 1
)
− βν

c
(81)

and since, according to equations (70–74), we have

ν

c
≥ γµ

1 + γξ
log(1/ρ)

=
µ

1
γ

+ ξ
log(1/ρ)

>
1

(1− 2β)
, (82)
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it comes
1

2

(ν
c
− 1
)
− βν

c
=

(1− 2β)ν

2c
− 1

2
> 0. (83)

It then results from Hoeffding’s inequality that

P
(
J2 ∈ Gj(ν)

)
= 1− P

∑
k∈Ij

Bk −
nj
2
< −

(
nj
2
− βν

c

)
≥ 1− exp

(
−
(

1

2
− βν

cnj

)2

2nj

)
. (84)

Now,
(

1
2
− βν

cnj

)2

2nj =
nj
2
− 2βν

c
+ 2β2ν2

c2nj
= ν

c

(
nj
2 ν
c
− 2β +

2β2 ν
c

nj

)
≥ ν

c

(
ζ
(
ν
c

)
− 2β

)
, where the last

inequality comes from (76) and the ζ function is defined in equation (60). Further it results

from condition (82) that4
⌊
ν
c

⌋
≥ 4β2

1−4β2 . Therefore ζ
(
ν
c

)
≥ b νcc

2(b νcc+1)
+ 2β2 = 1

2
+ 2β2− 1

2(b νcc+1)
,

according to Lemma 3.1, and(
1

2
− βν

cnj

)2

2nj ≥
ν(1− 2β)2

2c
− 1

2

ν
c⌊

ν
c

⌋
+ 1
≥ ν

c

(1− 2β)2

2
− 1

2
. (85)

Hence

P
(
J2 ∈ Gj(ν)

)
≥ 1−

√
e exp

[
−(1− 2β)2ν

2c

]
(86)

and we obtain

P
(
J2 6∈ G(ν)

)
≤

c∑
j=1

P
(
J2 6∈ Gj(ν)

)
≤ c
√
e exp

[
−(1− 2β)2ν

2c

]
≤ ψ

(ν
c

)
(87)

(the last inequality resulting from equations (70) and (69)), that proves (78). Finally, the same
proof, where Bk is replaced with (1−Bk) in relations (80) and (84) and Gj(ν) is replaced with
G′j(ν) leads to (79). �

Now for any memoryless source S with binary-part to compress and discrete side-informa-
tion, it results from Proposition 2.6 (since5 µ > 3

2 log(1/ρ)
) that there exists Sr ⊂ {S(i)

µ : 0 ≤ i <

2µ} such that

∀M ∈ Sr, Z(M) ≤ 2ρµ and P
(
S(J1)
µ ∈ Sr

)
≥ 1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ
, (88)

where J1 is a random variable uniformly distributed over [[0 , 2µ − 1]]. In a same way, it results
from Proposition 2.7 (since6 µ > 3

2 log(1/ρ)
) that there exists S ′r ⊂ {S

(i)
µ : 0 ≤ i < 2µ} such that

∀M ∈ S ′r, Z ′(M) ≤ 2ρµ and P
(
S(J1)
µ ∈ S ′r

)
≥ H(S)− 2

ln 2
ρ2µ −

√
ln 2

2

(
Λ

ρ

)µ
. (89)

For any M ∈ Sr, we define the sequence

Z̃
(i)
k =


(
Z̃

(bi/2c)
k−1

)2

if i is odd,

2Z̃
(bi/2c)
k−1 if i is even,

for any k ∈ N∗, with Z̃(0)
0 = Z(M). (90)

4Indeed, the condition (82) implies⌊ν
c

⌋
≥ ν

c
− 1 >

1

1− 2β
− 1 =

2β

1− 2β
>

(
2β

1− 2β

)(
2β

1 + 2β

)
=

4β2

1− 4β2
.

5Indeed, condition (72) implies µ > (1+α0)ξ
(ξ−1) log(1/ρ) >

1+α0

log(1/ρ) '
2.06

log(1/ρ) >
3

2 log(1/ρ) .
6Indeed, condition (72) implies µ > (1+α0)ξ

(ξ−1) log(1/ρ) >
1+α0

log(1/ρ) '
2.06

log(1/ρ) >
2−log(

√
5−1)

log(1/ρ) ' 1.69
log(1/ρ) .
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Let us note R(µ) = {i ∈ [[0 , 2µ − 1]] : S
(i)
µ ∈ Sr}.

In the same way, for any M ′ ∈ S ′r, we define the sequence

Z̃
′(i)
k =


(
Z̃
′(bi/2c)
k−1

)2

if i is even,

2Z̃
′(bi/2c)
k−1 if i is odd,

for any k ∈ N∗, with Z̃
′(0)
0 = Z ′(M ′). (91)

Let us note R′(µ) = {i ∈ [[0 , 2µ − 1]] : S
(i)
µ ∈ S ′r}.

Lemma 3.6 (Guruswami & Xia) With the notations introduced in the previous subsection,
we have log

(
max

{
Z̃

(i)
ν : i ∈ G(ν)

})
≤ −2βν.

Proof. Let us note for j ∈ [[1 , c]], νj =
∑j

k=1 nk (thus νc = ν) and

zj = max
{
Z̃(bi/2ν−νj c)
νj

: i ∈ G(ν)
}

for any j ∈ [[1 , c]] and z0 = Z(M). (92)

Let us remark first that if zj has been attained by p squarings (0 ≤ p ≤ nj) and nj−p doublings
from zj−1, the maximum value will be obtained by applying first the nj − p doublings followed
by the p squarings7. Moreover, if zj < 1, the maximum value will be reached by minimizing
the number of squarings8.
According to relations (72), (74), (70) and (88), we have µ > (1+α0)ξ

(ξ−1) log(1/ρ)
, M ∈ Sr, νc ≤

µ log(1/ρ)
ξ

and
logZ(M) +

ν

c
≤ 1− µ log(1/ρ)(1− 1/ξ) ≤ 1− (1 + α0) = −α0 ≤ −1. (93)

Equation (93) shows that logZ(M) +n1 ≤ logZ(M) + ν
c

+ 1 < 0, hence if one doubles n1 times
z0 one obtains a value that is smaller than 1. Thus z1 < 1 and since for any i ∈ G(ν), the
number of squarings is worth at least

⌈
βν
c

⌉
, we have

log z1 ≤ 2d
βν
c
e
(

logZ(M) +
ν

c
+ 1−

⌈
βν

c

⌉)
≤ 2

βν
c

(
logZ(M) +

(1− β)ν

c
+ 1

)
, (94)

which can be written, using the ϕ function introduced in Lemma 3.3,

log z1 +
ν

c
ϕ
(ν
c

)
≤ 2

βν
c

(
logZ(M) +

ν

c
ϕ
(ν
c

))
≤ 2

βν
c

(
logZ(M) +

ν

c

)
, (95)

according to condition (68) and
ν

c
≥ γµ

1 + γξ
log(1/ρ)

=
µ

1
γ

+ ξ
log(1/ρ)

> cβ (96)

– the last inequality resulting from condition (73) and definitions (71–72) of cδ.
Moreover, according to Lemma 3.3, the ϕ function is greater than 1−β and it results from (93)
and (95) that

log z1 +
ν

c
< −α02

βν
c +

βν

c
= ζ

(
βν

c

)
≤ −1, (97)

where the ζ function is defined in Lemma 3.2. So ν
c

+ 1 + log z1 < 0, therefore z2 < 1 and the
same reasoning as above leads to

log z2 ≤ 2
βν
c

(
log z1 + n2 −

⌈
βν

c

⌉)
< 2

βν
c

(
log z1 +

(1− β)ν

c
+ 1

)
, (98)

7Indeed, starting from x, if we apply p squarings and nj − p doublings, the final result will be of the form
x2

p

2α, and α, the power of 2, will be maximum if the nj − p doublings precede the p squarings.
8If zj > 1, the maximum value can be reached by replacing some doublings by squarings: starting from

x > 0, p+ 1 squarings will give a greater result than p squarings if and only if

2p(log x+ nj − p) ≤ 2p+1(log x+ nj − p− 1) ⇔ log x ≥ 2− (nj − p) .

11



which can be written

log z2 +
ν

c
ϕ
(ν
c

)
≤ 2

βν
c

(
log z1 +

ν

c
ϕ
(ν
c

))
, (99)

which, with (95), leads to

log z2 + (1− β)
ν

c
≤ log z2 +

ν

c
ϕ
(ν
c

)
≤ 2

2βν
c

(
log z0 +

ν

c
ϕ
(ν
c

))
(100)

and according to conditions (93) and (96) and the property (68), it follows that

log z2 +
ν

c
≤ 2

2βν
c

(
log z0 +

ν

c

)
+
βν

c

< −α02
2βν
c +

βν

c
= ζ

(
2βν

c

)
− βν

c
≤ ζ

(
2βν

c

)
≤ −1, (101)

where the last inequality results from Lemma 3.2. More generally, let us suppose that

log zj−1 +
ν

c
≤ 2

(j−1)βν
c

(
log z0 +

ν

c

)
+
βν

c
, (102)

so 1 + ν
c

+ log zj−1 < 1 + ζ
(

(j−1)βν
c

)
≤ 0 according to (93) and Lemma 3.2, and the same

reasoning as above gives

log zj +
(1− β)ν

c
≤ 2

jβν
c

(
log z0 +

ν

c

)
, (103)

in particular for j = c :
log zc ≤ 2βν

(
log z0 +

ν

c

)
≤ −2βν , (104)

where the last inequality results from relation (93). �
The same reasoning replacing Z̃(i)

k with Z̃
′(i)
k leads to the following lemma.

Lemma 3.7 With the notations introduced in the previous subsection, we have

log
(

max
{
Z̃
′(i)
ν : i ∈ G′(ν)

})
≤ −2βν .

After all, we can deduce from equations (103–104) that

log zc +
(1− β)ν

c
≤ −2βν . (105)

Further, since log(1/ ln 2) ' 0.529 and β > 0, we have

β
(
2 log(1/ ln 2)− 1

)
> 0 > log(1/ ln 2)− 1, i.e.,

1

1− 2β
>

log(1/ ln 2)

1− β
, (106)

which implies, according to the conditions (71,73) and the equation (70),

µ >

(
ξ

log(1/ρ)
+

1

γ

)
1

1− 2β
>
c log(1/ ln 2)

γ(1− β)
, (107)

i.e., (1−β)ν
c

> log(1/ ln 2). Thus the relation (105) leads to the following lemma.

Lemma 3.8 With the notations introduced in the previous subsection, we have

log
(

max
{
Z̃(i)
ν : i ∈ G(ν)

})
≤ −2βν + log(ln 2). (108)
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Let us recall that ν0 = ν + µ and let us summarize the results proved in this section. We
expanded i ∈ [[0 , 2ν0 − 1]] into i = i1 + 2µi2, where the binary digits of i2 ∈ [[0 , 2ν − 1]] and
i1 ∈ [[0 , 2µ − 1]] correspond respectively to the first ν and last µ bits of i. We proved that if
i1 ∈ R(µ) (i.e., if S(i1)

µ ∈ Sr or equivalently if Z(S
(i1)
µ ) < 2ρµ) and if i2 ∈ G(ν), then

Z(S(i)
ν0

) ≤ 2−2βν ln 2 = 2−2δν0 ln 2. (109)

We also proved that if i1 ∈ R′(µ) (i.e., if S
′(i1)
µ ∈ S ′r or equivalently if Z ′(S(i1)

µ ) < 2ρµ) and if
i2 ∈ G′(ν), then

Z ′(S(i)
ν0

) ≤ 2−2βν = 2−2δν0 . (110)

Now, according to equations (88) and (78) and assuming J = J1 + 2µJ2 is a random variable
uniformly distributed over [[0 , 2ν0 − 1]], we have

P
(
J1 ∈ R(µ) and J2 ∈ G(ν)

)
= P

(
J1 ∈ R(µ)

)
P
(
J2 ∈ G(ν)

)
≥

(
1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ)(
1− ψ

(ν
c

))
≥ 1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ
− ψ

(ν
c

)
. (111)

We deduce that

P
(
Z(S(J)

ν0
) ≤ 2−2δν0 ln 2

)
≥ P

(
J1 ∈ R(µ) and J2 ∈ G(ν)

)
≥ 1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ
− ψ

(ν
c

)
. (112)

In a same way, we have

P
(
Z ′(S(J)

ν0
) ≤ 2−2δν0

)
≥ P

(
J1 ∈ R′(µ) and J2 ∈ G′(ν)

)
≥ H(S)− 2

ln 2
ρ2µ −

√
ln 2

2

(
Λ

ρ

)µ
− ψ

(ν
c

)
. (113)

Thus, we proved that for any µ multiple of γd: µ = kγd with k ∈ N∗ great enough (k > cδ
γd
)

or in other words for any sufficiently large ν0 = µ(1 + γ) = k(γd + γn), the relations (109–110)
and (112–113) are valid.

Let us consider now ν ′0 between two successive multiples of γd + γn:

ν ′0 = k(γd + γn) + u = µ(1 + γ′) (114)

with
µ = kγd, 0 ≤ u < γn + γd and γ′ =

kγn + u

kγd
= γ +

u

kγd
, (115)

then
γ ≤ γ′ = γ +

u

kγd
≤ γ +

u

γd
< 1 + 2γ. (116)

Let us remark that if we introduce δ′ such that

γ′ =
δ′

β − δ′
≥ γ =

δ

β − δ
, (117)

then δ ≤ δ′ and 2−2δ
′ν′0 ≤ 2−2δν

′
0 . Thus, by replacing γ with 1 + 2γ in the definition of ψ

(see (69)), leaving γ unchanged in equation (71) and replacing γ with γ′ everywhere else, the
above reasoning can be remade in order to prove the following proposition.
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Proposition 3.9 For any δ ∈
]
0 , 1

2

[
, for any β ∈

]
δ , 1

2

[
, for any ρ ∈ ]0 , 1[, for any ξ > 1,

there exists Cδ,β > 0 and Aδ,β > 0 such that for any memoryless source S with binary-part to
compress and discrete side-information and for any integer ν0 > Cδ,β, we have

P
(
Z(S(J)

ν0
) ≤ 2−2δν0 ln 2

)
≥ 1−H(S)− 4ρ2µ − 1

2
√

2

(
Λ

ρ

)µ
− Aδ,β exp

(
−(1− 2β)2ν

2c

)
,(118)

P
(
Z ′(S(J)

ν0
) ≤ 2−2δν0

)
≥H(S)− 2

ln 2
ρ2µ −

√
2

2

(
Λ

ρ

)µ
− Aδ,β exp

(
−(1− 2β)2ν

2c

)
, (119)

where J is a random variable uniformly distributed over [[0 , 2ν0 − 1]], γ = δ
β−δ , ν0 = (γ + 1)µ,

ν = γµ and c =
⌈

γξ
log(1/ρ)

⌉
.

Let us denote

ε =
µ

ν0

=
1

γ + 1
=
β − δ
β

, hence β =
δ

1− ε
and γ =

1

ε
− 1. (120)

Now we can choose ξ > 1 so that the fraction γξ
log(1/ρ)

is an integer (equal to c), then we have

ν

c
=
γµ

c
=
µ log(1/ρ)

ξ
(121)

and the previous proposition becomes:

Proposition 3.10 For any δ ∈
]
0 , 1

2

[
, for any ρ ∈ ]0 , 1[, for any ε ∈ ]0 , 1−2δ[, for any ξ > 1

such that (1−ε)ξ
ε log(1/ρ)

∈ N?, there exists Cδ,ε > 0 and Aδ,ε > 0 such that for any memoryless source
S with binary-part to compress and discrete side-information and for any integer ν0 > Cδ,ε, we
have

P
(
Z(S(J)

ν0
) ≤ 2−2δν0 ln 2

)
≥ 1−H(S)− 4ρ2εν0 − 1

2
√

2

(
Λ

ρ

)εν0
− Aδ,ε exp

(
−(1− 2δ

1−ε)
2 log(1/ρ)εν0

2ξ

)

= 1−H(S)− 4ρ2εν0 − 1

2
√

2

(
Λ

ρ

)εν0
− Aδ,ε

[
(ρ)(1− 2δ

1−ε)
2 1
2ξ ln 2

]εν0
(122)

P
(
Z ′(S(J)

ν0
) ≤ 2−2δν0

)
≥ H(S)− 2

ln 2
ρ2εν0 −

√
ln 2

2

(
Λ

ρ

)εν0
− Aδ,ε

[
(ρ)(1− 2δ

1−ε)
2 1
2ξ ln 2

]εν0
,(123)

where J is a random variable uniformly distributed over [[0 , 2ν0 − 1]]. Moreover we can choose

Aδ,ε =
√
e

(
1 +

(2− ε)ξ
ε log(1/ρ)

)
. (124)

Let us put n = 2ν0 . Equation (122) can be written

P
(
Z(S(J)

ν0
) ≤ 2−n

δ

ln 2
)
≥ 1−H(S)− 4

nκ
(1)
ε

− 1

2
√

2 · nκ(2)ε
− Aδ,ε

nκ
(3)
ε

(125)

with

κ(1)
ε = 2ε log(1/ρ), (126)
κ(2)
ε = ε log(ρ/Λ) (127)

κ(3)
ε = ε

(
1− 2δ

1− ε

)2
log(1/ρ)

2ξ ln 2
. (128)
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In order to shorten the notations, let us put

α = α(δ, ε, ρ, ξ) =

(
1− 2δ

1− ε

)2
1

2ξ ln 2
. (129)

For fixed δ ∈
]
0 , 1

2

[
, we look for ε ∈ ]0 , 1 − 2δ[, ρ ∈ ]0 , 1[ and ξ > 1 that maximize

κε = min
(
κ

(1)
ε , κ

(2)
ε , κ

(3)
ε

)
. Let us remark that

κ(3)
ε = ε

(
1− 2δ

1− ε

)2
log(1/ρ)

2ξ ln 2
<
ε log(1/ρ)

2 ln 2
< 2ε log(1/ρ) = κ(1)

ε , (130)

therefore min
(
κ

(1)
ε , κ

(2)
ε , κ

(3)
ε

)
= min

(
κ

(2)
ε , κ

(3)
ε

)
. Moreover, we have

κ(2)
ε ≤ κ(3)

ε ⇔ log(ρ/Λ) ≤ α log(1/ρ) ⇔ log ρ ≤ log Λ

1 + α
⇔ ρ ≤ Λ

1
1+α . (131)

Firstly, let us suppose that
ρ ≤ Λ

1
1+α . (132)

In this case we have min
(
κ

(1)
ε , κ

(2)
ε , κ

(3)
ε

)
= κ

(2)
ε = ε log(ρ/Λ) and this expression is maximum

when the independent variables ρ and ε are maximum, hence for ρ = Λ
1

1+α , which leads to

min
(
κ(1)
ε , κ(2)

ε , κ(3)
ε

)
= κ(2)

ε = κ(3)
ε = log(1/Λ)

εα

1 + α
with α = α(ε, ξ), (133)

since δ is supposed to be fixed. Secondly, if we suppose that

ρ ≥ Λ
1

1+α , (134)

then min
(
κ

(1)
ε , κ

(2)
ε , κ

(3)
ε

)
= κ

(3)
ε = εα log(1/ρ) and this quantity is maximum when α is maxi-

mum and ρ minimum, i.e., when inequality (134) is an equality, i.e., when (133) is satisfied.
Further, the exponent κ(2)

ε = κ
(3)
ε in equation (133) is maximum if and only if

g(ε, ξ)
def
=

εα(ε, ξ)

1 + α(ε, ξ)
(135)

is maximum. Since

∂g

∂ξ
(ε, ξ) =

ε

(1 + α)2
· ∂α
∂ξ

(ε, ξ) =
−ε
(
1− 2δ

1−ε

)2

(1 + α)22ξ2 ln 2
< 0, (136)

g(ε, ξ) is maximum when
ξ = ξmin > 1 (137)

and equation (129) implies that

α(ε, ξmin) =

(
1− 2δ

1−ε

)2

2ξmin ln 2

def
= αmax(ε). (138)

Finally, the function to maximize is

g̃(ε)
def
=

εαmax(ε)

1 + αmax(ε)
(139)

whose derivative
g̃′(ε) =

αmax(ε)

1 + αmax(ε)
+

εα′max(ε)(
1 + αmax(ε)

)2 (140)
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vanishes if and only if αmax(ε)
(
1 + αmax(ε)

)
+ εα′max(ε) = 0. We obtain a trivial solution

ε = 1− 2δ (corresponding to a minimum: g̃(1− 2δ) = 0) and a third degree algebraic equation
in u, with u = 1− ε:

P (u) = Au3 −Bu2 − Cu−D, with


A = 2ξmin ln 2 + 1
B = 2δ(3− 2ξmin ln 2)
C = 4δ(2ξmin ln 2− 3δ)
D = 8δ3

. (141)
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Figure 1: Graphs of u1(δ) and u2(δ), the roots of P ′(u), for δ ∈ ]0 , 1
2
[ and various values of

ξmin = (10 + k)/10 ( 0 ≤ k ≤ 10); solid line corresponds to ξmin = 1.

The discriminant of P is the resultant Res(P, P ′) between polynomials P (u) and its deriva-
tive P ′(u) = 3Au2 − 2Bu− C:

Res(P, P ′) =

∣∣∣∣∣∣∣∣∣∣
A −B −C −D 0
0 A −B −C −D
0 0 3A −2B −C
0 3A −2B −C 0

3A −2B −C 0 0

∣∣∣∣∣∣∣∣∣∣
(142)

= 256(ξmin ln 2)2(2ξmin ln 2 + 1)(4δ2 − 4δ + 2ξmin ln 2 + 1)δ3

×
(
8ξmin ln 2− δ(27− 2ξmin ln 2)

)
. (143)

The third degree equation P (u) = 0 admits a multiple root if and only if the resultant Res(P, P ′)
vanishes, i.e., if and only if δ = 0 or (see Figure 2)

δ = δ1(ξmin) =
8ξmin ln 2

27− 2ξmin ln 2
'

ξmin=1
0.21649. (144)
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Thus for all δ ∈ ]0 , δ1(ξmin)[, the equation P (u) = 0 admits three real roots, for δ > δ1(ξmin)
the same equation admits only one real root and for δ = δ1(ξmin), the real root is multiple.
Moreover, let us introduce the discriminant of P ′(u):

∆′ = B2 + 3AC = 8δξmin ln 2
(
6ξmin ln 2 + 3− δ(15− 2ξmin ln 2)

)
, (145)

which vanishes when

δ = δ0(ξmin) =
6ξmin ln 2 + 3

15− 2ξmin ln 2
'

ξmin=1
0.52586, (146)

and, for δ ∈
]
0 , 1

2

[
, let

u1(δ) =
B −

√
∆′

3A
< 0 and u2(δ) =

B +
√

∆′

3A
> 0 (147)

be the real roots of P ′(u) (see Figure 1). We have P
(
u1

(
δ1(ξmin)

))
= 0 and u2(δ2) = 2δ2 with

δ2 = 1/5 = 0.2.
We show on Figure 2 the graphs of the values of P (u) when P ′(u) vanishes as functions of

δ for different values of ξmin and we can see that for all δ ∈ ]0 , δ1(ξmin)[, P (u1) > 0. Further,
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P (u1(/)), P (u2(/)) and P (2/)

P (u1)
P (u2)
P (2/)

Figure 2: Graphs of P (u1(δ)), P (u2(δ)) and P (2δ) for δ ∈ ]0 , 1
2
[ and various values of ξmin =

(10 + k)/10 ( 0 ≤ k ≤ 10); solid line corresponds to ξmin = 1.

since P (0) = −D < 0 (∀δ > 0) and P (u) → −∞ when u → −∞ (∀δ), we deduce that when
equation P (u) = 0 admits three real zeros (i.e., when 0 < δ < δ1(ξmin)), two of the three roots
are smaller than zero.

Finally, since polynomial 4δ2 − 4δ + 2ξmin ln 2 + 1 has no real roots, we can remark that

P (1) = A−B − C −D = (1− 2δ)(4δ2 − 4δ + 2ξmin ln 2 + 1) > 0 for all δ ∈
]
0 ,

1

2

[
,(148)

P (2δ) = 8Aδ3 − 4Bδ2 − 2Cδ −D = −16ξmin(ln 2)δ2(1− 2δ) < 0 for all δ ∈
]
0 ,

1

2

[
.(149)
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Therefore, for all δ ∈ ]0 , 1
2
[, there is always one and only one zero of P (u) with 2δ < u < 1.

Let us note ν1(δ) this root of P . All the above mentioned conditions on the real roots νi(δ)
(1 ≤ i ≤ 3) of P (u) can be observed on Figure 3, which has been obtained with numerical
simulations.
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Figure 3: Graphs of ν1(δ), ν2(δ), ν3(δ) the real roots of P (u) and of ν = 2δ for δ ∈ ]0 , 1
2
[ and

various values of ξmin = (10 + k)/10 ( 0 ≤ k ≤ 10); solid line corresponds to ξmin = 1.

We show on Figure 4 (a) the graph of g̃(1−ν1(δ)) as a function of δ and (b) the graph of g̃(ε)
as a function of ε for various δ. We see that g̃ is maximum for lim

δ→0+
g̃(1− ν1(δ)) '

ξmin=1
0.0046789995.

Thus, we prove the following Proposition.

Proposition 3.11 For any δ ∈
]
0 , 1

2

[
and for any ε ∈ ]0 , 1 − 2δ[, there exists κδ,ε > 0,

Aδ,ε > 0 and Cδ,ε such that for any memoryless source S with binary-part to compress and
discrete side-information and for any integer ν0 > Cδ,ε – noting n = 2ν0 –, we have

P
(
Z(S(J)

ν0
) ≤ 2−n

δ

ln 2
)
≥ 1−H(S)− Aδ,ε

nεκδ,ε
(150)

P
(
Z ′(S(J)

ν0
) ≤ 2−n

δ
)
≥ H(S)− Aδ,ε

nεκδ,ε
, (151)

where J is a random variable uniformly distributed over [[0 , n− 1]].

Moreover putting Bδ,ε =

[
(1− 2δ

1−ε)
2
+2 ln 2

2 ln(1/Λ)

]
, we can choose Aδ,ε such that

√
e

(
1 +

2− ε
ε

Bδ,ε

)
+

√
ln 2

2
< Aδ,ε <

√
e

(
1 +

2− ε
ε

Bδ,ε

)
+

√
ln 2

2
+

2

ln 2
. (152)

Further, for any δ ∈ ]0 , 1
2
[, for any memoryless source S with binary-part to compress and

discret side-information, for any ν0 ∈ N, let us apply inequality (42) of Proposition 2.5 with
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Figure 4: Graphs of (a) g̃(1− ν1(δ)) as a function of δ and various values of ξmin = (10 +k)/10
( 0 ≤ k ≤ 10) (solid line corresponds to ξmin = 1) and (b) of g̃(ε) as a function of ε for various
δ and ξmin = 1.

µ = ν0, m = n = 2ν0 and θ = 2−n
δ (provided that θ ≤ 1

2
):

|HX|Y (2−n
δ
) ∩ VcX|Y (2−n

δ
)|

n
≤
√

2Λν0

2
√

2−nδ
. (153)

We claim that for any κ > 0, for any ε > 0, there exists θκ,ε > 0 such that for all n > θκ,ε
√

2Λν0

2
√

2−nδ
≤ θκ,ε
nκε

. (154)

Indeed, inequality (154) is equivalent to

log n (log Λ + κε) ≤ log θκ,ε +
1

2

(
1 + nδ

)
, (155)

which is satisfied when θκ,ε and n are sufficiently large.
Finally we have

P
(
H(S(J)

ν0
) > 2−n

δ
)

= 1− P
(
H(S(J)

ν0
) ≤ 2−n

δ
)

(156)

and since according to relation (12),

Z(S(J)
ν0

) ≤ 2−n
δ

ln 2 ⇒ H(S(J)
ν0

) ≤ log
(
1 + Z(S(J)

ν0
)
)
≤ Z(S

(J)
ν0 )

ln 2
≤ 2−n

δ

, (157)

then
P
(
H(S(J)

ν0
) ≤ 2−n

δ
)
≥ P

(
Z(S(J)

ν0
) ≤ 2−n

δ

ln 2
)

(158)

and with the notations of Proposition 3.11, we have

P
(
H(S(J)

ν0
) > 2−n

δ
)
≤ H(S) +

Aδ,ε
nεκδ,ε

(159)

Similarly
Z ′(S(J)

ν0
) ≤ 2−n

δ ⇒ H(S(J)
ν0

) ≥ 1− 2−n
δ

(160)

implies

P
(
H(S(J)

ν0
) > 1− 2−n

δ
)
≥ P

(
Z ′(S(J)

ν0
) ≤ 2−n

δ
)
≥ H(S)− Aδ,ε

nεκδ,ε
. (161)

Therefore, applying the left inequality of relation (43) and the right inequality of relation (44)
we prove the following proposition.
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Proposition 3.12 For any δ ∈
]
0 , 1

2

[
and for any ε ∈ ]0 , 1 − 2δ[, there exists κδ,ε > 0,

Aδ,ε > 0 and Cδ,ε such that for any memoryless source S with binary-part to compress and
discrete side-information and for any integer ν0 > Cδ,ε – noting n = 2ν0 –, we have

0 ≤
|HX|Y (2−n

δ
) ∩ VcX|Y (2−n

δ
)|

n
≤ Aδ,ε
nεκδ,ε

(162)

H(S)− 2−n
δ ≤

∣∣∣HX|Y

(
2−n

δ
)∣∣∣

n
≤ H(S) +

Aδ,ε
nεκδ,ε

(163)

H(S)− Aδ,ε
nεκδ,ε

≤

∣∣∣VX|Y (2−n
δ
)∣∣∣

n
≤ H(S) + 2−n

δ

, (164)

where Aδ,ε satisfies the inequalities (152).

3.4 Order of magnitude of constants

In this subsection we study the values of the constants cβ and cδ with numerical simulations.
Firstly we compute the solution9 α = α(β) of the equation

ϕ

(
logα− log β

β

)
= 1 ⇔ β

α
+

β

logα− log β
= β, (165)

such that
c

(1)
β =

1

β
log

(
α(β)

β

)
(166)

is the smallest permissible value of cβ satisfying (68). Moreover we find a simple expression
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Figure 5: Graphs of α(β) solution of equation (165) and of an affine upper bound.

c
(2)
β =

1

β
log

(
1.6β + 1.203

β

)
(167)

slightly greater than the smallest value c(1)
β (see Figures 5–7).

9Let us remark that this new function α is not connected to the α function introduced in (129).
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Secondly, we assume that inequality (134) is an equality and replacing α by the expres-
sion (129), we obtain

log(1/ρ) =
log(1/Λ)

1 + α
=

2ξ ln(1/Λ)

2ξ ln 2 + (1− 2β)2
(168)

and we express c′β and cδ introduced in relations (71,72) as functions of β and ξ.

Figure 8: Graphs of c′β versus ξ and β.

Figure 9: Graphs of c′β versus ξ and β.
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Let us denote

c
(1)
δ =

(1 + α0)ξ

(ξ − 1) log(1/ρ)
(169)

appearing in the definition (72) of cδ.

c
(1)
/ = (1+,0)9

(9!1) log(1=;) with log(1=;) = log(1=$)
1+,max(-;9)

= 29 ln(1=$)
29 ln 2+(1!2-)2
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Figure 10: Graphs of cδ versus ξ and β.

In order to have
c

def
=

⌈
γξ

log(1/ρ)

⌉
=

γξ

log(1/ρ)
(170)

with ρ satisfying equality (168) and ξ > 1 as small as possible, we set ξmin as the value of ξ
solution of equations (168) and

(1− ε)ξ
ε log(1/ρ)

= min

(
N∗ ∩

{
(1− ε)ξ
ε log(1/ρ)

: ξ > 1

})
. (171)

Table 1: Some numerical values obtained by simulations.
δ ε β γ c

(2)
β

1
1−2β ξmin log( 1ρ ) c′β cδ Aδ,ε Cδ,ε κε = κδ,ε εκε

0.10 0.79 0.48 0.27 4.3 21 1.42 0.1255 316 316 30.1 400 1.14 10−4 9.05 10−5

0.10 0.74 0.38 0.35 5.8 4.3 1.03 0.121 66 506 25.6 684 3.33 10−3 2.46 10−3

0.10 0.69 0.32 0.45 7.5 2.8 1.03 0.116 83 650 29.5 943 7.04 10−3 4.86 10−3

0.10 0.64 0.28 0.56 9.2 2.3 1.20 0.112 115 115 39.0 179 8.54 10−3 5.47 10−3

0.10 0.59 0.24 0.69 11.1 2.0 1.08 0.107 127 270 41.3 458 1.11 10−2 6.53 10−3

0.10 0.54 0.22 0.85 13.0 1.8 1.10 0.104 153 223 48.7 413 1.12 10−2 6.36 10−3

0.10 0.49 0.20 1.04 15.1 1.6 1.06 0.101 173 352 55.3 719 1.24 10−2 6.05 10−3

0.10 0.44 0.18 1.27 17.1 1.6 1.08 0.099 201 268 65.9 610 1.19 10−2 5.24 10−3

0.10 0.39 0.16 1.56 19.3 1.5 1.04 0.096 221 557 75.6 1428 1.17 10−2 4.56 10−3

0.10 0.34 0.15 1.94 21.5 1.4 1.01 0.093 243 2394 88.7 7042 1.10 10−2 3.74 10−3

0.10 0.29 0.15 2.45 23.7 1.4 1.01 0.092 271 1633 108.9 5631 9.78 10−3 2.83 10−3

0.10 0.24 0.13 3.17 26.0 1.4 1.04 0.091 304 629 139.1 2622 8.26 10−3 1.98 10−3

0.10 0.19 0.12 4.26 28.4 1.3 1.01 0.089 326 3834 178.5 20179 6.90 10−3 1.31 10−3

0.10 0.14 0.12 6.14 30.8 1.3 1.01 0.088 355 3168 251.3 22634 5.21 10−3 7.31 10−4

0.10 0.09 0.11 10.11 33.2 1.3 1.00 0.087 384 8302 403.1 92253 3.44 10−3 3.10 10−4

0.10 0.04 0.10 24 35.7 1.3 1.00 0.087 414 6290 937.4 157257 1.56 10−3 6.24 10−5
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