Supplementary material for Proposition 3.1

1 Notations and preliminaries

The functions log and In denote respectively the base 2 and the natural logarithms. By con-
vention, 0log0 = 0 = 0In0. For x € R, |z] (resp. [x]) denotes the greatest (resp. smallest)
integer not greater (resp. not smaller) than z. For integers a < b, [a, b] denotes the set of
integers between a and b, bounds included. Let D = {2* : u € N}.

Let (X,Y) ~ Pxy be an arbitrary pair of random variables over B x ) with B = {0, 1}
and ) an arbitrary countable set. We regard (X, Y’) as a memoryless source S, with X as the
part to be compressed and Y in the role of “side-information” about X. We consider a sequence
S ={(X;,Y;) : i € N} of independent drawings from (X,Y’) — which can be interpreted as a
representation of the source S — and we introduce the two transformations ~ and T applied to
the source S and defined by

ST o= {(Xziq b Xoi, (Yv2i717Y’2¢>) S N*} (1)
ST = {(X% (Yai1, Yai, Xo; 1 &® Xgi)) NS N*}. (2)

With these notations, S~ (resp. S*) is the memoryless source that takes its values in B x ()?)
(resp. in B x (Y? x B)), with X; & X, (resp. X) as the part to be compressed and (Y7, Y3)
(resp. (Y1, Y5, X1 ® X5)) in the role of “side-information”.

The process that constructs S~ and S from S can be written Séo) =9,

SO — (sg°>)‘ — S5 and SW= <S(()D)>+ oy (3)

Applied recursively, this process leads to the sequence of memoryless sources (S,(f)) pEN,E[0, 26 —1]
where S\ takes its values in a set B x (V¥ x BEW) with K (i) € [0, 2* — 1] and is defined by

500 (S,SW%)>_ if 7 is even

| &+ (4)
" (S}}’/ 2”) if 7 is odd.

Let us introduce the sources’ conditional entropies expressed in bits:

H(S) = H(X1|Y1)=H(X2|Y2), (5)
H(S™) = H(X,® X2 |V, Ya), (6)
H(SJr) = H(X:|Y1, Yo, X1 & X5). (7)

For any m € D (m = 2" with u € N) and for any 0 € ]O, %}, let

Hxy = Hay(0) =HIN0)={ieo,m—1] : H(SD) >0} (8)
Viy = V(@) =V 0) ={ie[0,m—1] : H(S{)>1-0}. (9)

For any memoryless source S = (X,Y) ~ Pxy, we introduce its Bhattacharyya parameter:

Z(S) = 231/ Pey(0.4)Pxy(Ly) (10)

yey

= VAPY(0)Px(D) Y \/Prix(y0)Prix(y| 1)

yeY

which is the inner product between the unit vectors whose components are the square root

of the distributions Py|x—¢ and Py|x—;, under equiprobability Px(0) = Px(1) = % This
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quantity informs about the similarity between the side-information ¥ when X is 0 and 1,
under equiprobability Py (0) = Px (1) = 1.

Let
h(z) = —zlogx — (1 — x)log(l — x) (11)

be the entropy function expressed in bits, which admits an inverse h=* : [0, 1]~ [0, 2] when

2
we restrict « to be in [0, 3].
Proposition 1.1 (Properties of Bhattacharyya parameter) Let (X,Y) ~ Pxy be an
arbitrary pair of random wvariables over B x Y with B = {0, 1} and Y an arbitrary count-
able set. For any memoryless source S = (X,Y) ~ Pxy, with X as the part to be compressed
and Y in the role of “side-information” about X, we have

Z(S)? < H(S) <log(1+ Z(S)) (12)
Z(SY) = Z(9)* and +/2Z(S)2— Z(S)A < Z(57) <2Z(S) (13)

The proof of the left inequality in (13) can be found in the paper! by Chou et al. and the proofs
of Proposition 1.1 and Theorem 1.2 can be find in the paper by Sasoglu?.

Theorem 1.2 (Sasoglu) Let (X1,Y)) and (X2,Y3) be independent pairs of discrete random
variables taking their values in B x Yy and respectively in B X Yo with B = {0, 1}, and let
H(X:1|Y)) = a and H(X:2|Ys) = B. Then, the conditional entropy H(X; & Xo|Y7, Ys) is
minimized when H(X:|Y: = y1) = a and H(Xs | Yo = ya) = B for all (y1,y2) € Y1 X Vo such

that Py, (y1) Py, (y2) > 0. Moreover, if f =« = h(z) with z € [0, 3] and if 0 < a <1, then

min(H(X; @ Xz | Y1, Ya) — H(X:1 Y1) = h(22(1 — z)) — h(z) > 0, (14)
where the minimum in (14) is taken on the set {Px,v,, Px,v, : H(X1|Y1) = H(X2|Ys) = a}.

Finally, let us introduce

7Z'(S)=1-Z(S). (15)
The next proposition results straightforwardly from Proposition 1.1 and definition (15).

Proposition 1.3 For any memoryless source S with binary part to be compressed and discret
“side-information”, we have

Z/(S%) = 22'(S) — Z'(S)* and Z'(S7) < Z'(S)%. (16)

2 Rough polarization

The following corollaries and theorems are adaptations to source polarization of results given
by Guruswami and Xia® for channel polarization.

Corollary 2.1 (Guruswami & Xia) There exists a constant 6y with 0.799 < 6y < 0.8 such
that for any memoryless source S with binary-part to compress and discrete side-information,

H(S™) — H(S) = H(S) — H(S™) > 0,H(S)(1 — H(S)). (17)

IThe left inequality in (13) corresponds to Lemma 16 in “Polar coding for secret-key generation”, Rémi Chou,
Matthieu Bloch and Emmanuel Abbe, IEEE Trans. on Information Theory, vol. 61, no. 11, pp. 6213-6237,
2015.

2Proposition 1.1 corresponds to Proposition 2.8 and Lemma 2.9 and Theorem 1.2 corresponds to Lemma, 2.2
in “Polarization and polar codes”, Eren Sasoglu, Fundations and Trends in Communications and Information
Theory, vol. 8, no. 4, pp. 259-381, 2011.

3Corollary 2.1, Theorem 2.3, Corollary 2.4 and Theorem 2.8 correspond respectively to Lemma 6, Lemma 8,
Corollary 9 and Proposition 5 in “Polar codes: speed of polarization and polynomial gap to capacity”, by
Venkatesan Guruswami and Patrick Xia, IEEE Transactions on Information Theory, vol. 61, no. 1, pp. 3-16,
2015.




Proof. We write S = {(X;,Y;) : ¢ € N*}, a sequence of independent drawings from (X,Y’) ~
Pxy, as in Section 1. According to the definitions of H(S™) and H(S), we have

H(S™) = H(S) = H(X1 ® Xz | V1, Y2) — H(X; | Y1) (18)

Using the entropy function h defined in equation (11) and setting H(X; Y1) = H(Xy|Ys) =
h(z), with 2 € [0, 3], it results from Theorem 1.2 that

H(S™)—H(S) > h(2x(1 — x)) — h(x). (19)
Therefore
H(S™)—H(S) h(22(1 — z)) — h(z) i h(22(1 — z)) — h(z) _
(- HS) ~ (- h@) e @)

and numerical simulations give 0.799 < 6y < 0.8. In order to end the proof, let us remark that
the transformation (X7, X3) — (X1 ® Xo, X5) is invertible, hence H(S™) + H(S™) = 2H(S5),
e, H(S)— H(ST)=H(S™)— H(S). o
Remark 2.1 [t results from Theorem 1.2 and its proof that for any x € [O, %}, the in-
equality (19) can be an equality, hence the constant 0y is the greatest value 0 € R such that
H(S™)—H(S) > 0H(S)(1—H(S)) for any memoryless source S with binary-part to compress
and discrete side-information.

Lemma 2.2 The function
g:0,1 — [0, 4]

21
n = /n(l—n) (21)
is strictly concave and for any n €10,1], the function
G’? : [07 miH(TL 1 —77)] - [07 ]-]
5 o 9mtd)+e(n=9) (22)
2g9(n)

18 strictly decreasing.

Proof. The functions ¢ and G,, are well defined for any n €10, 1[. Moreover, the two first
derivatives of g are

/ - - 277 an " _ —1 (1 B 277)2
gn) = 29(n) AL g9(n) ll T —n)} <0 (23)

hence g is strictly concave and finally for any 7 €]0, 1[ and § € [0, min(n, 1 —n)]

gm+0)—gm—2) _,

GO=""m =0

(24)

with equality if and only if 6 = 0, which completes the proof. o

Theorem 2.3 (Guruswami & Xia) Let g be the function defined in (21). There exists a
constant A < 1, with 0.9165 < A < 0.9166, such that for any memoryless source S with
binary-part to compress and discrete side-information

[9(H(S7)) +g(H(ST))] < Ag(H(S)). (25)

| —
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Proof. For a memoryless source S with binary-part to compress and discrete side-information,
let n = H(S), eo(n) = 6on(1 — n), where 6y has been introduced in Corollary 2.1 and ¢ =
H(S™)— H(S) = H(S)— H(S™). It results from Corollary 2.1 that £ > €y(n), which implies,
according to Lemma 2.2, that

g(H(S™)) +g(H(S"))  gn+e)+gn—e)

29(H(9)) a 29(n)
g(n+eo(n) +g(n —eo(n))
- 29(n)
- ( Ay (1) + /A (1 — )) (26)

with Ag,(n) = [1+600(1—n)](1—6bon) = 03(n—05") [n—(1+65")]. The two roots of polynomial
Ay, (n) are both outside the interval [0, 1], therefore the function n — /Ay, (n) is strictly
convexe for n € [0, 1]. As a result, its derivative is injective and the term (26) is maximum for

n € [0, 1] if and only if
Ap(n) Ay (1—1n)

= (27)
VAs () /Ag(1—n)
i.e., if and only if n = % Hence, it comes
g(H(S7)) +g(H(ST)) 1 1
< V14 00(1 = n)](1 = on) + 5+/[1 = bo(1 — m)] (1 + Oon)
29(H(S)) 2 2 1
02
= 1——=A. 2
. (28)
Numerical simulations give 0.9165 < A < 0.9166. o
A recursive application of Theorem 2.3 gives
211
ViEN,  — Z H (519)] < A"g[H(S)] < A" max g(n) = SA". (29)
’ nel0, 1] 2
This last equation can be interpreted as
1
B {g [# (517)]} < 2% 30)

where J is a uniform random variable over [0, 2 — 1]. Hence, the next corollary results from
Markov’s inequality.

Corollary 2.4 (Guruswami & Xia) For any memoryless source S, with binary-part to com-
press and discrete side-information, and the associated sequence introduced in equation (4), for
any p €N, if J is a uniform random variable over [0, 2* — 1], then
AH
20

We conclude this section by proving an adaptation to source polarization of the Guruswami
and Xia rough (channel) polarization theorem. For any 6 € |0, %], let

1—+1-260 1 1—26
r1 = 21(0) = ST and 9 = x9(0) = % =1-x (32)

be the solutions of z(1 — x) = g. We have 0 < x; <

Vo >0,  P(¢*[H(S{)] >0) < (31)

%gxggland

l\DI%

{x €e0,1:z(1l—-2)> } [21(0), 22(0)] . (33)
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Moreover, 0 < 1 —20 < /1 —260 < 1 implies z;(6) < 6. Hence, for any m € D (m = 2#),
for any 6 €10, [ and for any memoryless source S with binary-part to compress and discret
side- 1nf0rmat10n we have

{i efo,m—1]: ¢*[H (S)] < Q} = {ie0,m—1]: H(SY) €0, z1[U]z, 1]}
C Vxpy(z1) UHy (21) (34)
and the following partition of [0, m — 1]:
[0, m —1] = Vxpy(z1) UHSy (21) U [Vipy (@1) 0 Hxpy (21)] (35)

implies, by setting A = Vx|y (1), B = ’ngy(xl) and C = V)qu(:vl) N Hxpy (1),

1= ,
L= H(S) = 1-—3 " H(S)
i=0
) l[Z( H(S{)+) (L=H(SD)+> (1-H(S"))| (36)
m i€A i€B ieC
2 i D) : i B|+|C
< %(1 —min{H (80): i€ VX|Y(;;;-1)}) 4 ||mA @)
B B
: x1(9)+L:zm§9+%+P(JeO), (38)

where J is a random variable uniformly distributed over [0, m — 1]. Now, the contraposition
of (34) gives

Cc{ie[[o,m—l]] L g [H(Sff))]>€}, (39)

hence it results from Corollary 2.4 that

P(J € O) 40
P( 2 /— (40)
and this implies, with inequality (38) where 1Bl _ P’(J € H§(|y($1)), that
JeH —H(S)—60-— ’ 4
P(J € Hy(x1)) > 1 . 1
( X|Y( 1)) = (S) 5 /—0/2 (41)

Proposition 2.5 There exists A €10, 1] such that for any 6 €]0, %], for any memoryless
source S with binary-part to compress and discrete side-information, for any m € D (m = 2+),
the subsets defined in equations (8-9) satisfy

Har(0) Ve (0 V3o

- SN (42)
[ Hxpy (0)] V2A¢
H(S) -6 < DL < H(s) 1o+ (43)
IPERZAY Vi (9)]
H(S) 0~ < P < H(S) 6 (44)

Proof. Since z; = z1() < 6, we have Hg(‘y(xl) C 7-[§(|Y((9) and Vxy(z1) C Vxy(0). There-
fore: firstly Hxy (0) N Vs (0) C Hxp(z1) N V5 (21) and inequality (42) results from (40);
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secondly [HSy(z1)] < [HSy(0)] and the right inequality in (43) comes directly from (41).
Furthermore, the conditions max H (S ) <f#and max H (S /(f)) <1 give

ze’HgﬂY(e) i€H x|y (0)
m—1
1 , H 0
H(S) = — Y H(SY) <OP[J € Hiy ()] + P [J € Ho(6)] <6+ WA (45)

I\
=)

%

which proves the left inequality in (43). Similarly, condition 1I}nin((g{ (Sl(j)) > 1 — 0 implies
1€Vx |y

Vx| (0)]

m

H(S)>(1-0)P[J € Vxy(0)] > — 0, (46)

which proves the right inequality in (44). Finally, note that Vxy(8) C Hx|y(#) implies
Vxy(0) = Hxy () \ [Hx‘y(e) N Vgﬂy((‘))], so the left inequality in (44) results from (42—43).0
Let us now consider p €]0, 1[ and p € N* such that 4p* < 3, ie, p > m For
any memoryless source S with binary-part to compress and discrete 51de information, since
according to Proposition 1.1 for all i € [0, 2* — 1], Z(S’;(f)) < \/H(Sff ), we have
{iefo,2n=1] : H(SY) <4p™} < {ieo,2"—1] : Z(SP) <2p"}, (47
{ielo,2n=1] : H(SY) <m(4p™)} < {ie€0,2"—1] : H(SY) <4p™}; (48)
therefore with 6 = 4p? in (41), we obtain the following Proposition.
Proposition 2.6 With the notations introduced in this subsection, for any p €10, 1[, for any

integer | > —210;(’1 7y we have
() 2 1 (A '
P (Z (Sﬂ ) < 2,0") >1—H(S)—4p™* — 2\/_ (49)

where J is a random variable uniformly distributed over [0, 2" — 1]].

Let us remark that

5—1
vee[o,‘/_Q [ V1i-0<1-6? (50)
and for any p €10, 1], for any p € N such that
2—1 5—1 1.69 5—1
> 08(V5 1) ~ le, 2p'< V5 , (51)
log(1/p) log(1/p) 2

we have

1 oo 3 log(v2-1) 1 138
o () <3 “>[4 2 ]mg(l/p)—log(l/m’ o

and it results from the right inequality in (12) that

<H(S) > log(2 — 4,02“)> = (1 Y Z(8)>2— 4p2“>. (53)
Now, log(2 — 4p*) = 1 — log[(1 — 2p*)~'], moreover 1 + Z(S) > 2 — 4p* if and only if
Z(S) >1—4p* and 1 — 4p** > /T — 2pH according to (50-51), hence

(H(S) >1—log {1——1202“}) = (Z(S) > \/m) ie, Z'(S)=1-Z(S) < 2p".

(54)
Finally,

1 In(1 — 2p%) 2%

1—1 — | = — = <1- .

°8 {1—2;)2#] T S T T2
Therefore the next proposition results from the left inequality in (44).

(55)
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Proposition 2.7 With the notations introduced in this subsection, for any p €10, 1[, for any
2—log(v/5—1)

oa(i/p) We have

integer [ >

2 In2 /A\"
P(2(s) < 20) 2 H(S) - 2yt - 22 ()], (56)

where J is a random variable uniformly distributed over [0, 2# — 1].

%% % % % % % % % % % %
We add this paragraph to prove the Rough polarization theorem.

Let p €]A, 1] and £ €]0, 1; let

2 1
o= e (Gt ) 50

and let © € N such that p > b,In(1/e). Then, we have ln(l/li)(;/(/l\n)2)/2 < 112((;//;)) < b,In(1/e) < p
In(1/e)4+31In2 4In(1/e
2In(1/p) — 2In(1/p

2 (5) <

We proved the following theorem by Guruswami and Xia.

and

% <b,In(1/e) < p, which imply

ou € o 1 /A"
and  4p <3 hence 4p —i—ﬁ " <e. (58)

DN ™

Theorem 2.8 (Rough polarization) There exists A €10, 1] such that for any p €A, 1],
there exists b, > 0 such that for any memoryless source S with binary-part to compress and
discrete side-information, for any e €10, 5[ and for any p € N, such that pn > b,In(1/¢), there
exists a roughly polarized set

S,c{si:o<i<2} (59)

such that for any M € S,, Z(M) < 2p" and ]P(Sf[]) €S,) > 1-H(S)—e, where J is a random
variable uniformly distributed over [0, 2# — 1].

%% % %% %0 %0 %0 %0 % % %o

3 Fine polarization

This section is an adaptation of the reasoning given by Guruswami and Xia (see footnote 3) to
prove their fine polarization theorem.

3.1 Preliminaries

Lemma 3.1 For any €10, %[, the function ¢ : R} — Ry defined by

Cly) = Ly N 282y _ 1+;1,3 2 if y € N* 60)
2y [y] Q(q‘ia) + Qﬁq(flra) fy=q+awithqgeN and 0 < a < 1,

satisfies the condition:

v%<wzj@fmmmm+wwamm=

y—+1) + 2ﬁ2> . (61)



Proof. For ¢ € N*, let us introduce the continuously differentiable function of «

fe i Ry — RY

o 282(q+a) (62)

2(q+oz)+ q+1

which satisfies f,(a) = ((¢ + ) (Va €]0, 1]) and

1 2 1 2 q g _ 1 2
— - 7 2 N=—9 4op2<-yo
f0) =520t < S and g =gt < a2t ()
: 2° q / Valg+1)
= — d = 4
fola) T+1 2t o)y and  fi(a) =0 & a= EECT (64)
Let us remark that 5 €]0, 3[ implies f/(0) = _—1 + 28 < 0 and the zero of the derivative

q+1
function is always greater than Zero. Moreover the zero of the derivative function is smaller

than 1 if and only if

(g +1) 5 4
— < 1 =4 < —. 65
e (¢+1) Y (65)
Hence, if [y] = ¢ > = 452, then min{ f (@) : o € [0, 1]} = f,(1) = —~4 < + 252, o
Z(LyHl)
The proofs of the following three lemmas are straightforward.
Lemma 3.2 The function
C TRy — R- . 2
th = ~1
y = —op2Y+y wr o eln?2 1o (66)
is maximum at the point yy = % = ﬁ —12>~0,44 and ((yo) = —1.
Lemma 3.3 For any €10, %[, the function
¢ Ry — Rj
N 1;’,_6’+y’1 (67>

is strictly decreasing, p(1/8) = 2 and ¢(y) approaches to 1 — f < 1 when y approaches to
infinity. Hence, there exists cg > 0 such that

Yy, (y = cg = wly) <1). (68)
Lemma 3.4 V3 €]0, 5[, Vy € R%, V€ > 1 and Vp €]0, 1] the function

YRy — RY

69
y = \/_<1+log(1/p))eXp[ = 25) } ( )

is strictly decreasing on Ry, ¥(0) > 1 and ¥(y) approaches to 0 when y approaches to infinity.

3.2 Introduction of parameters, constants and notations

Let 6 € ]0, 1[ and 8 € ]§, [ such that v = % is a rational number. We put v = 7" with 7,
and -4 co-prime integers (7 can take any value in Q7).
Let p € |JA, 1[, £ > 1 (the x parameter used by Guruswami and Xia is connected to & with the

relation x = gl‘l)fg(é/ /pg)) and
8§l w

70

- |t o
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Using the constant cg introduced in lemma 3.3, let

o~ el )

— max (1 + a0>§ C/
= ((5 ~ 1) log(1/5) 5) | (72)

Let 1 be a natural integer multiple of 7,4 such that

> cs. (73)
Finally, let us introduce
v=9u and vy=((+1)p=v+u, (74)

which are natural integers because p is a multiple of ~,.
For any j € [1, ], let us note I; = [M, %’[HN, n; = |I;| and

v—1 v—1
. 14 . v
G ==Y n2 Yn= 2 a=di=Y et Y -by Y
k=0 k€l k=0 kel

where bg, ..., b,_1 are the binary digits of 7. It comes

L%J <n; < {%W and ]Z:;nj = 1. (76)
Finally, let us put

Gv)=()Gi(v) and G'(v)= ﬂ G(v). (77)

3.3 Proof of the fine polarization theorem

Lemma 3.5 (Guruswami & Xia) With the notations introduced in the previous subsections,
if Jo is a random variable with uniform distribution over [0, 2¥ — 1], then

v
P(heGW) = 1-v(2), (78)
P(LeG W) > 1-1 (%) . (79)
v—1
Proof. If we write J, = Z By2*. then the v bits By, are independent Bernoulli random vari-

k=0
ables with parameter % If J; takes its values in G;(v), we have

ZBk—%_—<%—6—:). (80)

kG]j
Moreover
n; pr _1 LVJ pr 1 (1/ ) 1512
L P s () - 81
2 c 2Llc c 2 \c c (81)
and since, according to equations (70-74), we have
1
%21 wv_ézl L>(1_25)’ (82)
thg7 5 T Tosli/p)
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it comes

1 /v Bv  (1-28)y 1
sy 50 (83)

It then results from Hoeffding’s inequality that

P(h € Gj(v)) = 1-P ZB’“_%<_(%_@)

> 1—exp (— (% — %) an> : (84)

2

Now, (% - 57) on; = v B _ v (;; —28+ 2 ) > £ (¢ (%) — 28), where the last

inequality comes from (76) and the ¢ function is deﬁned in equation (60). Further it results
. y ¢ | _

from condition (82) that? LZJ > 4ﬁ2 Therefore ¢ ( ) )] +26% = %+2B2 — m,

according to Lemma 3.1, and ’

'_
AN

1 Br\? v(1-28)2 1 % v(1-26)% 1
(5—@) M2 e a1 2% (85)
Hence )
P(J. € G;(v)) > 1 —Veexp {—(1—2—625”] (86)

and we obtain

C

—(1-28)%v v
B(): & GW)) < 3 P(): € Gi(v) < eveexp [2—] <v(Z) 6D
j=1

(the last inequality resulting from equations (70) and (69)), that proves (78). Finally, the same
proof, where By, is replaced with (1 — By,) in relations (80) and (84) and G;(v) is replaced with
G'(v) leads to (79). o
Now for any memoryless source S with binary-part to compress and discrete side-informa-
tion, it results from Proposition 2.6 (since® p > that there exists S, C {S,(f) :0<i<

2#} such that

4)
2log(1/p)

1 /A"
VM €S, Z(M)<2p" and P(SYVeS)>1-H(S)—4p™ - NG ( ) (88)

where J; is a random variable uniformly distributed over [0, 2# — 1]. In a same way, it results

from Proposition 2.7 (since® p > that there exists S, C {S,Si) : 0 <4 < 2"} such that

#)
2log(1/p)

VM e S, Z'(M) < 2p" d [p>(S<Jl)eS’)>H(S)—i 2 (A (89)
" = Al " r) = m2’ ~ 2\,

For any M € §,, we define the sequence

» Si2D\? g
Z,Ef) _ Zlf_l, > if ¢ is odd, for any k € N*, with Z(O) Z(M). (90)
2Z${2J) if 7 is even,

“Indeed, the condition (82) implies

v v 1 28 28 28\ 4B
MZC1>1—251_1—2/3>(1—25)(1+25>_1—432'

o Lo (14a0)€ l4ag  ~, _ 2.06 3
®Indeed, condition (72) implies p > EDlogi/p) > log'fl/“p) ~ it/ > 210g(1/\pf).

. 14ag)e ) 2-log(v5-1) ., 1.
“Indeed, condition (72) implies 11 > ity > matit = wait/s > T = wil-
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Let us note R(u) ={i € [0, 2* —1] : s e S}
In the same way, for any M’ € S/, we define the sequence

e 2
S0 _ le}g””) if 7 is even,

L P S for any k € N*, with Z,% = Z/(M"). (91)
27, if 7 is odd,

Let us note R'(u) = {i € [0, 2" —1] : SV € &'},
Lemma 3.6 (Guruswami & Xia) With the notations introduced in the previous subsection,
we have log <maX{Zi 1€ Gy )}) < -2,

Proof. Let us note for j € [1, ], v; = S21_, ni (thus v, = v) and
z; = max{Z},ﬂUﬂVﬂjJ) D1 € G(l/)} for any j € [1, ] and zy = Z(M). (92)

Let us remark first that if z; has been attained by p squarings (0 < p < n;) and n; —p doublings
from z;_;, the maximum value will be obtained by applying first the n; — p doublings followed
by the p squarings”. Moreover, if z; < 1, the maximum value will be reached by minimizing
the number of squarings®.
According to relations (72), (74), (70) and (88), we have p > % MeS,, 2< ”log(l/p)
and

logZ(M)+%Sl—,ulog(l/p)(l—l/f)Sl—(1+0zo)——ao —1. (93)

Equation (93) shows that log Z(M) +n; <log Z(M)+ % +1 < 0, hence if one doubles n; times
zp one obtains a value that is smaller than 1. Thus z; < 1 and since for any ¢ € G(v), the
number of squarings is worth at least (6—0”}, we have

log 2 §2f57"1 (logZ(M)—i—%—l—l— [BU—D <2c <logZ(M)+@+l), (94)

which can be written, using the ¢ function introduced in Lemma 3.3,

log 21 + 2o (5) < 9% (1og 2(M) + 2o (5)) < 9% (log Z(M) + 5) , (95)
C C C C C

according to condition (68) and

<

Z> 7“ — a > cg (96)
c 1+ Ly _ &
log(l/p) v log(1/p)

— the last inequality resulting from condition (73) and definitions (71-72) of ¢;.
Moreover, according to Lemma 3.3, the ¢ function is greater than 1 — /3 and it results from (93)
and (95) that

logzl—i- < a02c+&—C(ﬂy>_ —1, (97)

C

where the ¢ function is defined in Lemma 3.2. So 2 + 1 +log2; < 0, therefore z; < 1 and the
same reasoning as above leads to

v v 1 —
log 2o < 9% <log 21+ ng — [%—D <9 <log 21 + (Tﬁ))y + 1) , (98)

"Indeed, starting from z, if we apply p squarings and n; — p doublings, the final result will be of the form
22"2% and «, the power of 2, will be maximum if the n; — p doublings precede the p squarings.

8If 2; > 1, the maximum value can be reached by replacing some doublings by squarings: starting from
x > 0, p+ 1 squarings will give a greater result than p squarings if and only if

2°(logx +mn; —p) <2 (logz +n; —p—1) <« logz >2— (n; —p).

11



which can be written

log z5 + Zg@ <Z) < 0% <log 21 + Zgo <K>> , (99)
¢’ \c c” \c

which, with (95), leads to
log zo + (1 — B)z <logzy + z(p (Z) < o™ (log 20 + zgo (Z)) (100)
c ¢ \c ¢ \c

and according to conditions (93) and (96) and the property (68), it follows that

log 2o + Y < 9% (10gzo + > BV
c c
2 2
< —ag2™ + B”_g(5”>—@<g<5”) -1, (101)
c c
where the last inequality results from Lemma 3.2. More generally, let us suppose that
~Lpy 51/

log zj_1 —|— < 9! (log 20+ > . (102)

so 1+ 2 +logzj 1 <1+¢ (@) < 0 according to (93) and Lemma 3.2, and the same

reasoning as above gives

1 —
log z; + d=fw <2 <log 20 + ) (103)
c
in particular for j = ¢ :
log z, < 2% (log 20 + Z) < 2P (104)
c
where the last inequality results from relation (93). o

The same reasoning replacing ZS) with Z l;(i) leads to the following lemma.

Lemma 3.7 With the notations introduced in the previous subsection, we have
log <ma,x {Z,V(i) RS GI(V)}> < 2%

After all, we can deduce from equations (103-104) that

1—
log z. + d=hv < 2P, (105)
c
Further, since log(1/1n2) ~ 0.529 and 5 > 0, we have
1 log(1/1n2
B(2log(1/In2) — 1) >0 >1log(1/In2) — 1,  ie,  logll/In2) (106)
1-28 1- 5
which implies, according to the conditions (71,73) and the equation (70),
£ 1) 1 clog(1/1n2)
[> (— + > , 107
log(1/p) 1-28" ~(1-p) 1om
ie., @ > log(1/1n2). Thus the relation (105) leads to the following lemma.
Lemma 3.8 With the notations introduced in the previous subsection, we have
log (max {Z i€ Gy )}) < —2% +log(In 2). (108)

12



Let us recall that 1y = v + p and let us summarize the results proved in this section. We
expanded ¢ € [0, 20 — 1] into ¢ = i; + 2"49, where the binary digits of i, € [0, 2V — 1] and
iy € [0, 2* — 1] correspond respectively to the first v and last p bits of i. We proved that if
i € R(p) (ie., if S7 € S, or equivalently if Z(SS") < 2p") and if iy € G(v), then

i _2BV _251/
Z(S9)y <272 In2=2"""1n2. (109)

We also proved that if iy € R'(u) (i.e., if S;(il) € 8! or equivalently if Z/(SS") < 2p*) and if
is € G'(v), then

Z'(SW) < 272" = 27", (110)
Now, according to equations (88) and (78) and assuming J = J; + 2#.J; is a random variable
uniformly distributed over [0, 2¥° — 1], we have

P(J1 € R(u) and J, € G(v)) = P(Ji € R(p)) P(J2 € G(v)

)
- (1w () 10 (2)
> 1 H(S) — 4™ — ﬁ (%) - (2) (111)

We deduce that

P (2(55({)) <972y 2) > P(J, € R(p) and J, € G(v))

> 1—H(S)—4p2“—2—\1/§ (%)M—lp(—). (112)

In a same way, we have
P (Z'(550J>) < 2—25”()) > P(J € R(p) and J, € G'(v))
2 vVIn2 /A" v
> H(S) — —=p? — (—) - (2). (113)

"~ In2 2 p

Thus, we proved that for any p multiple of v4: p = kv, with k € N* great enough (k > %)

or in other words for any sufficiently large vy = p(1 + ) = k(74 + 7), the relations (109-110)
and (112-113) are valid.
Let us consider now 1), between two successive multiples of 74 + vy

Vo =k(ya+ ) +u=p(l+7) (114)
with )
p=ky, 0<u<qytye and o =t M (115)
kva kvya
then
, U u
Y<Y =7+ —<7v+—<1+2y (116)
kvya Vd

Let us remark that if we introduce §’ such that

0o’ )
r_ - 11

then 6 < ¢ and 9-2"* < 9-2"%, Thus, by replacing v with 1 4 2v in the definition of v
(see (69)), leaving v unchanged in equation (71) and replacing v with 4" everywhere else, the
above reasoning can be remade in order to prove the following proposition.
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Proposition 3.9 For any 6 € }0, %[, for any B € ]5, %[, for any p €10, 1[, for any & > 1,
there exists Csg > 0 and Asp > 0 such that for any memoryless source S with binary-part to
compress and discrete side-information and for any integer vy > Cs g, we have

sv0 LA\ —(1—2p)?
P (Z(Sgoﬂ) <272 In 2) >1— H(S) — 4p* — WG <;) — Aspexp ((Tﬁ)y)(,m)

p(20s) < 2+) 209 - gyt () - e (L) 10

where J is a random variable uniformly distributed over [0, 20 — 1], v = 5%5, vo = (v+ Dy,
v=~u and c = {ﬁ-‘.

Let us denote

1 1 B —0 ) 1
A 5 ence f3 T, and = (120)

Now we can choose £ > 1 so that the fraction ﬁ is an integer (equal to ¢), then we have

vy plog(l/p)

c c &

and the previous proposition becomes:

(121)

Proposition 3.10 Forany 6 € |0, 1], for any p €0, 1[, for any € €]0, 1-25], for any £ > 1
such that al(ig_(?fp) € N*, there exists Cs. > 0 and As. > 0 such that for any memoryless source
S with binary-part to compress and discrete side-information and for any integer vy > Cs., we

have

"o 1 /AN
P <Z(Sl(,({)) <272y 2) > 1— H(S) — 4p*" — G (;>
(-(1 — 2)*log(1/p)evs
— Ascexp

26

R O &) T L [

2 In2 /A\" i 25 \2 1 |0
4 (J) < —29v0 > - 2evg _ _ _ (1_ 1—5) 2¢6In2
p(7(80) <o) > H(S) - op : (p) Ase [0 vz | (123)

where J is a random variable uniformly distributed over [0, 20 — 1]. Moreover we can choose

(gL 2o
s = (14 i ) (124

Let us put n = 2*°. Equation (122) can be written

4 1 A
(J) < —TL‘s > _ _ _ _ 575
P (Z(SVO ) <2 In 2) > 1= H(S) -~ — WP (125)
with
5O = 2clog(1/p), (126)
kP = elog(p/A) (127)
26 \* log(1/p)
® - (1- _ 128
e 5( 1—8) 26 1n2 (128)
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In order to shorten the notations, let us put

26 \? 1
For fixed o E 0 [, we look for € €]0,1 —26[, p €]0, 1] and £ > 1 that maximize
Ke = min (/{E ,/ﬁ:e , ) Let us remark that
2
log(1/p) _ elog(1/p)
2¢log(1/p) = kM 1

therefore min </<£ ), /422) , /€£3)> = min </<£2) , nf’)). Moreover, we have

/\

log A
2 < k¥ o log(p/A) < alog(l/p) < logp < % s p< AT+, (131)
a
Firstly, let us suppose that
1
p< ATs, (132)
0 o2, 1) = 1

In this case we have min (/{6 , Ke = ke’ = elog(p/A) and this expression is maximum

when the independent variables p and ¢ are maximum, hence for p = Al%a, which leads to
min (kM k2, £P)) = £ = 5P = log(l/A)% with a = alg,§), (133)
a

since 0 is supposed to be fixed. Secondly, if we suppose that

p> AT, (134)
then min (/ﬂgl), k2, /ff’)) = k¥ = ca log(1/p) and this quantity is maximum when « is maxi-
mum and p minimum, i.e., when inequality (134) is an equality, i.e., when (133) is satisfied.

Further, the exponent kP = kP in equation (133) is maximum if and only if
def ca(g, )
el _fN5S) 135
dle.6) ™ TR (135)
is maximum. Since
2
dg £ da —<(1-)
- - - .= = <0 136
g(g,€) is maximum when
£ = &min > 1 (137)
and equation (129) implies that
2
(1 - 5) def
Oé(g,fmin) = m = O5max(€)- (138)
Finally, the function to maximize is
_, Ldef  EQmax(€)
LS. xAF) 139
9() = 13 - (139)
whose derivative )
~ amax E: g&max €
(o) = —maxld) S (140




vanishes if and only if cimax(€)(1 + amax(€)) + () = 0. We obtain a trivial solution
e =1—26 (corresponding to a minimum: g(1 —20) = 0) and a third degree algebraic equation
inu, withu=1-—¢:

= 2umln2+1
26(3 — 26 In 2)

= 40(26mm In2 — 30)

— 80"

P(u) = Av® — Bu®> — Cu — D, with (141)

CQw

u1(6), ua(6)

0.5 T T T T T

03 1

0.2 1

05 I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 1: Graphs of u1(8) and us(8), the roots of P'(u), for 6 €0, 5[ and various values of
Emin = (10+ k)/10 (0 < k < 10); solid line corresponds to Emin = 1.

The discriminant of P is the resultant Res(P, P’) between polynomials P(u) and its deriva-
tive P'(u) = 3Au? — 2Bu — C-

A -B —-C —-D 0

0 A —-B —-C -D
Res(P,P) = | 0 0 34 —-2B -C (142)
0 34 —-2B —-C 0
3A —-2B —-C 0 0

256/(Emin 10 2)%(26min In 2 + 1)(40% — 40 + 2&0im In 2 + 1)6°
X (8min In2 — 6(27 — 2&in In 2)). (143)

The third degree equation P(u) = 0 admits a multiple root if and only if the resultant Res(P, P’)
vanishes, i.e., if and only if § = 0 or (see Figure 2)

nln2
Bmin In ~  0.21649. (144)

=19 min) = 35 a8 1 o
1(5 ) 27 - 2€m1n ln 2 Emin:1
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Thus for all 6 €]0, 61({min)], the equation P(u) = 0 admits three real roots, for § > 61 (&min)
the same equation admits only one real root and for § = §;(&nin), the real root is multiple.
Moreover, let us introduce the discriminant of P'(u):

A = B? + 3AC = 86&min I 2(6&min In2 + 3 — §(15 — 26 In 2)), (145)

which vanishes when
6&minIn2 + 3

d =4 min) = T2 A 1 & . — .52 ) 14
0(&min) 15 — 26min 1N 2 €min=1 0.52586 (146)

and, for ¢ € }O, %[, let

5 B—VA B+ VAN
wl) ="y < T
be the real roots of P'(u) (see Figure 1). We have P (u;(61(&min))) = 0 and us(ds) = 265 with
Jy=1/5=0.2.

We show on Figure 2 the graphs of the values of P(u) when P’(u) vanishes as functions of
J for different values of &, and we can see that for all 6 €0, §1(&min)[, P(u1) > 0. Further,

0 and  wuy(0) 0 (147)

0.5 T T T T T
- - ~\~\.\ ‘\\\'
- ~. .
= T~ ~. N
- ~\‘\~ \_\ \\\ N,
\.\A\.\ UGN N \\
~. N ~ .
.\‘\ o \A\ N, . \\\ h
0 N <. -\, N N < ~ N
\.\_\ ~. ~. N, N, N, «\ \‘
R R N NN N N\, N /5
AN T N T N N N>
NN TR N N NN 715
LN NSNS,
— NN SIS,
—~ < , D
w
= L
3 -0.5
~—
Q
1+
— P(u)
—— P(u2)
—P(25) .
15 1 1 1 1 1 1 1 1 1 NN
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 2: Graphs of P(u1(0)), P(u2(8)) and P(26) for 6 €]0, 1[ and various values of Emin =
(10+ k)/10 (0 < k < 10); solid line corresponds to Emin = 1.

since P(0) = —D < 0 (¥§ > 0) and P(u) - —oo when u — —oo (¥6), we deduce that when
equation P(u) = 0 admits three real zeros (i.e., when 0 < § < 01(&min)), two of the three roots
are smaller than zero.

Finally, since polynomial 462 — 46 + 2&,;, In2 + 1 has no real roots, we can remark that

P(1)=A—B—-C—D=(1-26)(40" — 46 + 26pinIn2+1) >0 forall § € }o, %[(,148)
P(20) = 8A6% —4B6? —206 — D = —16£i,(In2)0%(1 — 26) < 0 forall 6 € }o, % [(149)
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Therefore, for all 6 €]0, [, there is always one and only one zero of P(u) with 26 < u < 1.
Let us note v4(d) this root of P. All the above mentioned conditions on the real roots v;(d)
(1 < i < 3) of P(u) can be observed on Figure 3, which has been obtained with numerical
simulations.

Real roots of P(u): v1(d), v2(d) and v3(9)

1 T T T T T T T T T

151
0.8 Vo |
V3
v=2
0.6 g B
0.4 B
0.2 B

v;: roots of P(u)

08 1 1 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 3: Graphs of v1(0), v2(d), v3(8) the real roots of P(u) and of v =28 for 6 €]0, L[ and
various values of &min = (10 + k)/10 (0 < k < 10); solid line corresponds to &min = 1.

We show on Figure 4 (a) the graph of g(1—v4(0)) as a function of 6 and (b) the graph of g(¢)
as a function of ¢ for various §. We see that ¢ is maximum for 5111% g(1 —11(5)) ~ 0.0046789995.
—0 min=

Thus, we prove the following Proposition.

Proposition 3.11 For any ¢ € }0, %[ and for any € €10, 1 — 20[, there exists ks > 0,

Ase > 0 and Cs. such that for any memoryless source S with binary-part to compress and
discrete side-information and for any integer vy > Cs. — noting n = 2° —, we have

_ Ase
nErs.e
. Aé,s

nNErs.e )

P (Z(sﬁ({)) <2 In 2) > 1- H(S) (150)

B(Z(S)<2) = H(S) (151)
where J is a random variable uniformly distributed over [0, n — 1].

_ 28 \2 9]
Moreover putting Bs. = {%} , we can choose As. such that

2 VIn2 2 Ving 2
\/E(l—l— 835,€)+ > <A5,5<\/E<1+ EB(;,a)—i- S (152)

€ € 2 In2°

Further, for any 6 €0, %[, for any memoryless source S with binary-part to compress and
discret side-information, for any vy € N, let us apply inequality (42) of Proposition 2.5 with

18



Maximum value of g(e) as a function of § Graphs of §(e) as a function of & for various ¢ ({min =1)

— 6§ =0.0001
4T )l 04r| 5 =0.001
§=0.01
[|—3& =0.05
l|—6=01
§=0.15
__o2sf —5=0.2
O —§=0.25
IS

§(1—11(9))

0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1
(a) (b)

Figure 4: Graphs of (a) g(1—v1(9)) as a function of § and various values of Emin = (104 k)/10
(0 <k <10) (solid line corresponds to &min = 1) and (b) of g(€) as a function of € for various
0 and &pin = 1.

f=uvy, m=n=2%and § =2 (provided that 6 < 1):

[Hxpy (277°) N V5 (27)] _ V2
n TVt

We claim that for any x > 0, for any € > 0, there exists 0, . > 0 such that for all n > 0, .

VEA® G,

(153)

. 154
N o
Indeed, inequality (154) is equivalent to
1
logn (log A + ke) <logb, . + 3 (1 + n‘;) , (155)
which is satisfied when 6, . and n are sufficiently large.
Finally we have
p(H(s) >27) = 1-p (H(SY) <27) (156)
and since according to relation (12),
(J) —nf (J) (J) Z<S£OJ)) —nf
Z(S)y <272 = H(S)) <log(1+ Z(S})) < 5 <2 (157)
then , ;
J -n J —n
P (H(S§O>) <2 ) >p (Z(sg(f) <2 In 2) (158)
and with the notations of Proposition 3.11, we have
Ase
P (H(sgg>) > wé) < H(S) + =2 (159)
n \E
Similarly ; .
J —n/ J —n/
Z'(85)) <2 = H(S{)>1-2 (160)
implies
Ase
P (H(sgp) >1- 2*"“) >p (Z’(s,gg>) < 2*"‘5) > H(S) - =t (161)
n ,E

Therefore, applying the left inequality of relation (43) and the right inequality of relation (44)
we prove the following proposition.
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Proposition 3.12 For any ¢ € }0, %[ and for any € €10, 1 — 20[, there exists ks > 0,
Ase > 0 and Cse such that for any memoryless source S with binary-part to compress and

discrete side-information and for any integer vy > Cs. — noting n = 2° —, we have

[Hxy (277°) N V5 (27)] < Ase

0 < - e (162)
—nd
__o-n? HXIY (2 >‘ Aéva
H(S) -2 < < H(S) + (163)
n nerse
—nd
A ()
H(S) < < H(S)+27" (164)
n&‘ﬁ]g’g n

where Ase satisfies the inequalities (152).

3.4 Order of magnitude of constants

In this subsection we study the values of the constants cg and ¢; with numerical simulations.
Firstly we compute the solution’ a = «a(/3) of the equation

log o — log 8 15} 15}
o= O P) o AR 1

“’( 5 ) ¢ atiga—tgp " (165)
such that

) = %log (@) (166)

is the smallest permissible value of ¢z satisfying (68). Moreover we find a simple expression

Graph of « solution of log(a) = %7 +log(B3) vs 3

22 T T T T T T

y=a

——y=168+1.203

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

B

Figure 5: Graphs of «(B) solution of equation (165) and of an affine upper bound.

o _ %log (1.66 ;1.203) (167)

slightly greater than the smallest value c(ﬂl) (see Figures 5-7).

9Let us remark that this new function « is not connected to the « function introduced in (129).
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Graph of ¢z (in dB) vs 8

140

120 -

100 -

60 -

¢z in dB (201og;4(cp))

20

‘)
o = cg) _ %log2 1.6&;1.203) ]
—y = 1

1) _

——y=c; = 5log

1-23

X:0.406
Y: 14.52 b,

.\

0.9998
0.9996
0.9994
0.9992

S 0.999

S-
0.9988
0.9986
0.9984

0.9982

0.998
0

0.05

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

B

0.5

Figure 6: Graphs of c(ﬁl), cg) and —1_12[3-

Graph of ¢(cg) vs 8

0.05 0.1 0.15 0.2 0.5

Figure 7: Graphs of ¢ (C(ﬁl)> and ¢ (Céz))
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Secondly, we assume that inequality (134) is an equality and replacing « by the expres-

sion (129), we obtain

log(1/A)

C 2¢In(1/A)

log(1/p) = ——_

C26In2+ (1 -2p)2

and we express ¢ and ¢; introduced in relations (71,72) as functions of § and &.

cly en dB (201og,,)

180
160
140
120
100

80

cfy en dB (201logy)

60

40

20
10

log(1/A) 2£In(1/A)

C,} with log(1/p) = Thomam (B.8)  26In2+(1—28)2

Figure 8: Graphs of cj versus § and .

c;y with log(1/p) =

Figure 9: Graphs of cj versus § and .

log(1/A) 2£1In(1/A)

-1 160

- 140

4120

Thapax(3,£) — 26In2+(1-23)2

22

160

- 140

=120

(168)



Let us denote

C(l) _ (1 + Oéo)f
> (€= 1)log(1/p)

appearing in the definition (72) of c;.

¢s en dB (201og,,)

Cs

35

200 -,

150

100 -8

a
o
i

o
n o
Vi

1) _ _ (+a)é with log(1/p) = log(1/A) _ _ 26In(1/A)

~ (§-1)log(1/p) Ttomax(8,6) — 26In2+(1-28)?

i

log(1/A) 2€1n(1/A)

¢s with log(1/p) =

I+oma(G6) — 26In2+(1-209)2
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cs en dB (201og,,)

In order to have

cs with log(1/p) =

log(1/A)

2¢1n(1/A)

1+aax

Be) —

2£1In2+(1-23)%

MWMW@MMMMMWH

Figure 10: Graphs of cs versus & and f3.

def
C p—
[log

v

v

(1/p)

W ~ log

(1/p)

160

4 140

4120

4 100

80

60

40

(170)

with p satisfying equality (168) and & > 1 as small as possible, we set &y, as the value of £
solution of equations (168) and

&:min(N*ﬂ{M ; §>1}>. (171)
elog(1/p) elog(1/p)
Table 1: Some numerical values obtained by simulations.

0 € B Y C;az) 1,12[5 gmin IOg(%) C/ﬁ Cs AS,E Cd,s Re = Ké e ERe
0.10 | 0.79 | 0.48 | 0.27 | 4.3 21 1.42 | 0.1255 | 316 | 316 30.1 400 1.1410~% [ 9.05107°
0.10 | 0.74 | 0.38 | 0.35 | 5.8 4.3 | 1.03 | 0.121 66 | 506 | 25.6 684 3.331073 | 2.461073
0.10 | 0.69 | 0.32 | 0.45 7.5 2.8 | 1.03 | 0.116 | 83 | 650 | 29.5 943 7.041073 | 4.861073
0.10 | 0.64 | 0.28 | 0.56 9.2 2.3 1.20 | 0.112 | 115 | 115 39.0 179 8.541073 | 5.471073
0.10 | 0.59 | 0.24 | 0.69 | 11.1 2.0 1.08 | 0.107 | 127 | 270 41.3 458 1.111072% | 6.531073
0.10 | 0.54 | 0.22 | 0.85 | 13.0 1.8 1.10 | 0.104 | 153 | 223 48.7 413 1.121072 | 6.361073
0.10 | 049 | 0.20 | 1.04 | 15.1 1.6 1.06 | 0.101 | 173 | 352 55.3 719 1241072 [ 6.051073
0.10 | 0.44 | 0.18 | 1.27 | 17.1 1.6 1.08 | 0.099 | 201 | 268 65.9 610 1.191072 | 5241073
0.10 | 0.39 | 0.16 | 1.56 | 19.3 1.5 1.04 | 0.096 | 221 | 557 75.6 1428 1.171072 | 4561073
0.10 | 0.34 | 0.15 | 1.94 | 21.5 1.4 1.01 | 0.093 | 243 | 2394 | 88.7 7042 1.101072 | 3.74103
0.10 | 0.29 | 0.15 | 2.45 | 23.7| 14 | 1.01 | 0.092 | 271 | 1633 | 108.9 5631 9.781073 | 2.831073
0.10 | 0.24 | 0.13 | 3.17 | 26.0 1.4 1.04 | 0.091 | 304 | 629 | 139.1 2622 8.2610~3 | 1.981073
0.10 [ 019 [ 0.12 | 4.26 [ 284 | 1.3 | 1.01 | 0.089 | 326 | 3834 | 178.5 | 20179 [ 6.9010~2 | 1.311073
0.10 | 0.14 | 0.12 | 6.14 | 30.8 1.3 1.01 | 0.088 | 355 | 3168 | 251.3 | 22634 | 5.2110~2 | 7.3110~%
0.10 [ 0.09 [ 0.11 [ 10.11 [ 33.2 | 1.3 | 1.00 | 0.087 | 384 | 8302 | 403.1 | 92253 | 3.4410~3 | 3.1010~ %
0.10 | 0.04 | 0.10 24 35.7 1.3 1.00 | 0.087 | 414 | 6290 | 937.4 | 157257 | 1.5610~3 | 6.2410~°
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