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Abstract: We report on the definition and characteristics of nodes in the chaotic region of bifurcation
diagrams in the case of 1D mono-parametrical and S-unimodal maps, using as guiding example the
logistic map. We examine the arrangement of critical curves, the identification and arrangement of
nodes, and the connection between the periodic windows and nodes in the chaotic zone. We finally
present several characteristic features of nodes, which involve their convergence and entropy.
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1. Introduction

Let the one-dimensional, mono-parametrical and S-unimodal map (difference equation),
xt+1 = f (xt; p), where xt = f (t)(x0; p) is the tth iterated map, x0 is the initial value, and p is the
nonlinear parameter. As an example, we consider the Logistic map [1–16]:

xt+1 = f (xt; p), with f (xt; p) = p · xt · (1− xt) (1)

A bifurcation diagram is separated into two parts, the zone of Order, p < p∞, [3–5,17–22], where
only periodic orbits may occur, and the zone of Chaos, p > p∞, [3,6,7,13,17,18,23–30], where the chaos
appears, and both chaotic and periodic orbits may occur; p∞ is the Feigenbaum’s point [4,9,31], which
defines the boundary point of the two zones.

The Chaotic zone of a bifurcation diagram can be further separated in the sections named as
Chaotic Bands (CB) (Figure 1). As the nonlinear parameter p decreases, it reaches a boundary point,
where each section is divided into two new CBs [9,32,33]. In the sketched part on the right of Figure 1,
at the boundary point p = Q2, the CB(0) is divided into two new CBs, CB(00) and CB(01), while
the CB(1) is divided into CB(10) and CB(11). The binary system is applied in the numbering, i.e.,
CB(0), CB(1), CB(00), CB(01), CB(10), CB(11), and so on. The Single Chaotic Band (SCB) is the initial
section prior to any splitting [13,15,19,31–38]. This phenomenon of CB division is better known as
“merging”. Indeed, while the division of CBs appears as p decreases, a merge of CBs is observed as p
increases. The value of p, for which the division or merge of a CB takes place, is symbolized as Qn and
is called band-merging (Figure 1) [9,13,15,22,32,39–49]; n is the generation of each band-merging as
p decreases. In the chaotic zone, we have the reverse bifurcation, that is, a bifurcation of the CBs as
p decreases [13,15,47,50]. The self-similarity of this reverse cascade was studied using the Lyapunov
Characteristic Number (LCN) [13,15,22,33,47,51–53].
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Figure 1. Division or merge of CB sections: (Left) The chaotic zone of the Logistic bifurcation diagram 
after t = 500 iterations. (Right) Sketch of the chaotic zone, indicating the numbering of CBs (the window 
of period three is also sketched; of course, the shapes and scales of the figure are not realistic). In both 
diagrams, we indicate the CB’s generation n and band-mergings {Qn}. (Note: There is an infinite 
number of WOMs in each CB, but we only sketch the WOM of period 3 for simplicity. For the same 
reason, the three bifurcation miniature diagrams, located within the WOM of period 3, are illustrated 
with a simple straight vertical line.) (Taken from [9]). 

Within the chaotic zone and along the axes of the nonlinear parameter, p, chaos interchanges 
with islands of stability, which appear as Windows of Organized Motion (WOM) or periodic windows 
within chaos [1,9,13–16,19,22,32,34–36,39,42,54–61]. Each WOM is characterized by periodic orbits, 
with the least one defining the characteristic period of each WOM: A WOM of period T starts with a 
number of T fold bifurcations leading to T pairs of orbits (1 stable and 1 unstable). The topology of 
periodic orbits inside each WOM forms a number of complete bifurcation diagrams in miniature that 
equals the WOM period (Figure 2). Therefore, aside from the main zones of order and chaos, which 
have already been referred, secondary zones of order and chaos exist also for p > p∞, inside each WOM 
[9,51]. The closing of a window takes place when the orbits can escape from the regions of the miniature 
chaotic zones, merging into the main chaotic zone [61]. 

A certain chaotic orbit inside WOM of period 3 (or, briefly, WOM-3) in SCB has total period equal 
to 1 × 3 = 3, where 1 stands for the iterations needed for the orbit to visit SCB, that is trivially, one 
iteration. However, in the case of higher generation CBs, e.g., CB(0) or CB(1), the orbits visit a certain 
CB every second iteration. Namely, chaotic orbits visit WOM-3 in CB(0) or CB(1) every second iteration. 
Hence the period of the orbit is double the period of the WOM, i.e., in the examined case the total period 
is 2 × 3. In general, the period of the orbit in a WOM of period T in a CB of generation n is n × T. (See 
also [13,16]). 

Unimodal maps which are defined on the unit interval, have one differentiable maximum, and 
fall off monotonically on both sides, have a common property called structural universality [24,26,27,47]. 
The maps with this universality have their infiniteness of WOMs to appear with the same arrangement, 
in any CB of the Chaotic zone. This property let to the classification of WOMs using symbolic dynamics 
[24,26,27,32,39,47,59,62,63]. 

The purpose of this paper is to study the arrangement and features of nodes, high density points 
in the chaotic zone, which are interwoven with the location and period of WOMs. In our analysis, we 
focus on SCB, but similar features characterize all CBs. In Section 2, we examine the critical curves that 
appear in the chaotic zone, using the density of the variable x. In Section 3, we examine the identification 
and arrangement of nodes in the chaotic zone, separating those in two types: primary and secondary 
ones; each type has different arrangement and features. In Section 4, we derive the mathematical forms 
of critical curves and primary nodes. In Section 5, we show the connection of nodes with the universal 
arrangement of WOMs, while, in Section 6, we compute several characteristic features of nodes. Finally, 
Section 7 summarizes the conclusions, while, in Appendix A, are all tables mentioned in the main text. 

Figure 1. Division or merge of CB sections: (Left) The chaotic zone of the Logistic bifurcation diagram
after t = 500 iterations. (Right) Sketch of the chaotic zone, indicating the numbering of CBs (the window
of period three is also sketched; of course, the shapes and scales of the figure are not realistic). In both
diagrams, we indicate the CB’s generation n and band-mergings {Qn}. (Note: There is an infinite
number of WOMs in each CB, but we only sketch the WOM of period 3 for simplicity. For the same
reason, the three bifurcation miniature diagrams, located within the WOM of period 3, are illustrated
with a simple straight vertical line.) (Taken from [9]).

Within the chaotic zone and along the axes of the nonlinear parameter, p, chaos interchanges
with islands of stability, which appear as Windows of Organized Motion (WOM) or periodic windows
within chaos [1,9,13–16,19,22,32,34–36,39,42,54–61]. Each WOM is characterized by periodic orbits,
with the least one defining the characteristic period of each WOM: A WOM of period T starts with
a number of T fold bifurcations leading to T pairs of orbits (1 stable and 1 unstable). The topology
of periodic orbits inside each WOM forms a number of complete bifurcation diagrams in miniature
that equals the WOM period (Figure 2). Therefore, aside from the main zones of order and chaos,
which have already been referred, secondary zones of order and chaos exist also for p > p∞, inside each
WOM [9,51]. The closing of a window takes place when the orbits can escape from the regions of the
miniature chaotic zones, merging into the main chaotic zone [61].

A certain chaotic orbit inside WOM of period 3 (or, briefly, WOM-3) in SCB has total period
equal to 1 × 3 = 3, where 1 stands for the iterations needed for the orbit to visit SCB, that is trivially,
one iteration. However, in the case of higher generation CBs, e.g., CB(0) or CB(1), the orbits visit a
certain CB every second iteration. Namely, chaotic orbits visit WOM-3 in CB(0) or CB(1) every second
iteration. Hence the period of the orbit is double the period of the WOM, i.e., in the examined case the
total period is 2 × 3. In general, the period of the orbit in a WOM of period T in a CB of generation n is
n × T. (See also [13,16]).

Unimodal maps which are defined on the unit interval, have one differentiable maximum, and
fall off monotonically on both sides, have a common property called structural universality [24,26,27,47].
The maps with this universality have their infiniteness of WOMs to appear with the same arrangement,
in any CB of the Chaotic zone. This property let to the classification of WOMs using symbolic
dynamics [24,26,27,32,39,47,59,62,63].

The purpose of this paper is to study the arrangement and features of nodes, high density points
in the chaotic zone, which are interwoven with the location and period of WOMs. In our analysis,
we focus on SCB, but similar features characterize all CBs. In Section 2, we examine the critical curves
that appear in the chaotic zone, using the density of the variable x. In Section 3, we examine the
identification and arrangement of nodes in the chaotic zone, separating those in two types: primary
and secondary ones; each type has different arrangement and features. In Section 4, we derive the
mathematical forms of critical curves and primary nodes. In Section 5, we show the connection of
nodes with the universal arrangement of WOMs, while, in Section 6, we compute several characteristic
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features of nodes. Finally, Section 7 summarizes the conclusions, while, in Appendix A, are all tables
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Figure 2. (a) Main bifurcation diagram for 1 ≤ p ≤ 4 (main zones of order and chaos). (b) Main chaotic 
zone. (c) Single Chaotic Band (SCB), that is, the basic unit being repeated in smaller scales in the reverse 
period-doubling cascade. (d) WOM of period 3 in SCB. (e) Upper periodic attractor inside the WOM of 
period 3 and the produced secondary bifurcation diagram, a miniature of the main bifurcation diagram. 
(f) Secondary chaotic zone of the upper periodic attractor inside the WOM of period 3. The similarities 
between the main chaotic zone in (b) and the miniature chaotic zone in (e) are remarkable. The 
arrangements of WOMs, critical curves, and nodes, are some of the common features of the main and 
miniature chaotic zones. (Notes: Each of the colored indicated areas is magnified in the respective 
sequential panel. The diagrams are computed for 106 iterations.). (Taken from [16]). 

2. Critical Lines in the Chaotic Zone 

As we observe in Figure 1a, the chaotic zone is characterized by Critical Curves (CC), which are 
the loci of enhanced density of points. Figure 3a–e shows the formation of the chaotic zone as the 
number of iterations increases. We observe the multi-folding of chaotic orbits in the chaotic zone, 
while the critical curves appear to be the locus of the extrema of the orbits due to their folding, as 
shown in Figure 3e. This is reasonable because the density of mapped points P(x; p) is, by construction, 
inversely proportional to the derivative of the map ( ) ppxfpx t
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Figure 2. (a) Main bifurcation diagram for 1 ≤ p ≤ 4 (main zones of order and chaos). (b) Main
chaotic zone. (c) Single Chaotic Band (SCB), that is, the basic unit being repeated in smaller scales
in the reverse period-doubling cascade. (d) WOM of period 3 in SCB. (e) Upper periodic attractor
inside the WOM of period 3 and the produced secondary bifurcation diagram, a miniature of the main
bifurcation diagram. (f) Secondary chaotic zone of the upper periodic attractor inside the WOM of
period 3. The similarities between the main chaotic zone in (b) and the miniature chaotic zone in (e) are
remarkable. The arrangements of WOMs, critical curves, and nodes, are some of the common features
of the main and miniature chaotic zones. (Notes: Each of the colored indicated areas is magnified in
the respective sequential panel. The diagrams are computed for 106 iterations.). (Taken from [16]).

2. Critical Lines in the Chaotic Zone

As we observe in Figure 1a, the chaotic zone is characterized by Critical Curves (CC), which are
the loci of enhanced density of points. Figure 3a–e shows the formation of the chaotic zone as the
number of iterations increases. We observe the multi-folding of chaotic orbits in the chaotic zone, while
the critical curves appear to be the locus of the extrema of the orbits due to their folding, as shown in
Figure 3e. This is reasonable because the density of mapped points P(x; p) is, by construction, inversely
proportional to the derivative of the map ∂xt/∂p = ∂ f (t)(x0; p)/∂p.
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Figure 3. Formation of the chaotic zone as the number of iterations increases. 
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where n is the multiplicity of the critical curves. (The derivation of Equation (2a) is shown in Section 4). 
The critical curves of multiplicity n = 0 and n = 1 correspond to those surrounding the chaotic 

zone at its upper and lower edge, respectively. The curve of multiplicity n = 2 is the dominant one 
located in the interior of SCB, passing through the band-merging Q1 and the end of the chaotic zone at 
the point (p = 4, x = 0). (In fact, all critical curves pass through the point (p = 4, x = 0), except the 
chaotic orbit of n = 0, which passes through the point (p = 4, x = 1)). 

All the higher ranking critical curves (n ≥ 3) have maxima and minima located inside WOMs of 
periods equal to the multiplicity of the curves. It must be noted that these maxima or minima of the 
critical curves are located inside the miniature’s zones of order (not exactly at the branches). However, 
the critical curves of the chaotic main bifurcation diagrams have similar role in the miniature chaotic 
zones, but with different multiplicity (Figure 4). For example, the curve of n = 3 has a single maximum; 
this is located inside the WOM of period 3. This WOM starts at p = 2√2 + 1 = 3.82842712474619, the 
double period bifurcation starts at p ≈ 3.8414 …, while the maximum is located at p ≈ 3.8390 …. The 
chaotic curve of multiplicity n = 3 in the main chaotic zone becomes of multiplicity n = 3:3 = 1 in the 
secondary chaotic zone (that is the critical curve passing through the lowest x-values). It is interesting 
that, in general, the product of the multiplicity of a critical curve with the period of the WOM is a 
constant. In the example of WOM-3, multiplicity is 3 when periodicity is 1 (main chaotic zone), while 
multiplicity is 1 when periodicity is 3, i.e., 3 × 1 = 1 × 3. Consequently, the critical curves, with multiplicity 
n in the main chaotic zone, do not appear in WOMs with period larger than n. 

Figure 3. Formation of the chaotic zone as the number of iterations increases.

The critical curves can be expressed by

X(p; n) = f (n+1)
(

1
2

; p
)

(2a)

i.e., X(p; 0) =
1
4

p, X(p; 1) =
1

16
p2(4− p), X(p; 2) =

1
256

p3(4− p)(p3 − 4p2 + 16), etc. (2b)

where n is the multiplicity of the critical curves. (The derivation of Equation (2a) is shown in Section 4).
The critical curves of multiplicity n = 0 and n = 1 correspond to those surrounding the chaotic

zone at its upper and lower edge, respectively. The curve of multiplicity n = 2 is the dominant one
located in the interior of SCB, passing through the band-merging Q1 and the end of the chaotic zone
at the point (p = 4, x = 0). (In fact, all critical curves pass through the point (p = 4, x = 0), except the
chaotic orbit of n = 0, which passes through the point (p = 4, x = 1)).

All the higher ranking critical curves (n ≥ 3) have maxima and minima located inside WOMs of
periods equal to the multiplicity of the curves. It must be noted that these maxima or minima of the
critical curves are located inside the miniature’s zones of order (not exactly at the branches). However,
the critical curves of the chaotic main bifurcation diagrams have similar role in the miniature chaotic
zones, but with different multiplicity (Figure 4). For example, the curve of n = 3 has a single maximum;
this is located inside the WOM of period 3. This WOM starts at p = 2

√
2 + 1 = 3.82842712474619, the

double period bifurcation starts at p ≈ 3.8414 . . . , while the maximum is located at p ≈ 3.8390 . . . .
The chaotic curve of multiplicity n = 3 in the main chaotic zone becomes of multiplicity n = 3:3 = 1
in the secondary chaotic zone (that is the critical curve passing through the lowest x-values). It is
interesting that, in general, the product of the multiplicity of a critical curve with the period of the
WOM is a constant. In the example of WOM-3, multiplicity is 3 when periodicity is 1 (main chaotic
zone), while multiplicity is 1 when periodicity is 3, i.e., 3 × 1 = 1 × 3. Consequently, the critical curves,
with multiplicity n in the main chaotic zone, do not appear in WOMs with period larger than n.
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Figure 4. Similar to Figure 3e, we plot the upper periodic attractor inside WOM of period 3 (and the 
produced secondary bifurcation diagram), and co-plot the critical curves with multiplicity n = 0 (blue) 
and n = 3 (green). We observe that the chaotic curves of the main chaotic zone appear also in miniature 
chaotic zones inside WOMs but with smaller multiplicity. Indeed, the critical curve with multiplicity 
n = 3 appears to pass through the lowest x-values of the miniature chaotic zone, that is, the role of the 
critical curve with multiplicity n = 1. What is happening is that if n is the multiplicity of a critical 
curve in the main chaotic zone, then in a WOM of period T, the same critical curve becomes of 
multiplicity n/T. If this ratio is less than 1, then the critical curve does not appear in that WOM. 

Similarly, the critical curve of n = 4 has a single maximum located at the WOM of period 4, at p = 
3.960101882689952. However, the curve of n = 5 has three maxima, each located to one of the three 
WOM of period 5 that exist in SCB. The critical curve of n = 6 also has three maxima at SCB, 
corresponding to the three WOMs of period 6 in SCB. However, there is one more maximum, which is 
located at the WOM of period 3 in the chaotic bands of n = 1, i.e., CB(0) and CB(1), where the chaotic 
orbits have period doubled than the respective ones in SCB, i.e., the chaotic orbits at the WOM of 
period 3 correspond to a total period 2 × 3. 

Figure 5 plots the chaotic zone, together with the critical curves modelled by Equation (2). We 
observe the curves of multiplicity from 0 to 6 in SCB. We also observe some other characteristic 
property of these curves, that is, their divergence from and convergence to points called nodes. 

 
Figure 5. Plot of the chaotic zone and critical curves of multiplicity 0–6, as modelled in Equation (2). 

Figure 4. Similar to Figure 3e, we plot the upper periodic attractor inside WOM of period 3 (and the
produced secondary bifurcation diagram), and co-plot the critical curves with multiplicity n = 0 (blue)
and n = 3 (green). We observe that the chaotic curves of the main chaotic zone appear also in miniature
chaotic zones inside WOMs but with smaller multiplicity. Indeed, the critical curve with multiplicity
n = 3 appears to pass through the lowest x-values of the miniature chaotic zone, that is, the role of the
critical curve with multiplicity n = 1. What is happening is that if n is the multiplicity of a critical curve
in the main chaotic zone, then in a WOM of period T, the same critical curve becomes of multiplicity
n/T. If this ratio is less than 1, then the critical curve does not appear in that WOM.

Similarly, the critical curve of n = 4 has a single maximum located at the WOM of period 4,
at p = 3.960101882689952. However, the curve of n = 5 has three maxima, each located to one of the
three WOM of period 5 that exist in SCB. The critical curve of n = 6 also has three maxima at SCB,
corresponding to the three WOMs of period 6 in SCB. However, there is one more maximum, which is
located at the WOM of period 3 in the chaotic bands of n = 1, i.e., CB(0) and CB(1), where the chaotic
orbits have period doubled than the respective ones in SCB, i.e., the chaotic orbits at the WOM of
period 3 correspond to a total period 2 × 3.

Figure 5 plots the chaotic zone, together with the critical curves modelled by Equation (2).
We observe the curves of multiplicity from 0 to 6 in SCB. We also observe some other characteristic
property of these curves, that is, their divergence from and convergence to points called nodes.
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3. Identification and Arrangement of Nodes in the Chaotic Zone

The density of the map values, xt, after t iterations of an initial value x0 in the interval (0, 1),
denoted by P(x; p), is given by (e.g., see: [10,22,33]):

P(x; p) ≡ lim
N → ∞
dx → 0

dN(x− dx/2 ≤ xt ≤ x + dx/2)
N · dx

(3)

Next, we construct the density P(x; p) for nonlinear parameter values taken at the beginning
of SCB. In Figure 6b–e, we start with p = 3.7, and then, decrease p until we reach Q1, located at
p = 3.678573510428320. Each density peak indicates a critical curve, cut at the certain value of p.
We observe that there are plenty of peaks, most of them undistinguished from each other, but as the
nonlinear parameter approaches Q1, they are all accumulated into three main peaks; two of these
correspond to the peaks at the upper and lower edges of SCB, while the third corresponds to a node,
located at the point that connects CB(0), CB(1), and SCB. This node is shown in Figure 6a that magnifies
the local region of chaotic zone. We observe that the node is a point of intersection of critical curves.

The node, identified in Figure 6e, corresponds to a density profile at p = Q1 with exactly three
peaks, two at the upper/lower edges, and one at the interior. For some larger value of the nonlinear
parameter, p = 3.9277337001786751, there is a node corresponding to a density profile with four single
peaks. As we will see further below, CBs have nodes that correspond to density profiles with any
number of peaks; the nodes, the number of the peaks at their density profiles, and their arrangement
in the CBs of the chaotic zone, are interwoven with the period and arrangement of WOMs.
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Figure 6. Density profiles near the node of order 0 (band-merging Q1), for: (a) p = 3.7; (b) p = 3.69; (c) p 
= 3.68; and (d) p = Q1. (e) The chaotic band SCB near the node of order 0, N0. 

We rank the nodes as follows: The order of a node is given by the number of the peaks that 
surround the node in the corresponding density profile in the interior of the CB, namely, excluding the 
two edges and the node itself. Therefore, the node at p = Q1 ≡ N0 is of order 0, while the node at p = 
3.9277337001786751 ≡ N1 is of order 1. Both nodes are shown in the SCB plotted in Figure 7. 

Figure 6. Density profiles near the node of order 0 (band-merging Q1), for: (a) p = 3.7; (b) p = 3.69;
(c) p = 3.68; and (d) p = Q1. (e) The chaotic band SCB near the node of order 0, N0.

We rank the nodes as follows: The order of a node is given by the number of the peaks that
surround the node in the corresponding density profile in the interior of the CB, namely, excluding
the two edges and the node itself. Therefore, the node at p = Q1 ≡ N0 is of order 0, while the node at
p = 3.9277337001786751 ≡ N1 is of order 1. Both nodes are shown in the SCB plotted in Figure 7.
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The arrow indicates the critical curve responsible for the nodal order 1. 

As the nonlinear parameter p increases beyond the node of order 1, we find a node of order 2 at 
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node of order n. Thus, the location of these nodes at the nonlinear parameter axis is arranged as 
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in Appendix A contains the positions Nn of primary nodes, up to the order 8. Figure 8 plots the 
density profiles at the band-merging, the primary nodes up to the 4th order, and the case of fully 
developed chaos at p = 4, which corresponds to the limit where all the primary nodes converge and is 
symbolized as N∞. 
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Figure 7. The single chaotic band (SCB), where we observe the encircled primary nodes of order 0 and
1. The arrow indicates the critical curve responsible for the nodal order 1.

As the nonlinear parameter p increases beyond the node of order 1, we find a node of order 2 at
p = 3.982570733172925 ≡ N2. In general, there is only one node of order n + 1 at the right-hand side
of the node of order n. Thus, the location of these nodes at the nonlinear parameter axis is arranged
as follows: N0 < N1 < N2 < . . . < Nn < Nn+1 < . . . < N∞ = 4. These types of nodes are called primary.
Table A1 in Appendix A contains the positions Nn of primary nodes, up to the order 8. Figure 8 plots
the density profiles at the band-merging, the primary nodes up to the 4th order, and the case of fully
developed chaos at p = 4, which corresponds to the limit where all the primary nodes converge and is
symbolized as N∞.
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4. Mathematical Formulae of Critical Curves and Nodes

We construct the mathematical formulae that give the critical curves and the position of each
primary node. We start by partitioning the map in a sequence of subintervals, {In}∞

n=0, where In

involves orbits with a specific number of n successive ascents before a descent occurs [16].
The fixed point given by f (u0) = u0 separates the whole interval 0 ≤ x ≤ 1 in left-hand (L) and

right-hand (R) sides, i.e., 0 ≤ x < u0 and u0 < x ≤ 1, respectively (Figure 9). Let un+1 be the preimage
of un, ∀n ≥ 0, defined by the reverse map, un+1 = f−1

L(un), where f−1
L(un) is the one of the two

single-valued inverse functions of f (x): The inverse, f−1(x), is a bi-valued function in the map domain
[0, 1], while the single-valued functions, f−1

L(un) and f−1
R(x), defined in 0 ≤ x < u0 and u0 < x ≤ 1,

respectively. Thus, the preimage points constitute a sequence {un}∞
n=0, with un = f−1

L
(n)

(u0), with an

accumulation limit point at u∞ = lim
n→∞

f−1
L
(n)

(u0) = 0.
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modified from [16]).

If xn = f (n)(x0) is in (R), the orbit lies always below the diagonal, hence, only one descent
is conceivable before the next sequence of ascents occurs, i.e., xn+1 = f (n+1)(x0) < xn = f (n)(x0).
(Note: An ascent or a descent of an orbit is its jump to higher or lower x-values after one iteration.)
If xn = f (n)(x0) is in (L), the orbit lies always above the diagonal, hence, only subsequent ascents can
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occur. For n successive ascents, we have x < f (x) < f 2(x) < · · · < f n(x). All the points of an orbit in
subinterval I1 = {x ∈ (u1, u0)} are mapped after one ascent to subinterval I0 = {x ∈ (u0, 1)} (that is,
the whole interval (R)), and then, from I0, they are mapped after a descent back to (L). In addition,
all the points of an orbit in subinterval I2 = {x ∈ (u2, u1)} are mapped after one ascent to subinterval
I1 = {x ∈ (u1, u0)}. In general, all the points of an orbit in subinterval In = {x ∈ (un, un−1)} are
mapped after one ascent to subinterval In−1 = {x ∈ (un−1, un−2)}, and so on, until I0 is reached
(Figure 9).

In this way, the map domain, 0 ≤ x ≤ 1, can be partitioned into subintervals In, where n indicates
the number of the successive ascents, before a descent occurs, namely:

x ∈ In ⇔ x < f (x) < f (2)(x) < . . . < f (n)(x), f (n+1)(x) < f (n)(x) (4)

so that
f (u1) = u0, f (2)(u2) = f (u1) = u0, f (n)(un) = · · · = f (2)(u2) = f (u1) = u0 (5a)

or

u1 = f−1
L(u0), u2 = f−1

L(u1) = f−1
L
(2)

(u0), . . . , un = f−1
L(un−1) = . . . = f−1

L
(n)

(u0) (5b)

In the case of the logistic map, we find

un+1 = f−1
L(un), f−1

L(x) =
1
2
·
[

1−
√

1− (4/p) · x
]

(5c)

that is, for up to n = 3:

u0 = 1− 1/p, u1 = 1/p, u2 = 1
2 · (1−

√
1− 4/p2), u3 = 1

2 ·
[

1−
√

1− (2/p) · (1−
√

1− 4/p2)

]
(5d)

The highest x-value of the orbit lies in subinterval I0 for all the values of p in SCB (i.e., Q1 < p < Q0 = 4);
at p = Q1, the highest x-value is xmax = Q1/4, while at p = Q0 = 4, the highest x-value becomes xmax = 1.
The maximum of the map is located at (x = 1/2, f (x) = p/4), which lies in subinterval I1; thus, after one
ascent, the maximum will be mapped to I0, reaching the highest possible x-value, given by

xmax(p) = f (
1
2

; p) =
1
4

p (6a)

Now, the lowest possible x-value is reached after a descent of the highest x-value, that is, mapped to

xmin(p) = f (2)(
1
2

; p) =
1
16

p2(4− p) (6b)

Further iterations produce the critical curves of higher multiplicity (given in Equation (2)).
It is important to note that not all subintervals In exist for a certain value of the nonlinear parameter

p in SCB. As p increases, chaotic orbits reach higher and lower x-values. While the highest point will
be always in subinterval I0, the lowest point can be in any subinterval In, depending on the nonlinear
parameter p. If the orbit is in subinterval I1, then ascents and descents interchange with each other in
each iteration. In the chaotic zone, this happens only for p ≤ Q1, while there is only one point with
this behavior and that is the band-merging p = Q1. Since there is just one point in SCB that belongs
in subinterval I1, then this must be u1. Hence, the condition that applies in the case of band merging
(or, primary node N0) is:

u1(p) = xmin(p), or p4 − 4p3 + 16 = (p− 2) · (p3 − 2p2 − 4p− 8) = 0 (7a)
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where we find

p = Q1 = N0 =
8
3
(3
√

33 + 19)
− 1

3 +
4
3
+

2
3
(3
√

33 + 19)
1
3 = 3.678573510428329 . . . (7b)

The three peaks, shown in Figure 8a, represent the most frequent visits of the chaotic orbits for
p = Q1 (primary node N0). Starting from the peak near the highest x-value, the orbits are mapped to the
peak near the lowest x-value, and then, are mapped to the peak near the fixed point u0. The fact that
there is only one ascent before reaching u0 indicates that the lowest x-value is actually the preimage u1,
verifying Equation (7a).

Similarly, the four peaks in Figure 8b represent the most frequent visits of the chaotic orbits at
primary node N1. Orbits from near the highest x-value are mapped to the peak near the lowest x-value,
then mapped to one more peak before are mapped to the peak near the fixed point u0. The three
sequential ascents indicate that the lowest x-value is actually the preimage u2. Hence, the condition
that applies in the case of the primary node N01 is:

u2(p) = xmin(p), or
1
2
· (1−

√
1− 4/p2) =

1
16

p2(4− p) (8a)

where we find
p = N1 = 3.927737001786751 . . . (8b)

In the case of the primary node Nn, we have

p = Nn : un+1(p) = xmin(p), f−1
L
(n+1)

(1− 1/p; p) = f (2)(
1
2

; p) =
1

16
p2(4− p) (9a)

Note that is equivalent un+1 = xmin to f−1
R(un+1) = xmax and f−1

R
(2)

(un+1) =
1
2 . Hence, we obtain

f (n+3)(
1
2

; p) = u0 or f−1
R
(2)

f−1
L
(n+1)

(u0; p) =
1
2

, u0 = 1− 1/p (9b)

Nonetheless, Equation (9a) is the one used for deriving the values of Nn.
In Figure 10a, we plot the chaotic zone in SCB with the critical curves X(p; n) = f (n+1)

(
1
2 ; p
)

(green) and preimages un = f−1
L
(n)

(u0) (blue), while in Figure 10b we show the intersections between

xmin(p) = f (2)( 1
2 ; p) and un = f−1

L
(n)

(u0), for n = 0, 1, 2, 3. The intersections give the p-values of the
primary nodes, which are plotted on a logarithmic scale in Figure 10c. We observe that the ratio of the
p-values between two sequential nodes is constant and equal to 4. This is also shown in Figure 10d,
where we plot 4 − Nn as a function of n. We find that

4− Nn = A · 4−n (10a)

where the constant is A ≈ 0.06853892. In [16], we have shown that for p = 4 the preimages are given
by un+1 = sin2( π

12 · 2−n) ≈ (π2/144) · 4−n (cf., Equation (48c) in that paper), where (π2/144) ≈
0.06853892; hence, it appears that the p-value of the primary nodes are connected with the preimages
in the case of the fully-developed chaos (p = 4):

4− Nn ≈ un+1|p=4 (10b)
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Figure 10. (a) Plot of SCB with critical curves (green) and preimages (blue). (b) The intersections of the
preimages un with the lowest x-value give the p-value of the primary nodes. (c) The same as (b) but on
log–log scale and the horizontal axis is 4 − p. (d) Plot of 4 − Nn vs. the nodal order n; we observe that
the primary nodes approach p = 4 with a geometric sequence (Equation (10)).

5. Connection between WOMs and Nodes

The primary nodes, defined by N0 < . . . < Nn < Nn+1 < . . . < N∞, are not the only ones appear in
the chaotic zone. There is another more complicated configuration of secondary nodes. These nodes
appear always in pairs surrounding WOMs. All the secondary nodes surrounding a WOM have the
same order; the latter is also equal to the WOM’s period.

The number of pairs of secondary nodes surrounding each WOM depends on the location with
respect to the primary nodes. In the region between the primary nodes of order 0 and 1, called
pyramid-1, the WOMs are surrounded by only one pair of secondary nodes; also, in the region between
the primary nodes of order 1 and 2, called pyramid-2, the WOMs are surrounded by two pairs of
secondary nodes, etc. For example, there is only one pair of secondary nodes surrounding the WOM of
period three (Figure 11), but there are two pairs of secondary nodes surrounding the WOM of period
four, etc. In general, the pyramid-n is defined by the region between the primary nodes of order n − 1
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and n, the included WOMs are surrounded by n pairs of secondary nodes with order n, and the WOM
of minimum period is the one with period n + 2, which is called main WOM of the pyramid.

Therefore, we have the following equalities:

Order of secondary nodes = Period of surrounded WOM (11a)

and

Number of secondary nodal pairs = Order of next primary node = Period of main WOM − 2 (11b)

The two secondary nodes of each pair are located one at each side of the surrounded WOM;
for example, the main WOM in pyramid-3, that is, the WOM of period 5, is surrounded by
2 × 3 secondary nodes of order 5, where 3 of those are located at the left-hand side and 3 at the
right-hand side of that WOM. Table A2 in Appendix A shows the secondary nodes up to the 6th order
located within the main chaotic band, SCB. Figure 12 shows a sketch of SCB, where the primary and
secondary nodes are shown.Entropy 2018, 20, 24  12 of 21 
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a pyramidal configuration of infinite number of WOMs: Every WOM is surrounded by infinite 
number of WOM pairs, whose period is larger than the parental WOM’s period, at least by two 
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on, while WOMs of period 8, or of any other multiple of 4, do not exist. Table A3 in Appendix A gives 
the location of WOMs (nonlinear parameter at their starting point), in the main chaotic band (SCB) 
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that nodes come in pairs surrounding each WOM. 

Figure 11. The pair of secondary nodes of order 3 surrounding the WOM of the same period in SCB.

Entropy 2018, 20, 24  12 of 21 

 

 
Figure 11. The pair of secondary nodes of order 3 surrounding the WOM of the same period in SCB. 

 
Figure 12. Sketch of the main chaotic band, SCB, of the chaotic zone. We show the location of the first four 
pyramids, their associated primary nodes, and the secondary nodes surrounding their main WOM. All 
the nodes, primary and secondary ones, are located at the orbit of period 1, x∞(p) = 1 − 1/p (dash line). 
The period of the main WOM (blue) is the same as the order of the surrounding secondary nodes. 
The number of the pairs of the surrounding secondary nodes is the same as the order of the next 
primary node (green). 

In every CB, WOMs have a specific arrangement, universal for all the one-dimensional unimodal 
maps (due to a property called structural universality, [24,26,27,47]). Under each main WOM there is 
a pyramidal configuration of infinite number of WOMs: Every WOM is surrounded by infinite 
number of WOM pairs, whose period is larger than the parental WOM’s period, at least by two 
units. For example, the main WOM of period 3 is surrounded by pairs of WOMs of period 5, 7, 8, and 
so on, while period 6 does not exist and the same holds for any multiple of 3, i.e., the main WOM’s 
period. Similarly, the main WOM of period 4 is surrounded by pairs of WOMs of period 6, 7, and so 
on, while WOMs of period 8, or of any other multiple of 4, do not exist. Table A3 in Appendix A gives 
the location of WOMs (nonlinear parameter at their starting point), in the main chaotic band (SCB) 
and for period up to 0. The sketch in Figure 13 describes the arrangement of WOMs in CBs. It is 
interesting that the secondary nodes follow the same exact scheme as WOMs; the only difference is 
that nodes come in pairs surrounding each WOM. 

Figure 12. Sketch of the main chaotic band, SCB, of the chaotic zone. We show the location of the
first four pyramids, their associated primary nodes, and the secondary nodes surrounding their main
WOM. All the nodes, primary and secondary ones, are located at the orbit of period 1, x∞(p) = 1 − 1/p
(dash line). The period of the main WOM (blue) is the same as the order of the surrounding secondary
nodes. The number of the pairs of the surrounding secondary nodes is the same as the order of the
next primary node (green).
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In every CB, WOMs have a specific arrangement, universal for all the one-dimensional unimodal
maps (due to a property called structural universality, [24,26,27,47]). Under each main WOM there
is a pyramidal configuration of infinite number of WOMs: Every WOM is surrounded by infinite
number of WOM pairs, whose period is larger than the parental WOM’s period, at least by two units.
For example, the main WOM of period 3 is surrounded by pairs of WOMs of period 5, 7, 8, and so on,
while period 6 does not exist and the same holds for any multiple of 3, i.e., the main WOM’s period.
Similarly, the main WOM of period 4 is surrounded by pairs of WOMs of period 6, 7, and so on, while
WOMs of period 8, or of any other multiple of 4, do not exist. Table A3 in Appendix A gives the
location of WOMs (nonlinear parameter at their starting point), in the main chaotic band (SCB) and for
period up to 0. The sketch in Figure 13 describes the arrangement of WOMs in CBs. It is interesting
that the secondary nodes follow the same exact scheme as WOMs; the only difference is that nodes
come in pairs surrounding each WOM.
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6. Features of Nodes

The primary or secondary nodes can be the limit of one or more WOM sequences. Indeed,
the locations (along the axis of the nonlinear parameter p) of the WOMs on the left-hand side of
pyramid-n and of the WOMs on the right-hand side of pyramid-(n − 1) construct two sequences that
both lead to the primary node n.

For example, the location of the primary node N0 (at the band-merging Q1) can be computed
(aside from the mathematical formulation given in Section 4) by finding all the WOMs with odd
periods starting from the WOM-3 along the left-hand side of the pyramid-1 (that is by decreasing the
nonlinear parameter p). Alternatively, the same node can be computed by finding all the main WOMs
of generation 1, i.e., along the chaotic bands CB(0) and CB(1), (that is by increasing the nonlinear
parameter p). Both sequences are given in Table A4 in Appendix A, and plotted in Figure 14a (upper
panel), where we observe that they both converge to the primary node p∞ → N0, while the exponential
convergence of WOMs locations, {pn}∞

1 , toward the node is shown in the lower panel.
Similarly, the primary node N1 can be computed by finding the WOMs with even periods starting

from the WOM-4 along the left-hand side of the pyramid-2 (that is by decreasing p) and the WOMS
with odd periods starting from the WOM-3 along the right-hand side of the pyramid-1 (that is by
increasing p). The two sequences are given in Table A5 in Appendix A, and plotted in Figure 14b
(upper panel), where we observe that they both converge to the primary node p∞ → N1, while the
exponential convergence of WOMs locations, {pn}∞

0 , toward the node is again shown in the lower
panel. The latter is described by

pn ∼= p∞ + A · 10−λ·n (12)

with log A ≈ −1 and λ ≈ 0.452 for N0, and log A ≈ −1.25 and λ ≈ 0.57 for N1.
We also examine how the primary nodes Nn converge to the full-developed chaos at p = 4, which

corresponds to the node N∞ (Table A1). The convergence is shown in Figure 14c (upper panel) with
the exponential rate described by log A ≈ −0.5 and λ ≈ 0.61 for N∞ (lower panel).
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The Feigenbaum constant δ is defined as the limit of the following sequence {Fn}∞
0 :

Fn ≡ pn−pn−1
pn+1−pn

, δ = lim
n→∞

Fn (13)

The constant and its derivation was introduced by Feigenbaum [3–5,64] to describe the
convergence of bifurcation points in the zone of order, but the same holds for the band-merging reverse
cascade (e.g., [13]). In general, it can be applied to any convergence sequence in the chaotic zone.
In Figure 15, we plot the computed Feigenbaum sequences {Fn}∞

0 and their limits, the Feigenbaum
constant δ, which correspond to the convergence sequences plotted in Figure 14. The convergence to
δ = F∞ is shown in the upper panels of Figure 15, while the exponential rate of the convergence is
shown in the lower panels.
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Figure 15. Convergence of Feigenbaum sequences {Fn}∞
0 toward their limit, i.e., the Feigenbaum

constant δ = F∞, for the sequences toward the primary nodes: (a) N0; (b) N1; and (c) N∞, shown
in Figure 14 (using the tables in Appendix A). We observe the convergence toward the Feigenbaum
constant (upper panels), and the corresponding exponential rates (lower panels).
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We find that the Feigenbaum constants corresponding to the sequences converging toward the
primary nodes N0 and N1 are δ ≈ 2.817612 and δ ≈ 3.715, respectively. It is worth mentioning that the
same constant characterizes any of the two sequences, which approach the nodes from the left or from
the right. Moreover, we find that the convergence of the sequence of primary constants toward N∞ is
characterized by a peculiar Feigenbaum constant, that is, exactly δ = 4.

Finally, we examine the entropy near the nodes. Given the distribution density at p, P(x; p),
the entropy in the continuous description is given by the standard Shannon’s form [65]:

S(p) = −
1∫

0

P(x) · ln[P(x) · σx]dx, where
1∫

0

P(x)dx = 1 (14)

where σx is the smallest scale that characterizes the physical quantity x (e.g., see: [66,67]).
The discretization of this interval is given by setting

Pi = P(xi) · σx,xi = i · σx (15)

hence, the entropy is given by

S(p) = −
[1/σx ]

∑
i=0

Pi ln Pi (16)

where [1/σx] denotes the closer integer to 1/σx.
We also use another entropic form, generalized according to the Tsallis mono-parametrical

formalism [68,69],

Sq(p) = 1
q−1 ·

(
1−

[1/σx ]

∑
i=0

Pi
q

)
(17)

where recovers the Shannon’s entropy in Equation (16) for q→ 1. We find the entropy is ~1 at the
primary nodes for q ~1.985. We chose this specific q-index for computing the entropy, as for smaller
q-indices, the entropy increases abruptly, while for larger q-indices it tends to zero. We find that
the entropy increases as the nonlinear parameter approaches the nodes. Figure 16 plots the entropy
calculated for q = 2 and [1/σx] = 100, where we observe that it increases when p is taken closer to the
primary nodes N1 and N2.
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7. Conclusions

The paper presented the arrangement and features of nodes in the chaotic zone of 1D unimodal
and mono-parametrical discrete maps f (x), using as guiding example the logistic map. The nodes are
high density and intersection points of the critical curves in the chaotic zone.
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First, we examined the arrangement of critical curves in the chaotic zone, using the density of the
variable x, and a simple empirical formula that describes these curves.

Second, we examined the identification and arrangement of nodes in the chaotic zone. The peaks
of density profiles, taken across the nonlinear parameter axis, reveal the position of critical curves; as the
nonlinear parameter approaches to a node, these peaks converge to each other, forming only a certain
number of peaks that defines the order of the node. We found two types of nodes. (i) The primary
nodes are defined by their unique sequential arrangement in the chaotic band: There is only one
primary node of order n + 1 beyond the primary node of order n (along the nonlinear parameter axis).
This arrangement separates chaotic bands in regions called pyramids. These are specific configurations
of WOMs. (ii) The secondary nodes appear in pairs surrounding WOMs, where the order of nodes
equals the period of the surrounded WOMs. The number of pairs is a characteristic of the pyramid.

Third, we examined the connection between WOMs and nodes. There is a universal arrangement
of WOMs in chaotic bands, which can be divided into pyramidal configurations, separated by the
primary nodes.

Finally, we examined several features of nodes, such as the convergence and entropy.
We computed the characteristic convergence rates of the sequences of WOMs that converge into
primary nodes, as well as the sequence of primary nodes that converge to the point of full-developed
chaos. We computed the Feigenbaum constants related to these convergences, showing that each node
has its characteristic Feigenbaum constant. The entropy analysis revealed that near the nodes the
entropy has a local maximum value.

The following related science questions may be examined in future analyses: How do the
arrangement and features of nodes vary for S-unimodal maps with a local maximum of differential
order other than 2 (e.g., [13,31,58])? What is the mathematical formulation that describes the secondary
nodes? Are there types of nodes other than the primary and secondary ones? Are there the same
features of nodes into the 1D Poincare section return maps (e.g., [70,71])? How the nodes and their
properties appear in higher dimensions (e.g., [72,73])?
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Appendix A. Tables

Table A1. Order and nonlinear parameter of primary nodes.

Order p

0 * 3.678573510428329
1 3.927737001786751
2 3.982570733172925
3 3.995693633605350
4 3.998927382603362
5 3.999732146052877
6 3.999933058608207
7 3.999983266242305
8 3.999995816673156

* Note: It corresponds to the band-merging of SCB at Q1.

Table A2. Order and nonlinear parameter of secondary nodes *.

3 Order 4 Order 5 Order 6 Order

3.791097, 3.876540 3.946550, 3.972211 3.727254, 3.752684 3.933204, 3.941763
- - 3.894663, 3.915998 3.9751854, 3.9801912
- - 3.9867746, 3.9929707 3.9967110, 3.9983206

* Note: We provide the location of the first and last secondary nodes surrounding each WOM.
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Table A3. Nonlinear parameter of WOMs (starting point) in SCB for period ≤9.

3 4 7 8 9 (Cont.)
3.82843 3.960102 3.70164 3.80074 3.6872 3.975919

5 6 3.77413 3.87053 3.7171 3.979543
3.73817 3.93752 3.88602 3.89946 3.76124 3.983140
3.90557 3.977765 3.922186 3.91205 3.78577 3.986274
3.99026 3.9975826 3.951027 3.93047 3.87941 3.989188

3.968974 3.94421 3.89225 3.991324
3.984746 3.97372 3.917792 3.993577
3.9945375 3.981408 3.926277 3.995417
3.9993970 3.987746 3.9346999 3.996945

3.992519 3.94037 3.998148
3.9962195 3.947735 3.999058
3.9986417 3.954483 3.999661
3.9998495 3.966193 3.9999624

3.971413

Table A4. Convergence to the primary node of order 0.

Left p Right p

2 × 3 3.62656 3 3.82842712
2 × 4 3.66211 5 3.73817237
2 × 5 3.67300 7 3.70164076
2 × 6 3.67663 9 3.68719687333
2 × 7 3.67789 11 3.68171601937
2 × 8 3.678331 13 3.67970245777
2 × 9 3.678488 15 3.67897629733

2 × 10 3.678543 17 3.678716777082
2 × 11 3.67856274217796 19 3.6786244025542
2 × 12 3.678569688994185 21 3.67859157901113
2 × 13 3.678572154206041 23 3.67857992406206
2 × 14 3.678573029096640 25 3.678575786820828
2 × 15 3.6785733395993465 27 3.6785743183617855
2 × 16 3.6785734497993825 29 3.6785737971749995
2 × 17 3.6785734889104695 31 3.6785736121981435
2 × 18 3.678573502791405 33 3.6785735465475785
2 × 19 3.678573507717898 35 3.6785735232474435
2 × 20 3.6785735094663632 37 3.678573514977968
2 × 21 3.678573510086913 39 3.678573512043041
2 × 22 3.678573510307152 41 3.678573511001403
2 × 23 3.678573510385 43 3.6785735106317145
2 × 24 3.678573510413 45 3.678573510500508
2 × 25 3.678573510423 47 3.678573510453941
2 × 26 3.6785735104264 49 3.6785735104374145
2 × 27 3.67857351042764 51 3.678573510431549
2 × 28 3.678573510428080 53 3.678573510429467
2 × 29 3.678573510428237 55 3.678573510428729
2 × 30 3.678573510428292 57 3.678573510428467
2 × 31 3.678573510428312 59 3.678573510428373

61 3.678573510428340
63 3.678573510428329

Note: The sequence of main WOMs in CB(0) and CB(1) (CBs of generation n = 1) converges from the left to the
primary node of order 0 (N0, that is, the band-merging Q1). The sequence of WOMs on the left side of the pyramid-1
in SCB (CB of generation n = 0) converges from the right to the primary node of order 0 (N0).
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Table A5. Convergence to the primary node of order 1.

Left WOMs p Right WOMs p

3 3.82843 4 3.96010
5 3.90557 6 3.93752
7 3.922186 8 3.93047
9 3.926277 10 3.92848
11 3.927345 12 3.92794
13 3.927632 14 3.9277912
15 3.927709 16 3.9277516
17 3.9277294 18 3.92774093
19 3.92773495 20 3.927738059
21 3.92773645 22 3.927737286
23 3.927736854 24 3.927737078
25 3.927736962 26 3.92773702239
27 3.927736991 28 3.92773700733
29 3.9277369989 30 3.92773700328
31 3.92773700101 32 3.9277370021882
33 3.92773700158 34 3.9277370018948
35 3.927737001731 36 3.9277370018158
37 3.927737001772 38 3.9277370017946
39 3.92773700178267 40 3.927737001788857
41 3.92773700178565 42 3.927737001787318
43 3.92773700178646 44 3.927737001786904
45 3.927737001786673 46 3.927737001786793
47 3.927737001786730 48 3.927737001786763
49 3.927737001786746 50 3.927737001786755
51 3.927737001786750 52 3.927737001786753
53 3.927737001786751 54 3.927737001786751

Note: The sequence of main WOMs in CB(0) and CB(1) (CBs of generation n = 1) converges from the left to the
primary node of order 1 (N1). The sequence of WOMs on the left side of the pyramid-1 in SCB (CB of generation
n = 0) converges from the right to the primary node N1.
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34. Cvitanović, P. Universality in Chaos; Hilger: Bristol, UK, 1984.
35. Devaney, R.L. An Introduction to Chaotic Dynamical Systems; Benjamin/Cummings: Menlo Park, CA,

USA, 1986.
36. Hao, B.-L. Elementary Symbolic Dynamics and Chaos in Dissipative Systems; World Scientific: Singapore, 1989.
37. Lorenz, E.N. Noisy periodicity and reverse bifurcation. Ann. N. Y. Acad. Sci. 1980, 357, 130–141. [CrossRef]
38. Post, T.; Capel, H.W.; Van der Weele, J.P. Short-phase anomalies in intermittent band switching. Phys. Lett. A

1988, 133, 373–377. [CrossRef]
39. Brown, R.; Grebogi, C.; Ott, E. Broadening of Spectral Peaks at the Merging of Chaotic Bands in Period

Doubling Systems. Phys. Rev. A 1986, 34, 2248–2254. [CrossRef]

http://dx.doi.org/10.1142/S0218127402005327
http://dx.doi.org/10.1142/S0219525905000324
http://dx.doi.org/10.1088/0305-4470/39/49/011
http://dx.doi.org/10.1142/S0218127409025018
http://dx.doi.org/10.1088/0305-4470/12/3/004
http://dx.doi.org/10.1007/BF02193555
http://dx.doi.org/10.1007/BF01216092
http://dx.doi.org/10.1016/0097-3165(73)90033-2
http://dx.doi.org/10.2307/2318254
http://dx.doi.org/10.1111/j.1749-6632.1980.tb29701.x
http://dx.doi.org/10.1103/PhysRevLett.47.975
http://dx.doi.org/10.1007/BF01941800
http://dx.doi.org/10.1103/PhysRevLett.55.351
http://www.ncbi.nlm.nih.gov/pubmed/10032328
http://dx.doi.org/10.1016/0378-4371(87)90004-5
http://dx.doi.org/10.1016/0378-4371(89)90446-9
http://dx.doi.org/10.1111/j.1749-6632.1980.tb29693.x
http://dx.doi.org/10.1016/0375-9601(88)90919-X
http://dx.doi.org/10.1103/PhysRevA.34.2248


Entropy 2018, 20, 24 20 of 21

40. Everson, R.M. Scaling of intermittency period with dimension of a partition boundary. Phys. Lett. A 1987,
122, 471–475. [CrossRef]

41. Fujisaka, H.; Kamifukumoto, H.; Inoue, M. Intermittency Associated with the Breakdown of the Chaos
Symmetry. Prog. Theor. Phys. Lett. 1983, 69, 333–337. [CrossRef]

42. Grebogi, C.; Ott, E.; Yorke, J.A. Crises, sudden changes in chaotic attractors, and transient chaos. Physica D
1983, 7, 181–200. [CrossRef]

43. Grebogi, C.; Ott, E.; Romeiras, F.; Yorke, J.A. Critical exponents for crisis induced intermittency. Phys. Rev. A
1987, 36, 5365–5380. [CrossRef]

44. Ishii, H.; Fujisaka, H.; Inoue, M. Breakdown of Chaos Symmetry and Intermittency in the Double-Well
Potential System. Phys. Lett. A 1986, 116, 257–263. [CrossRef]

45. Kitano, M.; Yabuzaki, T.; Ogawa, T. Symmetry-recovering crises of chaos in polarization-related optical
bistability. Phys. Lett. A 1984, 29, 1288–1296. [CrossRef]

46. Lorenz, E.N. Nonlinear Dynamics; Helleman, R.H.G., Ed.; New York Academy of Sciences: New York, NY,
USA, 1980; pp. 282–291.

47. Schuster, H.G. Deterministic Chaos, An Introduction; VCH: Vancouver, BC, USA, 1989; Chapter 2.2, pp. 24–28;
Chapter 3.1, pp. 39–41; Chapter 3.4, pp. 65–69; Chapter 4.1, pp. 82–83; Chapter 6.4, pp. 181–182.

48. Shenker, S.J.; Kadanoff, L.P. Band to band hopping in one-dimensional maps. J. Phys. A 1981, 14, L23–L26.
[CrossRef]

49. Sporns, O.; Roth, S.; Seelig, F.F. Chaotic dynamics of two coupled biochemical oscillators. Physica D 1987, 26,
215–224. [CrossRef]

50. Helleman, R.H.G. Nonequilibrium Problems in Statistical Mechanics 2; Horton, W., Reichl, L., Szebehely, V., Eds.;
Wiley: New York, NY, USA, 1981.

51. Alligood, K.T.; Sauer, T.D.; Yorke, J.A. Chaos, an Introduction to Dynamical Systems; Springer: New York, NY,
USA, 1996; Chapter 1.5, pp. 17–22; Chapter 1.8, pp. 32–35; Chapter 3.1, pp. 107–109; Chapter 3.2, p. 110;
Chapter 3.3, pp. 121–123; Chapter 6.1, p. 237; Chapter 12.1, pp. 500–504; Chapter 12.4, pp. 525–527.
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