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Abstract: We study a class of two-transmitter two-receiver dual-band Gaussian interference channels
(GIC) which operates over the conventional microwave and the unconventional millimeter-wave
(mm-wave) bands. This study is motivated by future 5G networks where additional spectrum in the
mm-wave band complements transmission in the incumbent microwave band. The mm-wave band
has a key modeling feature: due to severe path loss and relatively small wavelength, a transmitter
must employ highly directional antenna arrays to reach its desired receiver. This feature causes the
mm-wave channels to become highly directional, and thus can be used by a transmitter to transmit
to its designated receiver or the other receiver. We consider two classes of such channels, where
the underlying GIC in the microwave band has weak and strong interference, and obtain sufficient
channel conditions under which the capacity is characterized. Moreover, we assess the impact of
the additional mm-wave band spectrum on the performance, by characterizing the transmit power
allocation for the direct and cross channels that maximizes the sum-rate of this dual-band channel.
The solution reveals conditions under which different power allocations, such as allocating the power
budget only to direct or only to cross channels, or sharing it among them, becomes optimal.

Keywords: Gaussian interference channel; dual-band network; optimal power allocation; millimeter
wave band

1. Introduction

Current technology such as 4G (e.g., [1]) is rapidly becoming inadequate to support the
exponential growth in wireless traffic [2]. Moreover, the potential for improvement of network
throughput in 4G is limited due to the shortage of spectrum in the incumbent microwave band
(i.e., carrier frequencies below 6 GHz). Thus, methods to tackle the ever growing amount of mobile
traffic has become a key research area (see [3] and references therein). Several new technologies are
being considered, among which employing additional spectrum in the 28–300 GHz frequency range,
often referred to as the millimeter wave (mm-wave) band, seems to be a promising solution to the
problem of spectrum scarcity [3,4]. Specifically, integrating additional spectrum from the mm-wave
band to complement transmissions in the microwave band is poised to play a central role in the
functioning of 5G networks.

Transmission in the mm-wave band is distinctly different from that in the microwave band. Due to
higher operating frequencies, omnidirectional transmission in the mm-wave band is subject to much
higher absorption and power loss [5] compared to that in the microwave band, and thus a transmitter
needs to employ beamforming with highly directional antenna arrays to counter this loss and reach its
receiver [2]. However, beamforming constrains most of the transmission energy to the line-of-sight
(LOS) component and very few, if any, significant non-LOS components exist [6,7]. Thus, transmission
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in this band is highly directional and point-to-point. Such mm-wave channels can support high data
rates due to their vast bandwidth, but nevertheless are prone to blockage and absorption [8] due to
their point-to-point nature. In contrast, microwave links are much more reliable due to rich scattering
and diffraction, but cannot support as high rates as the mm-wave links. Thus, in a dual-band setting,
conventional traffic and control information can be reliably communicated over microwave links, and
high data-rate traffic can be sent through mm-wave links [2,7,9–15].

Most studies on microwave and mm-wave dual-band transmission have focused on how to
improve network layer performance metrics of cellular access or backhaul networks by using the
high-bandwidth, highly directional mm-wave links [9,13]. For example, the authors in [7] posed the
problem of optimal resource allocation in a cellular setting in the dual microwave and mm-wave band,
and showed that certain network level performance parameters, e.g., the number of simultaneously
supported users and the link connection probability, are vastly improved with their proposed solution.
Similarly, the authors in [11] study a two-tier cellular network where the 60 GHz band is used to create
point-to-point directional links, and the 70 GHz band is used to establish long range connections just
as the microwave band is used in our work, and propose a hybrid scheme involving both bands that
improves the network throughput. In a more related article [14], the authors characterize the benefits
of beamforming over a point-to-point dual band multi-antenna channel, and study the performance of
a hybrid adaptive queueing scheme over both bands that maximizes the delay-constrained throughput.

Recent works on joint transmission in the microwave band and mm-wave band [14,16–20] indicate
that it is possible to isolate the transmissions in the microwave band from that in the mm-wave band,
and communicate over the two bands simultaneously. For example, the authors in [14] designed
a queue-based scheme that transmits from a single transmitter to a single receiver simultaneously
over the 3 GHz microwave band and the 30 GHz mm-wave band using beamforming, and conducted
successful practical experiments in this dual-band setup. In addition, Intel has recently announced the
production of a dual-band modem that supports both sub-6 GHz and 28 GHz bands [16]. Moreover,
recent works on resource allocation in the microwave and mm-wave dual-band setting in [19,20], and
their variant in [21], show that simultaneous transmission in both microwave and mm-wave bands are
indeed feasible, and are gaining acceptance as an architecture for cellular access in 5G.

We study here the performance of a two-transmitter two-receiver (2× 2) dual-band interference
channel from an information theoretic perspective, where a transmitter communicates to its respective
receiver over the microwave band and the mm-wave band simultaneously. In the microwave band,
each receiver observes the superposition of signals from both transmitters as in a conventional single
band Gaussian interference channel (GIC) [22]. However, as the mm-wave channels are considered
to be highly directional, a transmitter in this band is well-modeled as being able to transmit towards
one intended receiver, while causing negligible to no interference to the other receiver [6]. This raises
the question: to which receiver should a transmitter in the mm-wave band transmit? In this 2× 2
GIC, the transmitters in the mm-wave band can transmit from: (a) the first transmitter (Tx1) to the
first receiver (Rx1), and the second transmitter (Tx2) to the second receiver (Rx2); (b) Tx1 to Rx2, and
Tx2 to Rx1; (c) Tx1 and Tx2 to Rx2; or (d) Tx1 and Tx2 to Rx1. We focus here on the first two cases
where the transmitters in the mm-wave band either transmit (a) from Tx1 to Rx1, and from Tx2 to Rx2,
i.e., in the direct channels; or (b) from Tx1 to Rx2, and from Tx2 to Rx1, i.e., in the cross channels; or
(c) share the spectrum between the two modes. We denote the resulting channels by Direct-Link IC
(DLIC), Cross-Link IC (CLIC) and Direct-and-Cross-Link IC (DCLIC), respectively, and study their
capacity.

The capacity of the conventional single band GIC [22] has been characterized when it has strong [22]
or very strong interference [23]. We know that, under strong interference, encoding the message at each
transmitter with independent Gaussian distributed codewords, and decoding both the desired and
the interfering messages at each receiver is the optimal strategy [22]. However, if the GIC has weak
interference [24], the capacity and the optimal strategy is still unknown in general.
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The 2 × 2 parallel Gaussian IC (PGIC) consists of several orthogonal parallel channels
(sub-channels) such that a 2× 2 conventional GIC operates in each sub-channel without interfering with
that in other sub-channels [25]. The optimal strategies for the PGIC are not known in general; however,
its capacity was characterized in [26] when the GIC in each sub-channel has strong interference.
In a related study, the capacity of the ergodic fading GIC was characterized in [27] when each fading
state has strong interference. In the dual-band GIC considered here, the number of channel uses in
the microwave band and the mm-wave band may differ. We model this with a bandwidth mismatch
factor (BMF) in the system model. Note that the dual-band GIC considered here is a special case of the
ergodic fading GIC in [27] if one identifies each fading state as a different sub-channel. In the special
case that the bandwidth mismatch factor between the microwave and mm-wave bands is 1, it is also
a special case of the PGIC in [26].

Moreover, the studies in [26,27] show that if every sub-channel (or fading state) has strong
interference, the capacity is achieved by encoding jointly over all sub-channels and decoding messages
from both transmitters. Encoding independently over each sub-channel of a PGIC is suboptimal in
general [28], except for the GIC in the very weak (noisy) interference regime [29]. In fact, joint encoding
over all sub-channels generally achieves better rates as it can potentially offset the weak interference in
one or more sub-channels if the other sub-channels have strong interference [28].

In this sequel, we study the capacity of the DCLIC and the CLIC. First, we present a useful
result that decomposes the capacity of the DCLIC into that of the underlying CLIC and the set of
direct channels. This result shows that the capacity of the DCLIC can be established if the capacity
of a corresponding CLIC is known. Hence, we focus on the CLIC next. In particular, we consider
two specific classes, the strong CLIC and the weak CLIC, where the underlying GIC in the microwave
band has strong and weak interference, respectively, and characterize sufficient conditions on the
channel parameters under which their capacity is established.

Resource allocation techniques that maximize the sum-rate or throughput of interference channels
have been investigated throughly (e.g., see [25,30,31]) as they indicate how to allocate resources
in practice. The DCLIC models a basic multiuser network over the microwave and mm-wave
dual-band, whose performance is likely to be dominated by the mm-wave channels due to their
large bandwidths [9]. Thus, it is useful to understand how to optimize the performance of the DCLIC
over the parameters in the mm-wave band. Therefore, we study the power allocation in the direct and
cross channels in the mm-wave band that maximizes the sum-rate of the DCLIC. We derive the optimal
powers in closed form, and study how the channel parameters influence the optimal power allocation.

The contributions of this paper are summarized as follows:

• We show that the capacity region of the DCLIC can be decomposed into the capacity region of the
underlying CLIC and two non-interfering direct links in the mm-wave band. This illustrates that
the cross channels are actively involved in characterizing the capacity of the CLIC, whereas the
direct channels improve the rates of individual users.

• We characterize the capacity of the strong CLIC, and observe that the strong interference condition
in the microwave band is sufficient to characterize the capacity.

• For the weak CLIC, we characterize sufficient channel conditions under which its capacity is
established. This shows that even if the GIC in the microwave band has weak interference,
adequately strong cross channels in the mm-wave band are sufficient to characterize the capacity.

• We characterize the optimal power allocation in the direct and cross channels that maximizes the
sum-rate of the DCLIC, and study channel conditions under which the optimal power allocation
either assigns the entire power budget to a specific subset of channels, or shares the power budget
among all channels. We establish a direct relation between the channel parameters and the optimal
powers, from which we observe the following:

– The optimal power allocation distributes the power budget among the direct and cross channels
following two properties: a waterfilling-like property and a max-min property.
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– When the power budget is sufficiently small, the optimal allocation assigns power to either
both direct channels, or both cross channels and at most one direct channel.

– Due to the max-min property, the optimal allocation imposes a maximum limit on the
cross-channel powers. When the power budget exceeds a certain threshold, the limit on
the cross-channel powers are reached, and all additional increments to the power budget are
then added only to the direct channels that do not have such limits.

– If the underlying GIC in the microwave band has very strong interference, the optimal power
allocation assigns the power budget entirely to the direct channels.

– If the channel parameters satisfy one of the following criteria, then transmitting only in the
direct channels is approximately optimal, in the sense that the difference between the sum-rates
resulting from allocating to only direct channels and allocating optimally in all channels, is
negligibly small: (a) the transmit powers in the underlying GIC in the microwave band is very
small; or (b) the cross channel gains in the mm-wave band are very large.

The rest of the paper is organized as follows. We define the system model in Section 2. We present
the decomposition result on the DCLIC and the capacity of the strong CLIC in Section 3. We present
the capacity result on the weak CLIC in Section 4. In Section 5, we formulate the optimum sum-rate
problem and discuss its solution, and we conclude in Section 6.

Notation: We denote sets in calligraphic (e.g., Ak), except the sets of reals, positive reals, and
positive integers, which are denoted by R, R+ and Z+, respectively. Vectors are in bold (e.g., x), and
x � 0 denotes that each element of x is in R+, where 0 is the zero vector. We denote by E(Y) the
statistical expectation of a random variable (RV) Y, and by X ∼ N (µ, σ2) an RV following the Gaussian
distribution with mean µ and variance σ2. We also denote an n-length vector (X1, X2, . . . , Xn) by Xn,
the empty set by ∅, log2 x by log x, and define C(x) := 1

2 log(1 + x).

2. System Model

First, we define the discrete memoryless (DM) model of the DCLIC, and from that we define
the Gaussian models. In the DCLIC, a bandwidth mismatch between the first (microwave) band
and the second (mm-wave) band may exist. Thus, we assume that during n accesses of the first
band, the second band is accessed n1(n) times as cross channels, and n2(n) times as direct channels.
We model this by two bandwidth mismatch factors (BMF) αk := limn→∞ nk(n)/n, k = 1, 2. Thus,
the total normalized channel uses in the second band is asymptotically α := α1 + α2, which is shared
between the cross channels (α1) and direct channels (α2). For ease of exposition, we denote nk(n) by
nk, k = 1, 2.

The 2× 2 DM interference channel is defined by ((Xk,Yk)
2
k=1, p(y1, y2|x1, x2)) where Xk and Yk

are the discrete input and output alphabets of user k, k = 1, 2, and p(y1, y2|x1, x2) is the set of channel
transition probabilities [32] (Chapter 6.1). We define the 2× 2 DM DCLIC similarly by the tuple,
((Xk, X̂k, X̄k,Yk, Ŷk, Ȳk)

2
k=1, p), where Xk and Yk are the input and output alphabets of the interference

channel in the first band, X̄k and Ȳk are the input and output alphabets for the Txk to Rxk direct
channels in the second band, k = 1, 2, and X̂1 and Ŷ2 (respectively X̂2 and Ŷ1) are the input and output
alphabets for the Tx1 to Rx2 (resp. Tx2 to Rx1) cross channel in the second band. The joint probability
mass function (pmf) of the DCLIC decomposes as

p(xn
1 , x̂n1

1 , x̄n2
1 )p(xn

2 , x̂n1
2 , x̄n2

2 )
n

∏
`=1

p(y1`, y2`|x1`, x2`)
n1

∏
`=1

p(ŷ1`|x̂2`)p(ŷ2`|x̂1`)
n2

∏
`=1

p(ȳ1`|x̄1`)p(ȳ2`|x̄2`).

We define a (2nR1 , 2nR2 , n, n1, n2) code for the DCLIC to consist of (a) two uniformly distributed
and independent message sets, M1 := {1, . . . , 2nR1} and M2 := {1, . . . , 2nR2}, respectively, for
Tx1 and Tx2; (b) two encoding functions, φ1 and φ2, respectively for Tx1 and Tx2 such that



Entropy 2017, 19, 495 5 of 26

φk : Mk → X n
k × X̂

n1
k × X̄

n2
k , k = 1, 2; and (c) two decoding functions, ψ1 and ψ2, respectively,

for Rx1 and Rx2 such that ψk : Yn
k × Ŷ

n1
k × Ȳ

n2
k →Mk, k = 1, 2.

We define the decoding probability of error at Rxk by Pn
e,k := Pr

(
ψk(Yn

k , Ŷn1
k , Ȳn2

k ) 6= Mk
)
, k = 1, 2.

We say that (R1, R2) is an achievable rate pair of the DCLIC, if there exists a sequence of
(2nR1 , 2nR2 , n, n1, n2) codes such that nk ≤ αkn, and Pn

e,k → 0 as n, nk → ∞ for k = 1, 2. The capacity
region of the DCLIC is defined as the closure of the set of all achievable rate tuples.

Following the above notations, the GIC in the first band of the Gaussian DCLIC is modeled as
in [22]. The signals received at Rx1 and Rx2 are given by

Y1` = X1` + a21X2` + Z1`, (1)

Y2` = X2` + a12X1` + Z2`, ` = 1, . . . , n, (2)

where Xk`, Yk` ∈ R, akm ∈ R are coefficients of the channels from Txk to Rxm, k 6= m ∈ {1, 2} (a2
kk are

normalized to 1 as in [22]), and Zk` ∼ N (0, 1) are i.i.d. noise, k = 1, 2. In addition, the codewords now
satisfy the average power constraint, 1

n ∑n
`=1 X2

k` ≤ Qk, k = 1, 2. The cross links in the second band of
the DCLIC are point-to-point, and are modeled as

Ŷ2` = c12X̂1` + Ẑ2`, (3)

Ŷ1` = c21X̂2` + Ẑ1`, ` = 1, . . . , n1, (4)

where X̂k`, Ŷk` ∈ R, ckm ∈ R are coefficients of the channels from Txk to Rxm, k 6= m ∈ {1, 2}, and Ẑk` ∼
N (0, 1) are i.i.d. noise. The codewords satisfy the average power constraint, 1

n1
∑n1
`=1 X̂2

k` ≤ P̂k, k = 1, 2.
The direct links in the second band are similarly modeled as

Ȳ1` = d1X̄1` + Z̄1`, (5)

Ȳ2` = d2X̄2` + Z̄2`, ` = 1, . . . , n2, (6)

where X̄k`, Ȳk` ∈ R, dk ∈ R are the direct channel coefficients, Z̄k` ∼ N (0, 1) are i.i.d. noise, k = 1, 2,
and the codewords satisfy the average power constraint, 1

n2
∑n2
`=1 X̄2

k` ≤ P̄k, k = 1, 2, as well. We present
the Gaussian DCLIC in Figure 1. We define a (2nR1 , 2nR2 , n, n1, n2) code for the Gaussian DCLIC from
that of the DM DCLIC, by choosing all input and output variables to be in R, and by imposing the
average power constraints on the codewords, Xn

k , X̂n1
k and X̄n2

k , k = 1, 2, defined above.

microwave

 GIC

mm-wave

 direct channels

   mm-wave

cross channels

Figure 1. System model of the Gaussian DCLIC, which consists of an underlying GIC in the microwave
band and the set of direct channels and cross channels in the mm-wave band.
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Next, the Gaussian CLIC is defined from the Gaussian DCLIC by imposing the restrictions, n2 = 0
and X̄k = Ȳk = ∅, k = 1, 2, such that the channel outputs in the CLIC are described by (1)–(4),
respectively. A (2nR1 , 2nR2 , n, n1) code for CLIC is defined from a (2nR1 , 2nR2 , n, n1, n2) code of the
Gaussian DCLIC with the above-mentioned restrictions.

For ease of exposition, we define two classes of the CLICs: we say that a CLIC is a strong CLIC or
a weak CLIC, if the underlying GIC in the first band has strong interference (i.e., a2

12 ≥ 1, a2
21 ≥ 1) or

weak interference (i.e., a2
12 < 1, a2

21 < 1), respectively. Moreover, a symmetric CLIC is a CLIC where
a2 := a2

12 = a2
21, c2 := c2

12 = c2
21, Q1 = Q2, and P̂1 = P̂2. In addition, a symmetric DCLIC is a DCLIC

with an underlying symmetric CLIC, and d2 = d2
1 = d2

2, P̄1 = P̄2.
Finally, the Gaussian model for the DLIC are defined from that of the DCLIC by imposing the

restrictions, n1 = 0 and X̂k = Ŷk = ∅, k = 1, 2, and thus the channel outputs are described by (1), (2),
(5) and (6), respectively. In the sequel, we focus on the Gaussian model of the DCLIC and the CLIC.

3. Decomposition Result on the Capacity of the DCLIC

Recall that, in the DCLIC, there are n channel uses in the first band, n1 cross channel uses in the
second band, and n2 direct channels uses in the second band. We show below that the capacity of
the DCLIC can be decomposed into the capacity of the underlying CLIC, complemented by the direct
channels that are used to transmit individual user information to their respective receivers.

Theorem 1. The capacity region of the DCLIC with BMFs α1 and α2 is given by the set of all nonnegative rate
tuples (R1, R2) that satisfy the decomposition

R1 = r1 + α2C(d2
1P̄1), R2 = r2 + α2C(d2

2P̄2), (7)

where (r1, r2) is an achievable rate tuple in the underlying CLIC with BMF α1.

Proof. The proof is relegated to Appendix A.

Therefore, an achievable rate pair in the DCLIC with BMFs α1 and α2 consists of a rate
pair achievable in the CLIC with BMF α1, and the rate pair achieved in the direct channels,
(α2C(d2

1P̄1), α2C(d2
2P̄2)). The capacity of the DCLIC can thus be characterized from that of the

underlying CLIC. Hence, we focus on the CLIC next. In particular, we consider two specific classes of
the CLIC, the strong CLIC and the weak CLIC. First, we present the capacity of the strong CLIC.

Lemma 1. The capacity region of the strong CLIC with BMF α1 is given by the set of all nonnegative rate
tuples (R1, R2) that satisfy

R1 ≤ C(Q1), (8)

R2 ≤ C(Q2), (9)

R1 + R2 ≤ C(Q1 + a2
21Q2) + α1C(c2

21P̂2), (10)

R1 + R2 ≤ C(Q2 + a2
12Q1) + α1C(c2

12P̂1). (11)

The proof of Lemma 1 follows from that of [27] in a straightforward manner. Hence, we omit
the proof here, and discuss only the key idea. In the strong CLIC, the GIC in the first band has
strong interference. Additionally, in the second band, the cross-channel gains are positive and the
direct-channel gains are zero, which results in a GIC with strong interference. Hence, the strong CLIC
is a parallel GIC with strong interference in both bands. The capacity is thus achieved by encoding
jointly over both bands and decoding messages from both transmitters as in [27].

Moreover, the capacity of the DCLIC with strong underlying CLIC, which follows from Theorem 1
and Lemma 1, is characterized below.
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Corollary 1. The capacity region of the DCLIC with BMFs α1 and α2 that has a strong underlying CLIC is
given by the set of all nonnegative rate tuples (R1, R2) that satisfy

R1 ≤ C(Q1) + α2C(d2
1P̄1), (12)

R2 ≤ C(Q2) + α2C(d2
2P̄2), (13)

R1 + R2 ≤ C(Q1 + a2
21Q2) + α1C(c2

21P̂2) + α2C(d2
1P̄1) + α2C(d2

2P̄2), (14)

R1 + R2 ≤ C(Q2 + a2
12Q1) + α1C(c2

12P̂1) + α2C(d2
1P̄1) + α2C(d2

2P̄2). (15)

Furthermore, if the DLIC, where the second band is used as direct channels only, has strong
underlying GIC, the capacity region follows from Corollary 1 with α1 = 0 and α2 = α.

4. Capacity of the Weak CLIC

Now, consider the weak CLIC where the underlying GIC has weak interference. Recall that in
a conventional GIC with weak interference, decoding both messages is suboptimal in general. However,
in the weak CLIC, if messages are encoded jointly over both bands and the cross channels in the second
band are sufficiently strong, then decoding both messages is indeed optimal. We characterize the
sufficient conditions below.

Lemma 2. Provided the channel parameters of the CLIC with BMF α1 satisfy a2
12 < 1, a2

21 < 1, as well as
the conditions

(1 + Q1)(1 + Q2) ≤ (1 + a2
12Q1)(1 + c2

12P̂1)
α1 , (16)

(1 + Q1)(1 + Q2) ≤ (1 + a2
21Q2)(1 + c2

21P̂2)
α1 , (17)

the following inequalities hold

I(Xn
1 ; Yn

1 |Xn
2 ) ≤ I(Xn

1 ; Yn
2 ) + nα1C(c2

12P̂1), (18)

I(Xn
2 ; Yn

2 |Xn
1 ) ≤ I(Xn

2 ; Yn
1 ) + nα1C(c2

21P̂2), (19)

for all Xn
1 and Xn

2 with product distributions p(xn
1 )p(xn

2 ) on Rn×Rn, n ∈ Z+, which satisfy the average power
constraints, 1

n ∑n
`=1 X2

k` ≤ Qk, k = 1, 2.

Proof. We prove only (18) as (19) follows similarly. From the system model for the first band in (1)
and (2), we have

I(Xn
1 ; Yn

1 |Xn
2 )− I(Xn

1 ; Yn
2 ) = h(Xn

1 + Zn
1 )− h(Zn

1 )− h(Xn
2 + a12Xn

1 + Zn
2 ) + h(Xn

2 + Zn
2 )

(a)
≤ h(Xn

2 + Zn
2 )− h(Zn

2 ) + h(Xn
1 + Zn

1 )− h(a12Xn
1 + Zn

2 )

(b)
= I(Xn

2 ; Xn
2 + Zn

2 )− {h(Xn
1 + Zn

1 + Zn
3 )− h(Xn

1 + Zn
1 )} − n log |a12|

(c)
≤ nC(Q2)− I(Zn

3 ; Zn
3 + Zn

1 + Xn
1 )− n log |a12|

(d)
= nC(Q2)−

n

∑
`=1

(
h(Z3`|Zn−`

3 )− h(Z3`|Zn−`
3 , Zn

3 + Zn
1 + Xn

1 )
)
− n log |a12|

(e)
≤ nC(Q2)−

n

∑
`=1

(h(Z3`)− h(Z3`|Z3` + Z1` + X1`))− n log |a12|

( f )
= nC(Q2)−

n

∑
`=1

I(Z3; Z3 + Z1 + X1`)− n log |a12|

(g)
≤ nC(Q2)−

n

∑
`=1

I(Z3; Z3 + Z1 + X∗1`)− n log |a12|
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(h)
= nC(Q2) +

n

∑
`=1

1
2

log
Q1` + 1

Q1` + 1/a2
12
− n log |a12|

(i)
≤ nC(Q2) +

n
2

log
1
n ∑n

`=1 Q1` + 1
1
n ∑n

`=1 Q1` + 1/a2
12
− n log |a12|

(j)
≤ n

2
log

(1 + Q1)(1 + Q2)

(1 + a2
12Q1)

(k)
≤ α1n

2
log(1 + c2

12P̂1),

where (a) follows from unconditioning, h(Xn
2 + a12Xn

1 + Zn
2 ) ≥ h(Xn

2 + a12Xn
1 + Zn

2 |Xn
2 ) = h(a12Xn

1 +

Zn
2 ), and since h(Zn

1 ) = h(Zn
2 ); (b) follows since 1/a2

12 > 1, and thus h(a12Xn
1 + Zn

2 ) = h(a12Xn
1 + Zn

1 ) =

h(Xn
1 + Z1

n/a12) + n log |a12| = h(Xn
1 + Zn

3 + Zn
2 ) + n log |a12|, where Z3` ∼ N (0, 1/a2

12 − 1), are i.i.d.;
(c) follows since the first term in b is maximized by X2` ∼ N (0, Q2), i.i.d.; (d) follows from the chain
rule; (e) follows since Z3` are i.i.d., and since unconditioning does not reduce entropy; ( f ) follows
by replacing the i.i.d. RVs, Z3` and Z1`, with Z3 ∼ N (0, 1/a2

12 − 1) and Z1 ∼ N (0, 1), respectively;
(g) follows by invoking the worst additive noise result of [33] to every mutual information term inside
the summation of ( f ), where X∗1` ∼ N (0, Q1`), with Q1` := E(X2

1`), and 1
n ∑n

`=1 Q1` ≤ Q1; (h) follows
from the differential entropy of Gaussian RVs; (i) follows since the log function is concave in {Q1`}n

`=1;
(j) follows since 1

n ∑n
`=1 Q1` ≤ Q1; and (k) follows from condition (16).

We characterize the capacity of the weak CLIC under the conditions of Lemma 2 below.

Theorem 2. The capacity region of the weak CLIC with BMF α1 that satisfies the conditions in (16) and (17) is
given by the set of all nonnegative rate tuples (R1, R2) that satisfy

R1 ≤ C(Q1), (20)

R2 ≤ C(Q2), (21)

R1 + R2 ≤ C(Q1 + a2
21Q2) + αC(c2

21P̂2), (22)

R1 + R2 ≤ C(Q2 + a2
12Q1) + αC(c2

12P̂1). (23)

Proof. The proof is relegated to Appendix B.

The result shows that, in the weak CLIC, where sufficient interference forwarding is not possible
through the underlying weak GIC, if the cross links in the second band are sufficiently strong, it is
possible to forward enough interference by encoding jointly over both bands such that decoding
both messages becomes optimal. Hence, these conditions can be classified as being able to push the
receivers to the “strong interference regime over both bands”.

Next, we illustrate the relationship between the channel parameters in (16) and (17) with an
example of a symmetric weak CLIC, where (16) and (17) imply the same condition. We denote by
c2
min := (((1 + Q1)(1 + Q2)/(1 + a2Q1))

1/α1 − 1)/P̂1, and α1,min := log((1 + Q1)(1 + Q2)/(1 +

a2Q1))/ log(1 + c2P̂1), respectively the minimum c2 and the minimum α1 required to achieve (16), and
show the interplay between a2, c2

min and α1,min for Q1 = Q2 = P̂1 = 1.
In Figure 2a, we plot c2

min against a2 ∈ (0, 1) for α1 ∈ {0.5, 1, 2}. Note that c2
min reduces

monotonically as a2 or α1 increases. This follows since, if a2 increases, then the first band forwards
more interference, and, if α1 increases, then the pre-log factor of the cross-channel capacity increases.
In either case, smaller c2

min is required to achieve (16). Similarly in Figure 2b, we plot α1,min against
a2 ∈ (0, 1) for c2 ∈ {0.5, 1, 2}, and note that α1,min reduces as a2 or c2 increases. Finally, in Figure 2c, we
depict the set of cross-channel gains (a2 and c2) of a symmetric CLIC with Q1 = Q2 = P̂1 = 1, α1 = 2,
and partition it depending on whether the capacity has been characterized in each set. Note that the
capacity for the set where a2 < 1 and c2 < c2

m has not been characterized yet.
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Figure 2. In (a,b), we plot c2
min and α1,min, respectively. In (c), the channel gains of a symmetric CLIC is

partitioned based on whether its capacity has been characterized in each set.

5. The Optimal Sum-Rate Problem

In this section, we study the power allocation scheme over the direct and cross channels in the
DCLIC that maximizes its sum-rate. Recall from Corollary 1 that, if the underlying GIC of the DCLIC
has strong interference (i.e., a2

12 ≥ 1 and a2
21 ≥ 1), then the sum-rate of the DCLIC is known for all

values of the remaining channel parameters, and, in particular, for all transmit powers in the second
band. Therefore, we pose this problem for the class of DCLICs with strong underlying GIC (see [A1]
below). Also recall that the normalized bandwidth (α) of the second band is shared between the direct
channels (α2) and the cross channels (α1). We denote the fraction of α alloted to the direct and cross
channels by β and β̄, respectively, where β := α2/α and β̄ := 1− β = α1/α, and β, β̄ ∈ (0, 1). Thus, β

provides a trade-off between the bandwidths in the direct channels (βα) and the cross channels (β̄α).
We formulate the problem under the following assumptions:

1. the underlying GIC of the DCLIC has strong interference, but not very strong interference,
1 ≤ a2

12 < 1 + Q1 and 1 ≤ a2
21 < 1 + Q2;

2. the underlying GIC of the DCLIC satisfies: Q2 + a2
12Q1 = Q1 + a2

21Q2;
3. β and β̄ are fixed a priori;
4. the transmission power in the direct channel (pk) and cross channel (qk) from transmitter k (Txk)

satisfy the constraint, βpk + β̄qk = P, k = 1, 2, where P is the power budget.

In [A1], we assume that the underlying GIC does not have very strong interference, since the
power allocation in that case is trivial (see Section 5.4). For ease of exposition, we assume in [A2] that
the underlying GIC receives equal power in both its receivers. Note that the class of GICs that satisfies
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[A2] also contains the symmetric GICs. Moreover, the analysis under [A2] reveals enough insight such
that it can be extended to the general case (see Remark 1).

In [A3], β is assumed to be fixed a priori and known. This models practical constraints in many
wireless networks where dynamically allocating the bandwidth may not be feasible or straightforward [34].
In [A4], we assume that power budget (P) in both transmitters are the same. There is no loss of
generality in this assumption as the relative difference between the power budgets of the first and the
second user can be absorbed into the channel gains.

5.1. Problem Formulation and Solution

For a fixed power allocation (p1, q1, p2, q2) in the mm-wave channels, we denote the sum-rate
achievable at Rx1 and Rx2 in (14) and (15) by Σ1 and Σ2, and the interference-free sum-rate given by
the sum of individual rates in (12) and (13) by Σ, and present them below

Σ1 := A1 +
αβ̄

2
log(1 + c2

21q2) +
αβ

2
(

log(1 + d2
1 p1) + log(1 + d2

2 p2)
)
, (24)

Σ2 := A2 +
αβ̄

2
log(1 + c2

12q1) +
αβ

2
(

log(1 + d2
1 p1) + log(1 + d2

2 p2)
)
, (25)

Σ := A +
αβ

2
(

log(1 + d2
1 p1) + log(1 + d2

2 p2)
)
, (26)

where A1 := 1
2 log(1 + Q1 + a2

21Q2), A2 := 1
2 log(1 + Q2 + a2

12Q1) and A := 1
2 log(1 + Q1)(1 + Q2).

Furthermore, they satisfy A1 = A2 < A due to [A2] and [A1]. Therefore, a necessary and sufficient
condition for R to be an achievable sum-rate of the DCLIC is R ≤ min{Σ1, Σ2, Σ}, for some power
allocation (p1, q1, p2, q2). The optimization problem that maximizes R over the transmit powers
(p1, q1, p2, q2) is then

[P1] maximize R

subject to: R ≤ Σ1, (27)

R ≤ Σ2, (28)

R ≤ Σ, (29)

βp1 + β̄q1 = P, (30)

βp2 + β̄q2 = P, (31)

(p1, q1, p2, q2, R) � 0. (32)

Note that [P1] is a convex optimization problem, since its objective function R is linear,
the equality constraints (30) and (31) are affine, and the inequality constraints (27)–(29) are convex.
Furthermore, [P1] satisfies Slater’s condition [35] (Chapter 5.2.3), and thus it can be solved using the
Karush–Kuhn–Tucker (KKT) conditions [35] (Chapter 5.5.3). We relegate the details to Appendix C.

It is well known that optimal power allocation in parallel Gaussian point-to-point channels follows
the Waterfilling (WF) property. Due to this, if the power budget is sufficient small, it is allocated
entirely to the “strongest” sub-channel, and, as the power budget is increased, power is allocated to
the other “weaker” sub-channels, in addition to the strongest one (see Chapter 3.4.3 in [32]). In the
ensuing discussion, it becomes clear that the optimal power allocation in [P1] (hereby referred to as
“the optimal allocation”) has two noticeable properties: a WF-like property, due to which it assigns
power to the cross and direct channels following a WF-like allocation, and a max-min property, due to
which it increases the minimum of the sum-rate constraints.

Due to its WF-like property, the optimal allocation assigns the entire power budget (P) to only
a subset of all the direct and cross channels, depending on channel conditions that indicate whether
the direct channels are stronger than the cross channels or vice versa. Moreover, if P is sufficiently
increased, it becomes optimal to allocate power to the remaining set of channels. In addition, since the
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objective of the problem is to maximize min{Σ1, Σ2, Σ}, the optimal allocation assigns powers in such
a way that minimizes or eliminates any difference between Σ1, Σ2 and Σ. We observe that, due to this
property (max-min property), the optimal allocation imposes a maximum limit on the cross-channel
powers, which is unlike WF in [32] where no such limit exists.

We study the optimal allocation by partitioning the entire set of channel parameters and P into
disjoint sets (S(.)), such that the optimal allocation can be classified according to the power levels in
the direct and cross channels in each set. Without loss of generality, we present the optimal allocation
under c2

21 > c2
12 in Table 1, and study it in detail. In this case, only fours sets, SD, SC, SCD and Ssat, are

sufficient. The power allocation under c2
21 < c2

12 can be readily obtained from Table 1 by swapping the
indices 1 and 2, and the case with c2

21 = c2
12 is briefly discussed in Section 5.3.

For notational convenience, we express the optimal powers and the conditions of the sets S(.) in
Table 1 in terms of the following functions:

g1(P) :=
d2

1
c2

12(1 + Pd2
1/β)

+
d2

2
c2

21(1 + Pd2
2/β)

, (33)

g2(P) :=
(
1 + c2

12P/β̄
)( d2

1
c2

12
+

1
P(c2

21 − c2
12)/β + c2

21/d2
2

)
, (34)

g3(P) :=
βγ

Pc2
21 + β̄ + βc2

21/d2
2 − β̄γ

+
βγ

Pc2
12 + β̄ + βc2

12/d2
1 − β̄γ

, (35)

F(P) :=
(

E1 + E2 −
√
(E1 − E2)2 + 4β2E1E2

)
/(2β̄(1 + β))− 1, (36)

Ek := Pc2
km + β̄ + βc2

km/d2
k , k 6= m ∈ {1, 2}, (37)

γ :=
( (1 + Q1)(1 + Q2)

1 + Q1 + a2
21Q2

)1/αβ̄
, (38)

and P∗4 := β̄(γ− 1)/c2
12. We relegate the details of the derivation to Appendix C.

In the following, we use “the optimal allocation” and OA1 interchangeably to refer to the optimal
power allocation for [P1] under c2

21 > c2
12, and discuss some interesting characteristics of OA1.

Table 1. Optimal power allocation and conditions of sets in OA1.

Set Optimal Powers Condition

SD p1 =
P
β

, q1 = 0, p2 =
P
β

, q2 = 0, g1(P) > 1

SC p1 = 0, q1 =
P
β̄

, p2 =
P(c2

21 − c2
12)

βc2
21

, q2 =
c2

12
c2

21

P
β̄

, P < P∗4 , g2(P) < 1

Ssat p1 =
P
β
− β̄(γ− 1)

βc2
12

, q1 =
γ− 1

c2
12

, p2 =
P
β
− β̄(γ− 1)

βc2
21

, q2 =
γ− 1

c2
21

, P ≥ P∗4 , g3(P) < 1

SCD p1 =
P− β̄q1

β
, q1 =

F(P)
c2

12
, p2 =

P− β̄q2
β

, q2 =
c2

12
c2

21
q1, complement of

other conditions

First, the condition g1(P) < 1 in SD implies that the direct channels are “stronger” than the cross
channels, in the sense that, for sufficiently small P, the sum-rate achieved from allocating P only to
both direct channels is larger than that achieved from any other subset of channels. Thus, following its
WF-like property, OA1 allocates P entirely to the direct channels, i.e., p1 = p2 = P

β , and zero power to
the cross channels, i.e., q1 = q2 = 0. This allocation also achieves Σ2 = Σ1, which is consistent with the
max-min property of OA1.

Second, the condition g2(P) < 1 in SC implies that the cross channels are “stronger” than the
direct channels, in the sense that, for sufficiently small P, the sum-rate achieved from allocating P to
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both cross channels and a direct channel is larger than that achieved from only direct channels. Note
that, unlike in SD, OA1 needs to allocate power to a direct channel in addition to both cross channels in
SC, since allocating P entirely to the cross channels causes an imbalance between Σ1 and Σ2 (Σ2 < Σ1)
due to c2

21 > c2
12, which violates the max-min property. Therefore, OA1 shares P among the cross and

direct channels from Tx2 to preserve Σ2 = Σ1. Moreover, the condition P < P∗4 ensures that power in
the cross channels have not yet reached their maximum limits.

Third, as P is increased, OA1 shares P among all channels in SCD. As P increases, the additional
benefits from transmitting in a particular subset of channels (either direct channels as in SD, or cross
and direct channels as in SC) begins to diminish. Thus, following its WF-like property, OA1 starts
sharing P among all channels. In addition, OA1 shares P in such a way that preserves Σ2 = Σ1.

Finally, if P is increased sufficiently, OA1 follows the allocation in Ssat, where the cross-channel
powers have reached their maximum limits, qk,sat := (γ− 1)/c2

km, k 6= m ∈ {1, 2}. Therefore, as P
increases further, all subsequent increments of P is allotted to only direct channels. We now say that
the cross channels are saturated, in the sense that allocating more power beyond these limits does not
improve the sum-rate. Such limits for the cross channels in OA1 is unlike the WF allocation in [32].

The cross channels become saturated due to the max-min property of OA1. Recall that, in SCD,
OA1 allocates powers to all channels, which increase as P increases. The increases in p1 and p2 results
in the increase of Σ1, Σ2 and Σ by an equal margin. However, an increase in q1 only increases Σ2,
and an increase in q2 only increases Σ1. Now, note that, due to its max-min property, OA1 preserves
Σ1 = Σ2 in SD, SC, and SCD. However, there may exist a gap between Σ1 = Σ2 and Σ. As q1 and q2 are
increased, this gap reduces and finally becomes zero in Ssat. At this point, both cross channels become
saturated simultaneously. If any more power is allocated to either q1 or q2, a suboptimal sum-rate
R = Σ < min{Σ1, Σ2} will result. Therefore, OA1 maintains qk = qk,sat and diverts all additional
power to the direct channels.

Note that once, in Ssat, the sum-rates achieved by joint decoding (Σ1 and Σ2) become equal to
the sum of interference-free user rates (Σ), which is somewhat similar to the behavior of the GIC
under very strong interference. At this point, all additional increments in P are allocated to the direct
channels to increase the individual user rates.

In addition, note that the sets S(.) form a partition due to their construction using the optimal
Lagrange multipliers (defined in Appendix C). Thus, the conditions in Table 1 are mutually exclusive.

Moreover, these conditions can be equivalently described in terms of three critical powers,
P∗k ∈ R+, defined by gk(P∗k ) = 1, where gk(P) is defined in (33)–(35) for k ∈ {1, 2, 3}. Specifically,
the conditions of SD, SC, and Ssat are given by P < P∗1 , P < min{P∗2 , P∗4 }, and P > max{P∗3 , P∗4 },
respectively. In addition, we note that the direct channels are “stronger” than the cross channels in the
sense specified above, if P∗1 > 0. Similarly, if P∗2 > 0, the cross channels are “stronger” than the direct
channels. Furthermore, if 0 < P∗3 < P∗4 < P∗2 , the cross channels are said to be “much stronger”, in the
sense that OA1 continues allocating power to the cross channels as in SC until they become saturated,
and only after that it assigns power to both direct channels.

We note from the mutual exclusiveness of SD and SC that, if P∗1 > 0, then no P∗2 ∈ R+ exists
that satisfies g2(P∗2 ) = 1. This shows that, if the direct channels are stronger, the allocation in SC is
suboptimal for any P > 0. Similarly, if P∗2 > 0, then no P∗1 ∈ R+ exists such that g1(P∗1 ) = 1, and thus
the allocation in SD is suboptimal for any P > 0.

5.2. The Waterfilling-Like Nature of the Optimal Power Allocation

Now, we characterize how OA1 adapts the power allocation, as the power budget (P) increases
and crosses the critical thresholds P∗k , k ∈ {1, 2, 3}. We say that OA1 follows the sequence A1 → A2 →
A3 where Al ∈ {SD,SC,SCD,Ssat}, if OA1 allocates power as in A1 for sufficiently small P, and then
adapts the powers according to the allocation in A2 and A3 as P increases. In this regard, we note that
OA1 follows one of the three sequences, as explained below and illustrated graphically in Figure 3.
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Saturation levels 

in cross channels

Total power (P) increases

Figure 3. Due to its WF-like property, OA1 follows one of the three sequences depending on P∗k .
The saturation levels in the cross channels are due to its max-min property.

• If P∗1 > 0: OA1 follows the sequence SD → SCD → Ssat (denoted by [S1]). Since the direct
channels are stronger, OA1 allocates all of P to them as in SD when P is sufficiently small
(i.e., P < P∗1 ). However, as P increases, the additional benefit from transmitting only in the direct
channels decreases, and thus, when P ≥ P∗1 , OA1 begins transmitting in both cross and direct
channels as in SCD. This allocation follows from its WF-like property, and remains optimal for all
P∗1 ≤ P ≤ P∗3 . Finally, when P > P∗3 , the max-min property of OA1 comes into effect, and thus
the cross channels become saturated and OA1 starts following the allocation in Ssat. Note that, in
this case, the saturation threshold for P is Psat = P∗3 .

• If P∗2 > 0 but 0 < P∗3 < P∗4 < P∗2 is not satisfied: OA1 follows the sequence SC → SCD → Ssat
([S2]). This case is similar to [S1] above, except for the fact that now the cross channels are stronger.
Hence, OA1 transmits in the cross channels and the direct channel with gain d2

2 as in SC when
P is sufficiently small (i.e., P < min{P∗2 , P∗4 }). Next, following its WF-like property, OA1 starts
transmitting in all the direct and cross channels as in SCD when P ≥ min{P∗2 , P∗4 }. Finally, when
P > max{P∗3 , P∗4 }, the cross channels become saturated, and OA1 follows the allocation in Ssat
thereon. The saturation threshold for P in this case is Psat = max{P∗3 , P∗4 }.

Note that, whenever P∗2 > 0, OA1 follows [S2] irrespective of how P∗2 , P∗3 , and P∗4 compare,
except in two cases: (a) 0 < P∗3 < P∗4 < P∗2 , where OA1 follows [S3], described next, and (b)
0 < P∗4 < P∗3 < P∗2 , which is infeasible as they violate the mutual exclusiveness of SC and Ssat.

• If 0 < P∗3 < P∗4 < P∗2 : OA1 follows the sequence SC → Ssat ([S3]). In this case, the cross channels
are much stronger than the direct channels. Hence, similar to [S2], OA1 allocates power to both
cross channels and a direct channel as in SC when P is sufficiently small (i.e., 0 ≤ P < P∗4 ). As P
increases and P ≥ P∗4 , the cross channels become saturated, and OA1 begins assigning powers to
all channels as in Ssat. Interestingly, in this case, OA1 skips SCD. This shows that, since the cross
channels are much stronger, it is optimal to allocate power as in SC until they become saturated
at Psat = P∗4 , beyond which the allocation in Ssat becomes optimal.

We illustrate the characteristics of OA1 with two numerical examples where we choose the
following parameters, a2

12 = a2
21 = 1.5, Q1 = Q2 = 5, α = 2, β = 0.5. First, we illustrate an

example of [S1] by additionally choosing d2
1 = 2, d2

2 = 3, c2
12 = 1, c2

21 = 1.5, such that the direct
channels are stronger than the cross channels in the sense that P∗1 = 0.619 and P∗2 = −0.75 6∈ R+.
In Figure 4a, we plot the optimal powers against the power budget P, and note the following: (i) when
0 ≤ P < P∗1 = 0.619, OA1 allocates P entirely to the direct channels as in SD, and thus p1 and p2

increase with P, and q1 = q2 = 0; (ii) when P∗1 ≤ P ≤ P∗3 = 2.73, OA1 allocates power to all channels
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as in SCD, and thus q1 and q2 also increase with P; (iii) finally, when P > P∗3 , OA1 follows Ssat where
the cross channels become saturated simultaneously, and all increments of P are added to p1 and p2.

We depict the resulting constraints Σ1, Σ2, and Σ in Figure 4b. First, note that OA1 preserves
R = Σ1 = Σ2 for all P. However, there exists a gap between Σ1 = Σ2 and Σ in SD and SCD. Specifically,
in SD, the gap remains constant (A− A1); in SCD, it reduces gradually as OA1 transmits in the cross
channels, and, in Ssat, it becomes zero as OA1 achieves R = Σ1 = Σ2 = Σ, as expected.
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Figure 4. Optimal power allocation that follows the sequence [S1] SD → SCD → Ssat. (a) optimal
power allocation (p1, q1, p2, q2); (b) the resulting sum-rate constraints.

Next, we illustrate an example of [S2] with the channel gains, d2
1 = 0.5, d2

2 = 1, c2
12 = 1.5, c2

21 = 3,
such that the cross channels are stronger than the direct channels in the sense that P∗2 = 0.22 and
P∗1 = −0.21 6∈ R+. In Figure 5a, we plot the optimal powers against P, and observe the following:
(i) when P < P∗2 = 0.22, OA1 follows the allocation in SC, and thus p2, q1 and q2 increase with P,
whereas p1 = 0; (ii) when P∗2 ≤ P ≤ P∗3 = 0.97, OA1 allocates power to all channels as in SCD, and
thus p1 now increases with P; (iii) finally, when P > P∗3 , OA1 follows Ssat, and thus the cross channels
become saturated simultaneously, as expected in [S2]. In Figure 5b, we plot the sum-rate constraints,
and note that OA1 achieves R = Σ1 = Σ2 in all the sets. In addition, the gap between Σ1 = Σ2 and Σ
is gradually offset as OA1 transmits in the cross channels in SC and SCD, and it finally becomes zero
in Ssat, as expected. We omit an example of [S3] (SC → Ssat), which is somewhat similar to [S2].
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Figure 5. Optimal power allocation that follows the sequence [S2] SC → SCD → Ssat. (a) optimal
power allocation (p1, q1, p2, q2); (b) the resulting sum-rate constraints.
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Remark 1. Recall that OA1 presents the solution for [P1] under c2
12 < c2

21 and [A2] (implying A1 = A2).
If c2

12 < c2
21 remains unchanged, and [P1] is formulated under a more general assumption [A2G]; where

A2 < A1, then seven disjoint sets are needed to describe the optimal allocation (now denoted by OAG). The
conditions and power allocations of these sets are found by solving the corresponding KKT conditions in a similar
way to that of [P1] under [A2] in Appendix C. Hence, their explicit derivation is omitted for brevity. Of the
seven sets, the first four sets, Ŝl , l ∈ {D, C, CD, sat}, are counterparts of the corresponding sets Sl in Table 1,
in the sense that the power allocation in Ŝl is similar to that in Sl as discussed below. The remaining three sets
Ŝk, k = 1, 2, 3 are “new” in the sense that the power allocation in these sets do not resemble that in any of the
sets S(.) in Table 1.

The power allocation in the first four sets Ŝl are similar to that of Sl , l ∈ {D, C, CD, sat} in that (a) when
the power budget (P) is sufficiently small, OAG allocates power to only both direct channels (in ŜD), or both
cross channels and one direct channel (in ŜC) depending on whether the direct or the cross channels are “strong"
as in SD or SC before; (b) as P is increased OAG allocates power to all channels (in ŜCD) as in SCD; and (c) when
P is sufficiently large, both cross channels become saturated simultaneously, and OAG allocates all additional
increments of P to only the direct channels (in Ŝsat) as in Ssat before. Note that the optimal powers and the
critical powers of Ŝ(.) differ slightly from that of S(.) due to the general assumption [A2G]. For conciseness, we
omit the conditions, and present the optimal powers in Table 2.

Table 2. Optimal power allocation in the first four sets in OAG.

Set Optimal Powers

ŜD p1 =
P
β

, q1 = 0, p2 =
P
β

, q2 = 0,

ŜC p1 = 0, q1 =
P
β̄

, p2 =
Pc2

21 + β̄− (Pc2
12 + β̄)/η

βc2
21

, q2 =
Pc2

12/β̄ + 1− η

ηc2
21

,

Ŝsat p1 =
P
β
− β̄(γ1 − 1)

βc2
12

, q1 =
γ1 − 1

c2
12

, p2 =
P
β
− β̄(γ2 − 1)

βc2
21

, q2 =
γ2 − 1

c2
21

,

ŜCD p1 =
P− β̄q1

β
, q1 =

F̂(P)
c2

12
, p2 =

P− β̄q2
β

, q2 =
1 + c2

12q1

ηc2
21

− 1
c2

21
,

Here γk := ((1 + Q1)(1 + Q2)/(1 + Ql + a2
lkQk))

1/αβ̄, l 6= k ∈ {1, 2}, and F̂(P) and η are defined
in (39) and (40) below

F̂(P) :=
(

E1 + ηE2 −
√
(E1 − ηE2)2 + 4β2ηE1E2

)
/(2β̄(1 + β))− 1, (39)

η :=
(1 + Q1 + a2

21Q2

1 + Q2 + a2
12Q1

)1/αβ̄
> 1, (40)

with E1, E2, defined in (37). Note that, under [A2] (η = 1), the powers in Table 2 simplifies to that in Table 1.
Next, we present the optimal powers and the critical powers of the three new sets in Table 3, where

P∗5 := β̄
(η − 1)

c2
12

, P∗6 := β̄
( 1

d2
1
− 1

c2
12

)
, P∗7 := β

( 1
c2

12
− 1

d2
1

)
, P∗8 :=

η − β̄

c2
12
− β

d2
1

,

f3(P) :=
d2

2
c2

21(1 + d2
2P/β)

+
βη

Pc2
12 + β̄ + βc2

12/d2
1 − β̄η

.

The power allocation for the new sets can be understood by following the WF-like and max-min properties of
OAG. For illustration, we explain the allocations in Ŝ1 and Ŝ2. In Ŝ1, the cross channels are stronger than the
direct channels. Thus, due to its WF-like property, OAG preferably allocates as much of P to the cross channels
as possible. However, under [A2G] (A2 < A1) and c2

12 < c2
21, allocating power to both cross channels results

in Σ2 < Σ1, and does not increase min{Σ2, Σ1} as much as possible. This results in a suboptimal sum-rate.
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Therefore, OAG allocates p1 = 0, q1 = P/β̄, which increases only Σ2, and assigns p2 = P/β, q2 = 0, which
represents the allocation in Ŝ1.

Table 3. Optimal Power Allocation and Conditions of the “New” Sets in OAG.

Set Optimal Powers Condition

Ŝ1 p1 = 0, q1 =
P
β̄

, p2 =
P
β

, q2 = 0, P ≤ P∗5 , P < P∗6

Ŝ2 p1 = P +
β̄

c2
12
− β̄

d2
1

, q1 = P +
β

d2
1
− β

c2
12

, p2 =
P
β

, q2 = 0, P > P∗6 , P > P∗7 , P < P∗8

Ŝ3 p1 =
P
β
− β̄(η − 1)

βc2
12

, q1 =
η − 1

c2
12

, p2 =
P
β

, q2 = 0, P > P∗5 , P ≥ P∗8 , f3(P) > 1

Furthermore, as P increases and P > max{P∗6 , P∗7 }, additional benefits from transmitting only in the cross
channel with gain c2

12 reduces, and thus OAG starts allocating a fraction of P to the direct channel with gain d2
1,

due to its WF-like property. Thus, OAG follows the power allocation in Ŝ2, which remains optimal as long as
P < P∗8 . The power allocation in Ŝ3 can be interpreted similarly.

The important insight is that OAG can be explained with the WF-like and max-min properties as in OA1,
and it does not reveal any new fundamental properties.

5.3. Optimum Power Allocation in the Symmetric DCLIC

We briefly discuss the optimum allocation for the symmetric DCLIC, where a2 := a2
12 = a2

21,
c2 := c2

12 = c2
21, d2 := d2

1 = d2
2, and Q1 = Q2. Due to symmetry, considering only symmetric power

allocation of the form (p, q, p, q) is sufficient, and does not cause loss of generality. Moreover, any
feasible (symmetric) power allocation achieves Σ1 = Σ2, rendering the constraint R ≤ Σ2 in (28)
redundant. The sum-rate optimization problem in this case can be formulated and solved as in [P1],
and is omitted here for brevity. In addition, we denote the optimal power allocation for this case
by OAS.

In this case, OAS can be described by the power allocation in four disjoint sets,
S̄l , l ∈ {D, C, CD, sat}, which are counterparts of the sets Sl in Table 1. The conditions and optimal
powers in these sets are given in Table 4, and they can be derived following the same procedure as in
Appendix C, and thus is omitted here.

Table 4. Optimal power allocation and conditions of sets in OAS.

Set Optimal Powers Condition

S̄D p =
P
β

, q = 0, P < P̄∗1

S̄C p = 0, q =
P
β̄

, P < P̄∗2 , P < P̄∗4

S̄CD p =
2

1 + β

(
P +

β̄

c2 −
β̄

2d2

)
, q =

1
1 + β

(
P +

β

d2 −
2β

c2

)
, P ≥ P̄∗1 , P ≥ P̄∗2 , P ≤ P̄∗3

S̄sat p =
P
β
− β̄(γ̄− 1)

βc2 , q =
γ̄− 1

c2 , P ≥ P̄∗4 , P > P̄∗3

Moreover, the critical powers are now given by

P̄∗1 := β
( 2

c2 −
1
d2

)
, P̄∗2 :=

β̄

2
( 1

d2 −
2
c2

)
, P̄∗3 :=

(1 + β)γ̄

c2 − β

d2 −
β̄

c2 , P̄∗4 :=
β̄(γ̄− 1)

c2 ,

where γ̄ := ((1 + Q1)
2/(1 + Q1 + a2Q1))

1/αβ̄ > 1.
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OAS has the same WF-like and max-min properties as that of OA1. In fact, a rudimentary
inspection of the conditions reveals that OAS follows one of the three possible sequences of sets
depending on the channel gains, as before:

• If c2 ≤ 2d2 (direct channels are “stronger”): OAS follows the sequence S̄D → S̄CD → S̄sat.
It transmits only in the direct channels as in S̄D when P < P̄∗1 , then transmits in all channels as in
S̄CD when P̄∗1 ≤ P ≤ P∗3 , and finally starts following the allocation in S̄sat when P > P̄∗3 .

• If 2d2 < c2 < 2d2γ̄ (cross channels are “stronger”): OAS follows the sequence S̄C → S̄CD → S̄sat.
It transmits only in the cross channels as in S̄C when P < P̄∗2 , then transmits in all channels as in
S̄CD when P̄∗2 ≤ P ≤ min{P∗3 , P∗4 }, and finally follows S̄sat when P > min{P∗3 , P∗4 }.

• If c2 ≥ 2d2γ̄ (cross channels are much “stronger”): OAS follows the sequence S̄C → S̄sat. It follows
S̄C when P < P̄∗4 , and then follows S̄sat when P ≥ P∗4 , while skipping S̄CD altogether.

Thus, OAS allocates all of P to either both direct or both cross channels if P is small, and then
shares P among all channels as P increases. In addition, when P is increased beyond the saturation
threshold, the cross channels become saturated. Note that, due to symmetry, OAS needs to transmit in
both cross channels only in S̄C to preserve Σ1 = Σ2, unlike in SC, where OA1 additionally transmits in
a direct channel.

We note the following, which are revealed due to symmetry. First, if c2 < 2d2, the direct channels
are considered to be stronger than the cross channels. Similarly, if c2 > 2d2, the cross channels are
considered to be stronger. Moreover, in the special case of c2 = 2d2, neither the direct nor the cross
channels are stronger than the other, and thus allocating P entirely to only direct or cross channel
would be suboptimal. Therefore, OAS transmits in all channels as in SCD when P ≥ 0. Finally, the
condition c2 ≥ 2d2γ implies that the cross channels are much stronger than the direct channels. Thus,
it is optimal to transmit only in the cross channels as in S̄C until they become saturated, at which
point the allocation in S̄sat becomes optimal. Note that these conditions follow trivially from the
corresponding conditions of [S1], [S2], and [S3] in Section 5.2 by applying symmetry.

Furthermore, due to symmetry, one can now directly observe that the conditions of the sets
in Table 4 are mutually exclusive. For example, consider the conditions of S̄D, c2 < 2d2 and P < P̄∗1 ,
and note that they violate the second condition of S̄C (since P̄∗2 < 0), the first condition in S̄CD (since
P < P̄∗1 ), and the second condition in S̄sat (trivially follows from γ̄ > 1).

In Figure 6, we depict the set of cross and direct channel gains (c2 and d2) of a symmetric DCLIC
with parameters a2 = 1.5, Q1 = 5, α = 2, β = 0.5, and partition it depending on whether the direct or
the cross channels are stronger.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14

16

d2

c2

c2 = 2 d2

direct channels stronger
than cross channels

cross channels stronger 
than direct channels

c2 = 2 γ d2

cross channels much
stronger than direct channels

Figure 6. The set of all c2 and d2 is partitioned depending on whether the cross or the direct channels
are “stronger”.
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5.4. Discussion and Insights

Now, we discuss some insights obtained from the power allocation in OA1 in Table 1.
First, if the underlying GIC in the first band has very strong interference, i.e., a2

12 ≥ 1 + Q1 and
a2

21 ≥ 1 + Q2, OA1 allocates the power budget (P) entirely to direct channels as in SD for all values
of P. Note that, under very strong interference, we have Σ ≤ min{Σ1, Σ2} for any feasible power
allocation. Therefore, the sum-rate is maximized by maximizing Σ, which is achieved by allocating all
of P to the direct channels.

Second, if the transmit powers in the underlying GIC of the strong CLIC (Q1 and Q2) are small,
i.e., Q1 ≈ 0, Q2 ≈ 0, then allocating P entirely to the direct channels as in SD, is approximately optimal
for all values of P, in the sense that, the difference between the sum-rates achieved with the allocation
in SD and that in OA1 is very small. Specifically, since Q1 ≈ 0, Q2 ≈ 0, the gap between Σ and Σ1

at P = 0 is very small. As P is sufficiently increased, OA1 starts transmitting in all channels as in
SCD. However, since the gap is very small, only a small fraction of P needs to be allocated to the cross
channels to offset the gap, and thus almost all of P is redirected to the direct channels. The resulting
allocation closely resembles that in SD.

We can attribute this behavior of OA1 to the fact that the GIC with strong interference
(a2

12 ≥ 1, a2
21 ≥ 1) and small transmit powers (Q1 ≈ 0, Q2 ≈ 0) approaches the very strong interference

regime (a2
12 ≥ 1 + Q1, a2

21 ≥ 1 + Q2), where allocating P entirely to the direct channels as in SD is
optimal for all P.

Third, if the transmit powers in the underlying GIC of the strong CLIC are large, i.e., Q1, Q2 � 1,
OA1 allocates power in all channels as in SCD for all but a relatively small range of P. Recall that even
if OA1 transmits in the direct or cross channels as in SD or SC for small P, eventually when P ≥ P∗1
or P ≥ P∗2 , OA1 allocates power in all channels as in SCD, where the gap between Σ1 and Σ starts to
reduce. However, if Q1, Q2 � 1, this gap is very large, and thus very large P is needed to offset the
gap as in Ssat. Therefore, for all moderate P, OA1 allocates power to all channels following SCD.

Fourth, if the cross channel gains in the second band are very large, allocating P entirely to the
direct channels as in SD is approximately optimal for all P, in the sense described in the second point
above. This follows since with very large c2

12 and c2
21, OA1 needs to allocate only a very small fraction

of P to close the gap between Σ1 and Σ, and thus redirects the remaining of P to the direct channels.
The resulting allocation thus closely resembles that in SD.

Finally, when β ≈ 1, the DCLIC can be approximated by the DLIC, and thus allocating P entirely
to only the direct channels is approximately optimal. On the other hand, when β ≈ 0, the DCLIC
can be approximated by the CLIC where allocating P entirely to the cross channels is approximately
optimal. However, since the cross channels do not increase Σ, the sum-rate becomes limited to Σ when
P is sufficiently large, and does not increase anymore.

6. Conclusions

Motivated by simultaneous transmission in the microwave and mm-wave bands, we considered
a special class of dual band 2× 2 GIC. Due to their small wavelength and the use of highly directional
antenna arrays, the mm-wave band can be used to form highly directional point-to-point links, allowing
interference free reception at a designated receiver. For this model, we first showed that the capacity
region of a DCLIC can be decomposed into the capacity of a CLIC complemented by direct channels.
Moreover, we considered two specific classes of the CLIC with strong and weak underlying GIC, and
obtained sufficient conditions on the channel gains under which the capacity region is characterized.

We characterized the power allocation over the mm-wave channels that maximizes the sum-rate of
the DCLIC. Channel conditions have been characterized that determine how power is allocated to the
channels depending on whether the direct or the cross channels are “strong”. In particular, the optimal
allocation has a WF-like property due to which, when the power budget is small, it assigns the power
budget entirely to either both direct channels, or both cross channels and at most one direct channel.
As the power budget is increased, the optimal allocation eventually assigns power to all channels.
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It also has a max-min property, and, as a result, imposes a maximum limit on the cross-channel powers.
This power allocation evaluates the impact of high bandwidth point-to-point mm-wave channels on
the sum-rate performance, and thus can be useful in allocating resources in practice.

Potential future work includes analyzing other multi-user networks that operate with dual
microwave and mm-wave bands.
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Appendix A. Proof of Theorem 1

Proof. Outer bound: We derive the bounds on R1 and R2 as follows. If transmitter Txk transmits the
message Mk, k = 1, 2, we have from Fano’s inequality

nR1 ≤ I(Xn
1 , X̂n1

1 , X̄n2
1 ; Yn

1 , Ŷn1
1 , Ȳn2

1 ) + nεn

(a)
= I(Xn

1 , X̂n1
1 ; Yn

1 , Ŷn1
1 ) + I(X̄n2

1 ; Yn
1 , Ŷn1

1 |X
n
1 , X̂n1

1 )

+ I(X̄n2
1 ; Ȳn2

1 |Y
n
1 , Ŷn1

1 ) + I(Xn
1 , X̂n1

1 ; Ȳn2
1 |X̄

n2
1 , Yn

1 , Ŷn1
1 ) + nεn

(b)
= I(Xn

1 , X̂n1
1 ; Yn

1 , Ŷn1
1 ) + I(X̄n2

1 ; Ȳn2
1 |Y

n
1 , Ŷn1

1 ) + nεn

= I(Xn
1 , X̂n1

1 ; Yn
1 , Ŷn1

1 ) +
n2

∑
`=1

h(Ȳ1`|Ȳ`−1
1 , Yn

1 , Ŷn1
1 )− h(Ȳ1`|Ȳ`−1

1 , X̄n2
1 , Yn

1 , Ŷn1
1 ) + nεn

(c)
≤ I(Xn

1 , X̂n1
1 ; Yn

1 , Ŷn1
1 ) +

n2

∑
`=1

h(d1X̄1` + Z̄1`)− h(Z̄1`) + nεn

(d)
≤ I(Xn

1 , X̂n1
1 ; Yn

1 , Ŷn1
1 ) + n2C(d2

1P̄1) + nεn,

(A1)

where (a) follows from the chain rule; (b) follows since the second term of (a) is zero due to the
Markov chain (MC) X̄n2

1 → (Xn
1 , X̂n1

1 ) → (Yn
1 , Ŷn1

1 ), and the fourth term of (a) is zero due to the MC
(Yn

1 , Ŷn1
1 , Xn

1 , X̂n1
1 )→ X̄n2

1 → Ȳn2
1 ; (c) follows since unconditioning does not reduce entropy, and also

from the memoryless Gaussian model of the direct channels; and (d) follows since X̄1` ∼ N (0, P̄1),
i.i.d., maximizes the mutual information. Bounding R2 similarly, and since n2 ≤ α2n, we have

R1 ≤ r1 + α2C(d2
1P̄1), R2 ≤ r2 + α2C(d2

2P̄2),
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where rk := supXn
k ,X̂

n1
k

1
n I(Xn

k , X̂n1
k ; Yn

k , Ŷn1
k ), k = 1, 2, for product distribution ∏2

k=1 p(xn
k , x̂n1

k ), with
n1 ≤ α1n.

Achievability: We will code over t blocks of symbols together. We choose (n, n1, n2), and
define Uk := (Xn

k , X̂n1
k ), k = 1, 2, where p(U1, U2) = p(U1)p(U2), and define Ūk := X̄n2

k , k = 1, 2
and choose X̄k` ∼ N (0, P̄k), i.i.d., for ` = 1, . . . , n2. Suppose Txk transmits Mk ∈ Mk, k = 1, 2.
Thus, to encode Mk over t blocks for the underlying CLIC, we generate 2tnRk i.i.d. sequences
Ut

k(Mk), one for each Mk ∈ Mk, where Ut
k(Mk) are distributed according to p(ut

k) = ∏t
`=1 p(uk,`) =

∏t
`=1 p

(
xn`

k,(`−1)n+1 x̂n1`
k,(`−1)n1+1

)
, k = 1, 2. Similarly, for the two direct channels, we generate 2tnRk i.i.d.

sequences Ūt
k(Mk), distributed as ∏n2t

`=1 p(x̄k`), where x̄k` ∼ N (0, P̄k), for k = 1, 2, and ` = 1, . . . , n2.
Thus, to transmit Mk, k = 1, 2, Ut

1(M1) and Ut
2(M2) are transmitted through the CLIC,

and Ūt
1(M1) and Ūt

2(M2) are transmitted through the two direct channels in the second band. Upon
receiving the sequences (Ynt

k , Ŷn1t
k ) and Ȳn2t

k , Rxk employs joint typical decoding to estimate the
transmitted message as in [32] (Chapter 4.3). The probability of decoding error vanishes with t→ ∞ if

Rk <
1
n

I(Xn
k , X̂n1

k ; Yn
k , Ŷn1

k ) +
n2

n
C(d2

k P̄k), k = 1, 2, (A2)

which matches the upper bound on R1 and R2, as n2 ≤ α2n, and n → ∞. Finally, the capacity
region of the CLIC with BMF α is defined as the closure of the union of all sets of achievable rate
pairs (R1, R2) that satisfy (A2) with n2 = 0, where the union is taken over all product distributions,
p(xn

1 , x̂n1
1 )p(xn

2 , x̂n1
2 ), and for all n, n1 ∈ Z+, such that n ≤ α1n.

Appendix B. Proof of Theorem 2

Proof. Outer bound: We derive the bound on R1 first. Assuming that the transmitter Txk transmits
the message Mk, k = 1, 2, we have from Fano’s inequality

nR1 ≤ I(Xn
1 , X̂n

1 ; Yn
1 , Ŷn

1 ) + nεn

≤ I(Xn
1 , X̂n

1 ; Yn
1 , Ŷn

1 , Xn
2 , X̂n

2 ) + nεn

(a)
= I(Xn

1 , X̂n
1 ; Yn

1 , Ŷn
1 |Xn

2 , X̂n
2 ) + nεn

(b)
= I(Xn

1 , X̂n
1 ; Yn

1 |Xn
2 , X̂n

2 ) + I(Xn
1 , X̂n

1 ; Ŷn
1 |Xn

2 , X̂n
2 , Yn

1 ) + nεn

(c)
= I(Xn

1 ; Yn
1 |Xn

2 ) + nεn

(d)
≤

n

∑
`=1

I(X1`; Y1`|X2`) + nεn

(e)
≤ nC(Q1) + nεn,

(A3)

where (a) follows since (Xn
1 , X̂n

1 ) ⊥⊥ (Xn
2 , X̂n

2 ); (b) follows from the chain rule; (c) follows from the first
term in (b) due to the MCs X̂n

2 → Xn
2 → Yn

1 and (X̂n
1 , X̂n

2 )→ (Xn
1 , Xn

2 )→ Yn
1 , and since the second term

in (b) is zero due to (Xn
1 , X̂n

1 , Xn
2 , Yn

1 ) → X̂n
2 → Ŷn

1 ; (d) follows since unconditioning does not reduce
entropy, and also from the memoryless Gaussian model; and (e) follows from the Gaussian system
model, and by choosing X1` ∼ N (0, Q1) i.i.d., which maximizes the mutual information. We similarly
bound R2 by, R2 ≤ C(Q2).
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Next, we bound the sum-rate. We have from Fano’s inequality

nR1 + nR2 ≤ I(Xn
1 , X̂n

1 ; Yn
1 , Ŷn

1 ) + I(Xn
2 , X̂n

2 ; Yn
2 , Ŷn

2 ) + nεn

≤ I(Xn
1 , X̂n

1 ; Yn
1 , Ŷn

1 , Xn
2 , X̂n

2 ) + I(Xn
2 , X̂n

2 ; Yn
2 , Ŷn

2 , Xn
1 , X̂n

1 ) + nεn

(a)
= I(Xn

1 ; Yn
1 |Xn

2 ) + I(Xn
2 ; Yn

2 |Xn
1 ) + nεn

(b)
≤ I(Xn

1 ; Yn
2 ) + I(Xn

2 ; Yn
2 |Xn

1 ) + nα1C(c2
12P̂1) + nεn

= I(Xn
1 , Xn

2 ; Yn
2 ) + nα1C(c2

12P̂1) + nεn

(c)
≤

n

∑
`=1

I(X1`, X2`; Y2`) + nα1C(c2
12P̂1) + nεn

(d)
≤ nC(a2

12Q1 + Q2) + nα1C(c2
12P̂1) + nεn,

(A4)

where the first term in (a) follows from the steps (a)–(c) of (A3), and the second term follows similarly;
(b) follows from (18) in Lemma 2; (c) follows since unconditioning does not reduce entropy, and also
from the memoryless Gaussian model; and (d) follows from choosing Xk` ∼ N (0, Qk), k = 1, 2, i.i.d.,
which maximizes the mutual information. Hence as n→ ∞, and thus εn → 0, we obtain the bound
in (23). The other bound in (22) is found similarly. Thus, (20)–(23) provides an outer bound on the
capacity region of the CLIC.

Achievability: We fix n and n1, and choose independent input distributions for the codewords of
two users in each channel, i.e., p(x1, x2) = p(x1)p(x2), and p̂(x̂1, x̂2) = p̂(x̂1) p̂(x̂2). The transmitter
Txk encodes a message, Mk ∈ Mk into two codewords, xn

k (Mk) and x̂n1
k (Mk), generated according to

the i.i.d. distributions, ∏n
`=1 pk(xk`) and ∏n1

`=1 p̂k(x̂k`), k = 1, 2. The codewords, xn
k (Mk) and x̂n1

k (Mk),
are then transmitted through the IC in the first band and the cross channels in the second band,
respectively. Each receiver then estimates both messages, (M1, M2), from the signals observed over
both bands as in a multiple access channel. We use standard error analysis technique [32] (Chapter 4.5)
to find that the probability of decoding error becomes arbitrarily small as n→ ∞, if the rates achieved
in the receiver Rxk satisfies

Rk ≤ I(Xk; Yk|Xm),

Rm ≤ I(Xm; Yk|Xk) + α1 I(X̂m; Ŷk),

R1 + R2 ≤ I(X1, X2; Yk) + α1 I(X̂m; Ŷk),

(A5)

for k 6= m ∈ {1, 2}. Moreover, these achievable rates are maximized by using i.i.d. Gaussian inputs,
X∗k ∼ N (0, Qk) and X̂∗k ∼ N (0, P̂k), k = 1, 2. Finally, observe that (18) and (19) in Lemma 2 are valid
for the independent Gaussian inputs X∗1 and X∗2 with n = 1, which implies that the individual rates
must satisfy, Rk ≤ I(X∗k ; Y∗k |X

∗
m) ≤ I(X∗k ; Y∗m) + α1C(c2

km P̂k) ≤ I(X∗k ; Y∗m|X∗m) + α1C(c2
km P̂k), where Y∗k

is the channel output with the Gaussian inputs X∗k , k = 1, 2. Hence, the individual rates are limited to
Rk ≤ I(X∗k ; Y∗k |X

∗
m) = C(Qk), k 6= m ∈ {1, 2}, which matches the bound in (20) and (21). In addition,

the sum-rate constraints in (A5) above match the sum-rate bounds in (22) and (23). Thus, the outer
bound is achieved with independent Gaussian inputs.

Appendix C. Derivation of the Optimal Power Allocation

The KKT Conditions: We show that [P1] is convex, and formulate its KKT conditions. Denote by
x := (p1, q1, p2, q2, R) ∈ R5

+ a feasible point, satisfying the constraints in [P1]. Now, the objective of [P1]
is equivalent to minimizing −R, which is linear, and the equality constraints (30) and (31) are affine. Next,

we note that the constraints (27)–(29) are convex. To illustrate, we define G1(x) := R− A1 − αβ̄κ
2 ln(1+

c2
21q2) − αβκ

2 ln(1 + d2
1p1) − αβκ

2 ln(1 + d2
2p2) corresponding to (27) with κ := 1/ ln 2, and derive its

Hessian, ∇2G1(x) := ακ
2 diag

[(
βd4

1/(1+ d2
1p1)

2, 0, βd4
2/(1+ d2

2p2)
2, β̄c4

21/(1+ c2
21q2)

2, 0
)]

, where
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D = diag [a1, . . . , am] is a diagonal matrix with elements a1, . . . , am. Note that ∇2G1(x) is positive
semidefinite, and thus (27) is convex. Likewise, (28) and (29) are found to be convex. In addition,
(30) and (31) and x � 0 imply that the feasible set is compact for given P > 0 and β ∈ (0, 1).
Hence, [P1] is a convex problem over a compact set. Furthermore, [P1] satisfies Slater’s condition
[35] (Chapter 5.2.3), since the point x̃ :=

(
P− β̄ε/β, ε, P− β̄ε/β, ε, A1

)
is strictly feasible for

sufficiently small ε > 0. Therefore, [P1] can be solved using the KKT conditions [35] (Chapter 5.5.3).
We define the Lagrange multipliers {λi}3

i=1, corresponding to (27)–(29), {µi}2
i=1, corresponding

to (30) and (31), and {ρi}5
i=1, corresponding to the nonnegativity constraints, (p1, q1, p2, q2, R) � 0.

The Lagrangian is then

L = −R + λ1(R− Σ1) + λ2(R− Σ2) + λ3(R− Σ)

+ µ1
(

βp1 + β̄q1 − P
)
+ µ2

(
βp2 + β̄q2 − P

)
− ρ1 p1 − ρ2q1 − ρ3 p2 − ρ4q2 − ρ5R,

(A6)

where Σ1, Σ2 and Σ, are defined in (24)–(26) with A1 = A2.
With a slight abuse of notation, we denote the optimal primal variable by (p1, q1, p2, q2, R), and the

optimal Lagrange multipliers by (λ1, λ2, λ3, µ1, µ2, ρ1, ρ2, ρ3, ρ4, ρ5). The optimal variables satisfy the
KKT conditions below

λ1 + λ2 + λ3 = 1, (A7)

ρ1 = β
(
µ1 −

ακ

2
d2

1
1 + d2

1 p1

)
, (A8)

ρ2 = β̄
(
µ1 −

ακ

2
c2

12λ2

1 + c2
12q1

)
, (A9)

ρ3 = β
(
µ2 −

ακ

2
d2

2
1 + d2

2 p2

)
, (A10)

ρ4 = β̄
(
µ2 −

ακ

2
c2

21λ1

1 + c2
21q2

)
, (A11)

βp1 + β̄q1 = P, (A12)

βp2 + β̄q2 = P, (A13)

R− Σ1 ≤ 0, (A14)

R− Σ2 ≤ 0, (A15)

R− Σ ≤ 0, (A16)

λ1(R− Σ1) = 0, (A17)

λ2(R− Σ2) = 0, (A18)

λ3(R− Σ) = 0, (A19)

ρ1 p1 = 0, (A20)

ρ2q1 = 0, (A21)

ρ3 p2 = 0, (A22)

ρ4q2 = 0, (A23)

(p1, q1, p2, q2, R, λ1, λ2, λ3, ρ1, ρ2, ρ3, ρ4) � 0, (A24)

where we used the fact that ρ5 = 0 since R ≥ A1 > 0. Next, in order to characterize the power
allocation in OA1, where [A2] (implying A1 = A2) and c2

12 < c2
21 apply, we partition the set of optimal

Lagrange multipliers.

Partitioning the Set of the Optimal Lagrange Multipliers: First, note that ρ1 and ρ2 do not
satisfy ρ1 > 0 and ρ2 > 0, as this implies p1 = q1 = 0, which violates (A12). Similarly, ρ3 and ρ4 do
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not satisfy ρ3 > 0 and ρ4 > 0, as this violates (A13). Therefore, we partition the set of (ρ1, ρ2) � 0
into the disjoint subsets, B1 := {(ρ1, ρ2) : ρ1 > 0, ρ2 = 0}, B2 := {(ρ1, ρ2) : ρ1 = 0, ρ2 > 0}, and
B3 := {(ρ1, ρ2) : ρ1 = 0, ρ2 = 0}. Similarly, we partition the set (ρ3, ρ4) � 0 into three disjoint
subsets, Ck, k = 1, 2, 3. Therefore, any tuple (ρ1, ρ2, ρ3, ρ4) must be in one of the nine resulting cases,
Bk ∩ Cl , k, l = 1, 2, 3. For conciseness, we denote the tuples (ρ1, ρ2, ρ3, ρ4) and (λ1, λ2, λ3) by the vectors
ρ and λ, respectively.

We similarly partition the set of λ � 0 into 5 subsets: D1 := {λ : λ1 > 0, λ2 = 0, λ3 ≥ 0},
D2 := {λ : λ1 = 0, λ2 > 0, λ3 ≥ 0}, D3 := {λ : λ1 = 0, λ2 = 0, λ3 > 0}, D4 := {λ : λ1 > 0, λ2 >

0, λ3 = 0}, and D5 := {λ : λ1 > 0, λ2 > 0, λ3 > 0}. Note that when λ ∈ D1, it satisfies either (a)
λ1 > 0, λ2 = 0, λ3 > 0, or (b) λ1 > 0, λ2 = 0, λ3 = 0. Specifically, in (a) (A14) and (A16) are tight, and
thus R = Σ1 = Σ < Σ2, and in (b) only (A14) is tight, and thus R = Σ1 < min{Σ2, Σ}. Thus, in D1, we
have Σ1 ≤ Σ, Σ1 < Σ2. Similarly, we note the following: in D2, we have Σ2 ≤ Σ, Σ2 < Σ1; in D3, we
have Σ < min{Σ1, Σ2}; in D4, we have Σ2 = Σ1 < Σ, and in D5, we have Σ2 = Σ1 = Σ.

Now, we characterize “rules” (Rm) that determines whether any ρ ∈ Bk ∩ Cl and λ ∈ Dj jointly
satisfy the KKT conditions (i.e., they are compatible) or not (i.e., incompatible).

• R1: For any k ∈ {1, 3}, l ∈ {1, 2, 3}, if ρ ∈ Bk ∩ Cl then λ 6∈ Dj, j = 1, 3.

• R2: For any k ∈ {1, 2, 3}, l ∈ {1, 3}, if ρ ∈ Bk ∩ Cl then λ 6∈ Dj, j = 2, 3.

• R3: If ρ ∈ B1 ∩ C2 then λ 6∈ Dj, j = 2, 4, 5.

• R4: If ρ ∈ B2 ∩ C1 then λ 6∈ Dj, j = 1, 4, 5.

• R5: If ρ ∈ B2 ∩ C3 then λ 6∈ Dj, j = 1, 4, 5.

• R6: If ρ ∈ B3 ∩ C2 then λ 6∈ Dj, j = 2, 4, 5.

• R7: If ρ ∈ B2 ∩ C2 then λ 6∈ Dj, j = 1, 2, 3, 5.

We provide below an outline of how {Rm}7
m=1 follow. For brevity, we indicate the compatibility

(incompatibility) between Bk ∩ Cl and Dj by X(×) in Table A1, along with the conditions [Cm],
m = 1, . . . , 4, (Rm, m = 1, . . . , 7) that make them compatible (incompatible). Note that [Cm],
m = 1, . . . , 4, are given in (A25)–(A28) in the next two pages.

Table A1. Compatibility of Bk ∩ Cl and Dj.

Bk ∩ Cl D1 Cond. D2 Cond. D3 Cond. D4 Cond. D5 Cond.

B1 ∩ C1 × R1 × R2 × R1 × c2
12 < c2

21 × c2
12 < c2

21
B1 ∩ C2 × R1 × R3 × R1 × R3 × R3
B1 ∩ C3 × R1 × R2 × R1 X [C1] X [C3]
B2 ∩ C1 × R4 × R2 × R2 × R4 × R4
B2 ∩ C2 × R7 × R7 × R7 X [C2] × R7
B2 ∩ C3 × R5 × R2 × R2 × R5 × R5
B3 ∩ C1 × R1 × R2 × R2 × c2

12 < c2
21 × c2

12 < c2
21

B3 ∩ C2 × R1 × R6 × R1 × R6 × R6
B3 ∩ C3 × R1 × R2 × R1 X [C4] X [C3]

R1 follows from a specific relation between ρ2 and λ2 as follows. Suppose ρ ∈ Bk ∩ Cl as in R1.
In Bk, we have ρ2 = 0, and in Dj we have λ2 = 0 for j, k ∈ {1, 3}. Now, ρ2 = λ2 = 0 implies µ1 = 0
from (A9), resulting in ρ1 = −ακd2

1/(2(1 + d2
1 p1)) < 0 from (A8), which contradicts ρ1 ≥ 0 in Bk.

Thus, λ 6∈ Dj, j = 1, 3. R2 follows from a similar relation between ρ4 and λ1.
Now, consider R3 where ρ ∈ B1 ∩ C2 satisfy ρ1 > 0, ρ2 = 0, ρ3 = 0, ρ4 > 0. This results in

p1 = 0, q1 = P/β̄, p2 = P/β, q2 = 0, following (A20)–(A23) and (A12) and (A13). This further implies
Σ1 < Σ2, which contradicts the implications of λ ∈ Dj, j = 2, 4, 5. Therefore, λ 6∈ Dj, j = 2, 4, 5.
R4 follows similarly where the roles of ρ1, ρ3, and Σ1 are exchanged with that of ρ2, ρ4, and Σ2,
respectively.
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In R5, ρ ∈ B2 ∩ C3 satisfy ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 = 0, which results in p1 = P/β, q1 = 0, p2 > 0,
q2 > 0, from (A20)–(A23) and (A12) and (A13). Since q1 = 0 and q2 > 0, we have Σ2 < Σ1 that
contradicts the implications of λ ∈ Dj, j = 1, 4, 5 as in R4 above. The assertion in R6 follows similarly
by exchanging the roles of ρ1, ρ2, and Σ1 with ρ3, ρ4, and Σ2, respectively.

In R7, ρ ∈ B2 ∩ C2 satisfy ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 > 0, which results in
p1 = P/β, q1 = 0, p2 = P/β, q2 = 0, from (A20)–(A23) and (A12) and (A13). This implies Σ1 = Σ2 < Σ,
which is consistent with the implication of λ ∈ D4 only.

Power Allocation in OA1: We associate the five compatible subsets in Table A1 (denoted by X)
to the four sets S(.) in Table A1 according to the resulting power allocations: channel parameters and P
are in (a) SC if ρ ∈ B1 ∩ C3, λ ∈ D4; (b) SD if ρ ∈ B2 ∩ C2, λ ∈ D4; (c) Ssat if ρ ∈ B3 ∩ C3 or B1 ∩ C3,
λ ∈ D5; and (d) SCD if ρ ∈ B3 ∩ C3, λ ∈ D4. Next, we characterize the conditions, [Cm], m = 1, . . . , 4,
in terms of the channel parameters, which give the conditions of sets S(.).

• SC: Since ρ ∈ B1 ∩ C3, they satisfy ρ1 > 0, ρ2 = 0, ρ3 = 0, ρ4 = 0, which implies p1 = 0,
q1 = P/β̄ from (A12), (A20) and (A21), and p2 > 0, q2 > 0 from (A22) and (A23). In addition,
λ ∈ D4 implies Σ1 = Σ2 from (A17) and (A18), which, from the expressions of Σ1 and Σ2

in (24) and (25) gives c2
21q2 = c2

12P/β̄. Thus, we have q2 = Pc2
12/(c2

21 β̄), and therefore, p2 =

P(1− c2
12/c2

21)/β from (A13). Note that P > 0 and c2
12 < c2

21 are sufficient for (q1, p2, q2) � 0.
Moreover, λ3 = 0 implies Σ2 < Σ, resulting in P < β̄(γ− 1)/c2

12, i.e., P < P∗4 where γ, defined
in (38), is γ > 1 due to assumption [A1]. Next, from ρ3 = 0, ρ4 = 0 and (A10) and (A11),
we have λ1 = (1 + Pc2

12/β̄)/(P(c2
21 − c2

12)/β + c2
12/d2

2). In addition, from ρ2 = 0 and (A8), the
condition for ρ1 > 0 is λ2 > d2

1(1 + Pc2
12/β̄)/c2

12. Since λ3 = 0, from (A7) we have λ2 + λ1 = 1,
which subsequently gives d2

1(1+ Pc2
12/β̄)/c2

12 + (1 + Pc2
12/β̄)/(P(c2

21 − c2
12)/β + c2

12/d2
2) < 1, i.e.,

g2(P) < 1 as in Table 1. Thus, the condition of SC is

[C1]: P < P∗4 , g2(P) < 1. (A25)

• SD: Since ρ ∈ B2 ∩ C2, they satisfy ρ1 = 0, ρ2 > 0, ρ3 = 0, ρ4 > 0, and imply p1 = P/β,
q1 = 0, p2 = P/β, q2 = 0, following (A20)–(A23) and (A12) and (A13). In addition, λ ∈ D4 implies
Σ1 = Σ2 < Σ from (A17)–(A19), for which assumption [A1] is sufficient. Next, using ρ1 =

ρ3 = 0 and (A8)–(A11) the sufficient conditions for ρ2 > 0 and ρ4 > 0 are found to be λ2 <

d2
1/(c2

12(1 + d2
1P/β)) and λ1 < d2

2/(c2
21(1 + d2

2P/β)) respectively. Since λ3 = 0, and thus λ1 +

λ2 = 1 from (A7), the bounds on λ1 and λ2 are combined, which gives d2
1/(c2

12(1 + d2
1P/β)) +

d2
2/(c2

21(1 + d2
2P/β)) > 1, i.e., g1(P) > 1 as in Table 1. Finally, P > 0 is sufficient for (p1, p2) � 0.

Thus, the condition of SD is

[C2]: g1(P) > 1. (A26)

• Ssat: Since ρ ∈ B3 ∩ C3, they satisfy ρ1 = ρ2 = ρ3 = ρ4 = 0, and imply (p1, q1, p2, q2) � 0,
following (A20)–(A23). In addition, λ ∈ D5 implies Σ1 = Σ and Σ2 = Σ from (A17)–(A19), which

gives q1 = γ−1
c2

12
and q2 = γ−1

c2
21

, respectively, where γ > 1. Thus, we have p1 = P
β −

β̄(γ−1)
βc2

12
and

p2 = P
β −

β̄(γ−1)
βc2

21
from (A12) and (A13). Note that the condition for p1 > 0 is P > β̄(γ− 1)/c2

12,

i.e., P > P∗4 , and it is also sufficient for p2 > 0 due to c2
21 > c2

12.

Now, from ρ = 0 and (A8)–(A11), and using the expressions of pl , ql , l = 1, 2, above we find
λ1 = γβ/(Pc2

21 + βc2
21/d2

2 − β̄(γ− 1)), and λ2 = γβ/(Pc2
12 + βc2

12/d2
1 − β̄(γ− 1)). We also note

that P > P∗4 is sufficient for λl > 0, l = 1, 2. Next, to ensure λ3 > 0, λ1 and λ2 must satisfy
λ1 + λ2 < 1, which gives the condition g3(P) < 1 as in Ssat in Table A1. In addition, note that
γ > 1 is sufficient for (q1, q2) � 0.
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Finally, the case with ρ ∈ B1 ∩ C3 only differ from that with B3 ∩ C3 in that now ρ1 > 0, and thus
p1 = 0. We note that P = P∗4 is sufficient for p1 = 0. We also note that the other condition, which
follows from the conditions on λ1 and λ2 as in B3 ∩ C3, is expressed by evaluating g3(P) < 1
above at P = P∗4 . Therefore, the conditions of the two cases are combined as

[C3]: P ≥ P∗4 , g3(P) < 1. (A27)

• SCD: Since ρ ∈ B3 ∩ C3, they satisfy ρ = 0, and imply (p1, q1, p2, q2) � 0, following (A20)–(A23).
In addition, λ ∈ D4 imply Σ1 = Σ2. Next, from ρ = 0, (A8)–(A11), (A12) and (A13), we

find ακ
2µ1

(β + β̄λ2) = P + β̄

c2
12
+ β

d2
1
, and ακ

2µ2
(β + β̄λ1) = P + β̄

c2
21
+ β

d2
2
. Also, since Σ1 = Σ2, we

have from (24) and (25), λ2µ2c2
12 = λ1µ1c2

21. In addition, since λ3 = 0 we have λ1 = 1− λ2.
Combining these conditions, we get a quadratic equation of λ2, Âλ2

2 − B̂λ2 + Ĉ = 0, where

Â := β̄(E1 − E2), B̂ := E1 − E2 + 2βE2, and Ĉ := βE2, with E1 := Pc2
12 + β̄ + β

c2
12

d2
1

and E2 :=

Pc2
21 + β̄ + β

c2
21

d2
2

as defined in (37). One of its roots, λ
(1)
2 := (B̂ +

√
B̂2 − 4ÂĈ)/2Â, is infeasible

as it violates (A7) and the nonnegativity of λ2, respectively, when Â > 0 and Â < 0. Therefore,
the valid solution is λ2 = λ

(2)
2 := (B̂−

√
B̂2 − 4ÂĈ)/2Â. Next, from (A9) and substituting λ

(2)
2

in ακ
2µ1

(β + β̄λ2) = P + β̄

c2
12
+ β

d2
1
, and with some algebraic simplification, we have q1 = F(P)/c2

12

where F(P) :=
( E1+E2−

√
(E1−E2)2+4β2E1E2
2β̄(1+β)

− 1
)
, and E1 and E2 defined in (37). Finally, from the

mutual exclusiveness of the sets S(.), the condition of SCD is given by

[C4]: complement of ([C1]∪ [C2]∪ [C3]). (A28)
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