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Abstract: Wind-induced vegetation patterns were proposed a long time ago but only recently a
dynamic vegetation-sand relationship has been established. In this research, we transformed the
continuous vegetation-sand model into a discrete model. Fixed points and stability analyses were
then studied. Bifurcation analyses are done around the fixed point, including Neimark-Sacker and
Turing bifurcation. Then we simulated the parameter space for both bifurcations. Based on the
bifurcation conditions, simulations are carried out around the bifurcation point. Simulation results
showed that Neimark-Sacker bifurcation and Turing bifurcation can induce the self-organization
of complex vegetation patterns, among which labyrinth and striped patterns are the key results
that can be presented by the continuous model. Under the coupled effects of the two bifurcations,
simulation results show that vegetation patterns can also be self-organized, but vegetation type
changed. The type of the patterns can be Turing type, Neimark-Sacker type, or some other special
type. The difference may depend on the relative intensity of each bifurcation. The calculation of
entropy may help understand the variance of pattern types.

Keywords: Turing bifurcation; Neimark-Sacker bifurcation; pattern self-organization; vegetation-sand
system; entropy

1. Introduction

Vegetation patterns have been widely observed in arid and semi-arid areas [1–7]. There have
been many studies on the exploration of pattern self-organization mechanisms [8–13]. This research
has contributed to the understanding of vegetation competition when resources are limited and the
process by which robust land is converted into desert because of climate change or anthropogenic
disturbances [14,15]. The relationship between self-organization and the production of entropy can find
its origin in the pioneering works in [16,17]. Since then many studies have explored the relationship
in a variety of fields [18,19]. The calculation of entropy can be used for pattern classification [20],
therefore, the investigation of the mechanisms of self-organization will enhance the understanding of
entropy. Besides, due to the complexity of the ecological scale, investigation of vegetation patterns has
never stopped.

Vegetation bands lying perpendicular to the prevailing wind direction have been observed,
showing dying trees in the windward edge and seedling regrowth on the leeward edge of each
band [21–23]. While [24,25] suggested that in Jordan wind might be the initiating and driving factor
of banded patterns and the accumulation of wind-blown material around isolated plants might act
as a nucleus for the development of vegetation arcs. Dynamical models for these wind-induced
vegetation patterns have been rare. Recently Zhang et al. [26] proposed a vegetation-sand model
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using partial differential equations to interpret the mechanism of vegetation self-organization in windy
sandy environments [27–31]. In the model of Zhang et al. [26], wind is considered as prevailing and
non-prevailing (defined as winds from all other directions except the prevailing wind direction) and
each has different effects on vegetation dispersal and sand transportation. The effects of prevailing
wind on sand and vegetation are modeled by advection terms, while the effects of non-prevailing wind
are modeled as diffusion terms. Simulations showed that without the prevailing wind labyrinth
vegetation patterns can be obtained, and with the prevailing wind banded vegetation patterns
perpendicular to the prevailing wind direction can be obtained.

In Nature, wind events and sand movements are discrete. Wind collection and recording are
also discrete. Therefore, we think the discretization of the continuous model is necessary. Discrete
models have provided advantages in revealing complex nonlinear dynamics. A classic example is the
discrete logistic model that exhibits period-doubling cascade and a route to chaos [32]. In contrast,
the continuous logistic model provides a simple “S” form curve, and never demonstrates the above
dynamic complexity. Through a variety of bifurcations, discrete models can generate periodic orbits,
invariant circles, periodic windows, chaotic behavior and so on. More importantly, as births and deaths
of bionts in predator-prey systems are discrete events, continuous models only make sense for very
large populations. Other researchers propose that discrete models reveal the discontinuous properties
(such as a patchy environment or a fragmented habitat) of predator-prey systems [33]. Discrete models
may exhibit new dynamical behaviors. For example, Han et al. found that Turing instability and Turing
patterns can occur in a simple discrete competitive Lotka-Volterra system rather than a continuous
one [34].

In the discrete model, focusing on the time scale, Neimark-Sacker bifurcation can occur without
spatial terms. Neimark-Sacker bifurcation is one of the most important bifurcations in discrete
dynamics. Through Neimark-Sacker bifurcation, a system stable states bifurcate from a fixed point to
an invariant circle. It should be noted that with spatial terms such as advection and diffusion, Turing
bifurcation can also occur. Naturally, a question arises as to what the dynamics will be when Turing
and Neimark-Sacker bifurcation occur at the same time, and how they influence the self-organization
of vegetation patterns. To the authors’ knowledge, there have been no simulations of the coupling
effects of Turing and Neimark-Sacker bifurcations on vegetation patterns.

In this research, we will transform the vegetation-sand model [26] to a spatially and temporally
discrete model. Then, focusing on the stable fixed point, bifurcation analysis including Neimark-Sacker
bifurcation and Turing bifurcation will be carried out. Bifurcation diagram and phase portrait will
be shown. Based on bifurcation analysis, parameter values will be selected around each bifurcation.
Given these parameters, simulations will be carried out to show how patterns transform from Turing
bifurcation to Turing-Neimark-Sacker bifurcation (Turing bifurcation and Neimark-Sacker bifurcation
occur at the same time). Different transformation processes will be simulated. Finally, we will discuss
the possible reason that cause the different transformations.

2. A Discrete Vegetation-Sand Model

The continuous vegetation-sand model was proposed by [26] and is shown as:

∂S
∂t = k0 + mV

(
1− V

V0

)
− nS− a1

∂S
∂x + D1

(
∂2S
∂x2 +

∂2S
∂y2

)
,

∂V
∂t = hV

(
1− V

Vm

)
− pS V

C+V − a2
∂V
∂x + D2

(
∂2V
∂x2 + ∂2V

∂y2

) (1)

The model is considered in the dimensional form rather than the non-dimensional form. This is
because there are few parameters, and each parameter has its own ecological significance. Here S (cm)
represents the height of sand deposition. Parameter k0 (cm·d−1) is the accumulation rate of air
sand without vegetation. m (cm·d−1) is the coefficient representing the trapping effect of vegetation.
Parameters k0 and m are affected by sand flow intensity. The trapping effects of vegetation decrease
with the increase of vegetation cover until a certain value (near 100%) of vegetation cover (saturation
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constant of vegetation trapping effects), and V0 (%) is two times of this certain value. n (d−1)
is the coefficient representing the decrease of accumulation rate with the increase of sand height.
a1 (m·d−1) is the coefficient representing the translation of sand dunes by wind. D1 (m2·d−1) is the
diffusion coefficient of sand without strong unidirectional wind. V (%) represents vegetation coverage,
and h (d−1) represents the intrinsic growth rate of vegetation. Vm (%) is the potential maximum of
vegetation coverage. p (cm−1·d−1) is the coefficient of destruction effect by sand. C (%) is a constant
representing how sand tolerance increases with the increase of vegetation cover. a2 (m·d−1) is the
advection coefficient representing the dispersal of vegetation by wind. D2 (m2·d−1) is the diffusion
coefficient representing the dispersal of vegetation without strong unidirectional wind. x and y are
space axes, and t is time. Wind direction is along the positive x direction. When there is no prevailing
wind, the effects of wind are modeled as diffusion terms. When there is a prevailing wind, its effects
can be modeled by adding an advection term to the diffusion term as shown in Equation (1).

In this research, the above continuous model will be transformed to a discrete model (Equation (2)).
We consider the model on a N × N lattice, and the two variables can be expressed as S(i,j,t) and
mboxemphV(i,j,t) (i,j ∈ {1, 2, 3, . . . , N} and t ∈ Z+), that represent the height of sand deposition
and the vegetation coverage in lattice (i,j) at time t, respectively. According to the former research
works of [33,35–37], there are two stages, reaction stage and diffusion stage, when we discretize
the continuous model (Equation (1)). The spatial dispersal stage, that are advection and diffusion,
is considered firstly as: {

S′(i,j,t) = S(i,j,t) +
τ
d a1∇dS(i,j,t) +

τ
d2 D1∇2

dS(i,j,t)

V′(i,j,t) = V(i,j,t) +
τ
d a2∇dV(i,j,t) +

τ
d2 D2∇2

dV(i,j,t)
. (2)

where S(i,j,t) and V(i,j,t) are the transitional variables of S and V after one step of dispersal stage. τ (days)
and d (meters) are the time step and space step respectively. ∇d denotes the discrete form of advections.
∇2

d denotes the discrete form of the Laplacian operator:

∇dS(i,j,t) = S(i+1,j,t) − S(i,j,t)
∇dV(i,j,t) = V(i+1,j,t) −V(i,j,t)

∇2
dS(i,j,t) = S(i+1,j,t) + S(i−1,j,t) + S(i,j+1,t) + S(i,j−1,t) − 4S(i,j,t)

∇2
dV(i,j,t) = V(i+1,j,t) + V(i−1,j,t) + V(i,j+1,t) + V(i,j−1,t) − 4V(i,j,t).

(3)

Boundary conditions are set as periodic conditions. Then we consider the reaction stage:{
S(i,j,t+1) = f1(S′(i,j,t), V′(i,j,t)) = S′(i,j,t) + τ f (S(i,j,t), V(i,j,t))

V(i,j,t+1) = g1(S′(i,j,t), V′(i,j,t)) = V′(i,j,t) + τg(S(i,j,t), V(i,j,t))
, (4)

in which:  f (S, V) = k0 + mV
(

1− V
V0

)
− nS

g(S, V) = hV
(

1− V
Vm

)
− pS V

C+V

, (5)

Equations (2) and (4) including both diffusion and reaction stages are defined as our
discrete model.

As the previous work in [26] has been done on the condition of equilibrium in the continuous
model, we focus on one of the most important situations, which has three equilibria under the same
parameter condition. The three equilibria are: one boundary equilibrium (Sb,Vb), one unstable saddle
point (S2,V2), and one locally asymptotical stable node (S1,V1). These equilibria are also fixed points in
the discrete model, and can be expressed as:

(Sb, Vb) =

(
k0

n
, 0
)

, (6)
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(S1, V1) =

(
k0

n
+

mb4

n

(
1− b4

V0

)
, b4

)
, (7)

(S2, V2) =

(
k0

n
+

mb5

n

(
1− b5

V0

)
, b5

)
, (8)

in which:
b1 =

(
h

pVm
− m

nV0

)
,b2 =

(
m
n −

h
p + hC

pVm

)
, b3 =

(
k0
n −

hC
p

)
,

b4 =
−b2+
√

b2
2−4b1b3

2b1
, b5 =

−b2−
√

b2
2−4b1b3

2b1
,

(9)

In [26], stability analysis shows that (S1,V1) is the only locally asymptotically stable interior
equilibrium. Therefore focusing on (S1,V1), we have the Jacobian matrix:

J(S, V) =

 1− nτ
τm(−2V+V0)

V0

− τpV
C+V 1 + τ(h− 2hV

Vm
− pSC

(C+V)2 )

, (10)

and eigenvalues:

λ1,2 =
tr0 ±

√
tr02 − 4∆0

2
(11)

In which (S1,V1) is the interior fixed point, and:

tr0 = 2− τ(n− h + 2hV1
Vm

+ pS1C
(C+V1)

2 )

∆0 = 1 + τ(h− n− 2hV1
Vm
− pS1C

(C+V1)
2 ) + τ2(−nh + 2nhV1

Vm
+ npS1C

(C+V1)
2 +

mpV1(−2V1+V0)
(C+V1)V0

)
. (12)

Therefore (S1,V1) is locally asymptotically stable only when|λ1| < 1, and |λ2| < 1, which yields:{
∆0 < 1

−(1 + ∆0) < tr0 < 1 + ∆0
, (13)

We set most parameter values unchanged in this research: h = 0.2 d−1; Vm = 100%;
p = 0.045 cm−1·d−1; m = 0.2 cm·d−1; n = 0.07 d−1; V0 = 200%; C = 10%; D2 = 0.01 m2·d−1. And other
parameters such as k0, D1, a2, a1, τ and h1 will vary.

3. Bifurcation Analysis

Turing bifurcation is most commonly used in the study of vegetation self-organized patterns,
and there are many studies focusing on Turing type patterns [38–40]. Spatial symmetry breaking
can be induced by Turing bifurcation, leading to the formation of patterns that are stationary in time
and oscillatory in space. While there is another type of symmetry breaking, temporal symmetry
breaking. Temporal symmetry breaking can be induced by Neimark-Sacker bifurcation, giving rise to
states that are homogeneous in space and oscillatory in time. When temporal and spatial symmetry
breakings take place simultaneously, the discrete model will generate the patterns that are oscillatory
in both space and time. In this section, the parameter conditions of Neimark-Sacker bifurcation, Turing
bifurcation and both bifurcations will be obtained. Bifurcation analysis will be focused on the fixed
point (S1,V1). The condition of Neimark-Sacker bifurcation will be calculated and bifurcation diagram
will be shown. Then Turing bifurcation will be re-investigated as the model has been transformed to a
discrete model. And based on the two bifurcation conditions, we choose two key parameters τ and a1

and calculate the parameter space that satisfy both bifurcations. In this section, we will only show the
key results of Neimark-Sacker and Turing bifurcation analysis. The complete calculation process of
each bifurcation condition can be seen in the Appendix A.
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3.1. Neimark-Sacker Bifurcation Analysis

According to [41], assume that U0(µ) is the asymptotically stable fixed points of map:

U0 → F(U0, µ), U0 ∈ R2, µ ∈ R1 (14)

and its eigenvalues are conjugate λ(µ), λ(µ). If:

|λ(µ0)| = 1,λj(µ0) 6= 1, j = 1, 2, 3, 4 (15)

d
dµ

(|λ(µ0)|) 6= 0, (16)

a = −Re

((
1− 2λ

)
λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re

(
λξ21

)
6= 0, (17)

in which:
ξ20 =

1
8

((
Fx̃x̃ − Fỹỹ + 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ − 2Fx̃ỹ

))
, (18)

ξ11 =
1
4

((
Fx̃x̃ + Fỹỹ

)
+ i
(

Gx̃x̃ + Gỹỹ

))
, (19)

ξ02 =
1
8

((
Fx̃x̃ − Fỹỹ − 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ + 2Fx̃ỹ

))
, (20)

ξ21 =
1

16

((
Fx̃x̃x̃ + Fx̃ỹỹ + Gx̃x̃ỹ + Gỹỹỹ

)
+ i
(

Gx̃x̃x̃ + Gx̃ỹỹ − Fx̃x̃ỹ − Fỹỹỹ

))
. (21)

then the Map (14) undergoes Neimark-Sacker bifurcation when µ = µ0,
Our discrete model can be transformed into a map:(

S
V

)
→
(

S + τ(k0 + mV(1− V
V0
)− nS)

V + τ(hV(1− V
Vm

)− pS V
C+V )

)
(22)

Considering Map (22), (S1,V1) is also the asymptotically stable fixed point. Then the map
undergoes Neimark-Sacker bifurcation at the fixed point (S1,V1), when τ = τ0, in which:

τ0 =
n− h + 2hV1

Vm
+ pS1C

(C+V1)
2

−nh + 2nhV1
Vm

+ npS1C
(C+V1)

2 +
mpV1(−2V1+V0)

(C+V1)V0

(23)

and τ0 satisfies the following conditions:

τ0(n− h +
2hV1

Vm
+

pS1C

(C + V1)
2 ) 6= 2, 3. (24)

a = − AN−MB
32a2

12β2((1−α)2+β2)
− 1

32a2
12β2 ((G1w̃w̃ + G1z̃z̃)

2 + (G2w̃w̃ + G2z̃z̃)
2)

− 1
64a2

12β2 ((G1w̃w̃ − G1z̃z̃ − 2G2w̃z̃)
2 + (G2w̃w̃ − G2z̃z̃ + 2G1w̃z̃)

2)

+ 1
16a12β (α(G2w̃w̃z̃ + G2z̃z̃z̃) + β(G2w̃w̃w̃ + G2w̃z̃z̃)) 6= 0

(25)
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in which:

M = β(3− 4α)
(
α2 − β2)− 2αβ

(
(1− α)(1− 2α)− 2β2),

N =
(
1− 3α + 2α2 − 2β2)(α2 − β2)+ (6α− 8α2)β2,

A = (G1w̃w̃ + G1z̃z̃)(G1w̃w̃ − G1z̃z̃ + 2G2w̃z̃)− (G2w̃w̃ + G2z̃z̃)(G2w̃w̃ − G2z̃z̃ − 2G1w̃z̃),

B = (G2w̃w̃ + G2z̃z̃)(G1w̃w̃ − G1z̃z̃ + 2G2w̃z̃) + (G1w̃w̃ + G1z̃z̃)(G2w̃w̃ − G2z̃z̃ − 2G1w̃z̃).

(26)

Figure 1 shows the variations of V versus parameter τ when the parameter values satisfy the
Neimark-Sacker bifurcation condition. Note that this bifurcation diagram has no visible periodic
windows. When τ < 16.6997 days, the fixed point is asymptotically stable. When τ = 16.6997 days,
the system starts to bifurcate around a fixed point. As the value of τ increases, the stable states of the
system in the phase plane (V,S) experience several stages, such as invariant circle (τ = 16.7013 days as
shown in Figure 1b), period-7 (τ = 16.755 days as shown in Figure 1c), and then invariant circle again
(τ = 16.8667 days as shown in Figure 1d). Then the stable states of the system may go through several
multi-period and invariant circle stages.
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Figure 1. Bifurcation diagram and phase portraits of flip bifurcation. (a) Bifurcation diagram with
parameters: k0 = 3.095 cm·d−1; h = 0.2 d−1; Vm = 100%; p = 0.045 cm−1·d−1; m = 0.2 cm·d−1;
n = 0.07 d−1; V0 = 200%; C = 10%; D2 = 0.01 m2·d−1; (b–d) Phase portraits with parameter
(b) τ = 16.7013 days; (c) τ = 16.755 days; (d) τ = 16.8667 days. Note that the figures are obtained
by the software MATLAB 7.12.0 2011a (The MathWorks, Inc., Natick, MA, USA).

3.2. Turing Bifurcation Analysis

According to [42], assume that U0(µ) is the fixed points of one reaction-diffusion model:

Ut+1 = v1 f (Ut, µ) + v2∇2
dUt + v3∇dUt, (27)
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In which, ∇d and ∇2
d denotes the discrete form of advection and Laplacian operator respectively.

f is smooth. v1, v2, v3 are coefficients. λ(µ) is the eigenvalues of the model at U = U0(µ). When:

• In the absence of diffusion and advection, U0(µ) is asymptotically stable;
• With diffusion and advection, max(λ(µ)) > 0;

then the model undergoes Turing bifurcation.
In the discrete models, eigenvalues of ∇d and ∇2

d are difficult to obtain. But according to the
method in [43], the eigenvalues of ∇d can be obtained as:

λ1
kl = 2 sin φk exp

(
(φk −

π

2
)i
)

. (28)

where φk = (k− 1)π/N, k ∈ {1, 2, 3, · · · , N} and i represents the complex unit, that is i =
√
−1. While

the eigenvalues of ∇2
d can be obtained as:

λkl = 4
(

sin2 φk + sin2 φl

)
, (29)

in which φk = (k− 1)π/N, φl = (l − 1)π/N, and k, l ∈ {1, 2, 3, · · · , N}.
In this research, we have known that (S1,V1) is the asymptotically stable fixed point of our discrete

vegetation-sand model (Equations (2) and (4)). The eigenvalues of the model are:

λ±(k, l, τ) = −1
2

tr(k, l, τ)± 1
2

√
tr(k, l, τ)2 − 4∆(k, l, τ), (30)

in which:

tr(k, l, τ) = tr0(τ) +
τ

d
(a11(τ)a1 + a22(τ)a2)a1λ1

kl +
τ

d2 (a11(τ)D1 + a22(τ)D2)λkl , (31)

∆(k, l, τ) = ∆0(τ)
(

1 +
τ

d
a1λ1

kl − D1
τ

d2 λkl

)(
1 +

τ

d
a2λ1

kl −
τ

d2 D2δλkl

)
. (32)

Here tr0(τ), ∆0(τ), a11(τ), and a22(τ) are denoted for reminding that they are dependent on τ.
Based on the two eigenvalues, define:

λm(k, l, τ) = max(|λ+(k, l)|, |λ−(k, l)|), (33)

λmm(τ) =
N

max
k=1,l=1

λm(k, l, τ). (34)

where λmm(τ) represents the maximal value of absolute modulus of both eigenvalues in (33). Therefore,
the threshold condition for the occurrence of Turing bifurcation requires λmm(τ) = 1. When λmm(τ) > 1,
Turing instability occurs; when λmm(τ) < 1, the discrete system stabilizes at the homogeneous states.

Turing bifurcation can be shown through the variations of eigenvalues λ(k,l) as shown in Figure 2.
In Figure 2a, we can see that the effects of the perturbation numbers k and l are symmetric. Thus we let
k = l, and we can obtain the variations of eigenvalues versus l as shown in Figure 2b. When there is no
perturbation, the system remains at the fixed point. When the advection coefficient a1 = 0.005 m·d−1,
the eigenvalues of the system remains at less than 1 with the increase of perturbation number l,
but when the diffusion coefficient a1 increases more than a1c, the eigenvalues will exceed 1 with the
increase of l and Turing bifurcation occurs.
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select two parameters which are parameter τ and a1, to show the parameter space for both 
bifurcations. τ is defined as the time step, it can reflect the frequency of wind events. However, as 
wind frequency is varying naturally (here we consider the real wind frequency, rather than the 
measured or recorded data), therefore, the variation of τ is meaningful and the four spatial 
parameters, D1, D2, a1 and a2, can reflect the values of wind speed, non-prevailing wind and prevailing 
wind, respectively. The previous study [26] gave that a1/a2 = D1/D2, and we mainly investigate 
prevailing wind. We can see that the variation of parameter a1 (parameter a2 will vary accordingly) 
represents the variation of prevailing wind speed. Note that wind, especially prevailing wind is the 
most important driving force in the process of vegetation pattern self-organization. Wind speed and 
frequency are the two key indexes of wind. Therefore, simulations on vegetation pattern self-
organization will also be carried out through the variation of parameter τ and a1.  

Figure 2. Variations of eigenvalues λm(k,l) with perturbation numbers k and l. Parameters:
k0 = 3.095 cm·d−1; h = 0.2 d−1; Vm = 100%; p = 0.045 cm−1·d−1; m = 0.2 cm·d−1; n = 0.07 d−1;

V0 = 200%; C = 10%; D1 = 0.01 m2·d−1; D2 = 0.01 m2·d−1; a2 = 0.01 m·d−1; (a) a1 = 0.15 m·d−1;
(b) Let k = l, three curves of eigenvalues λm(k,l) are shown with parameter a1 = 0.005, 0.027 and
0.15 m·d−1 respectively. Note that the color scale in all the following figures are automatically selected
by the MATLAB 7.12.0 (2011a) software command “pcolor” according to the minimum and the
maximum values of λm(k,l).

3.3. Parameter Space for Neimark-Sacker and Turing Bifurcation

Based on the bifurcation analysis above, parameters satisfying both Turing and Neimark-Sacker
bifurcations will be selected to investigate the coupled effects of both bifurcations. Before that, we select
two parameters which are parameter τ and a1, to show the parameter space for both bifurcations. τ is
defined as the time step, it can reflect the frequency of wind events. However, as wind frequency is
varying naturally (here we consider the real wind frequency, rather than the measured or recorded
data), therefore, the variation of τ is meaningful and the four spatial parameters, D1, D2, a1 and
a2, can reflect the values of wind speed, non-prevailing wind and prevailing wind, respectively.
The previous study [26] gave that a1/a2 = D1/D2, and we mainly investigate prevailing wind. We can
see that the variation of parameter a1 (parameter a2 will vary accordingly) represents the variation
of prevailing wind speed. Note that wind, especially prevailing wind is the most important driving
force in the process of vegetation pattern self-organization. Wind speed and frequency are the two key
indexes of wind. Therefore, simulations on vegetation pattern self-organization will also be carried out
through the variation of parameter τ and a1.

Figure 3 shows the parameter space that satisfies Turing and Neimark-Sacker bifurcations around
bifurcation point τ0. Blue area and green area mean parameter values satisfy only Neimark-Sacker
bifurcation and only Turing bifurcation respectively. In Figure 3a, τ0 = 16.6997 days. And in Figure 3b,
τ0 = 16.0428 days. Given τ ∈ [0.98τ0, 1.04τ0] in both Figure 3a,b, we can see that Turing bifurcation
area in Figure 3b is bigger than that in Figure 3a. And this will cause differences in the self-organization
of patterns (will be shown in the next section). Turing-Neimark-Sacker bifurcation is defined as when
parameter values satisfy both Turing and Neimark-Sacker bifurcations. Note that, we define the dark
green area in Figure 3 as Turing-Neimark-Sacker bifurcation area. The condition for this area is:

τ > τ0, λm(1, 1, τ) > 1, λmm(τ) > λm(1, 1, τ), (35)
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Given parameters k0 = 3.095 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1, 
V0 = 200%, C = 10%, D1 = 0.01 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.01 m·d−1, a2 = 0.01 m·d−1, d = 2 m, Neimark-
Sacker bifurcation occurs when τ = τ0 = 16.6997 days. When τ > 16.6997 days, spatially heterogenous 
vegetation patterns can be induced by the Neimark-Sacker bifurcation. With the increase of τ, 
wavelength of vegetation patterns becomes smaller, and the whole pattern becomes more complex 

Figure 3. Variations of parameter τ and a1 satisfying Turing and Neimark-Sacker bifurcations around
bifurcation point. Parameters: h = 0.2 d−1; Vm = 100%; p = 0.045 cm−1·d−1; m = 0.2 cm·d−1; n = 0.07 d−1;
V0 = 200%; C = 10%; D1 = 0.01 m2·d−1; D2 = 0.01 m2·d−1; a2 = 0.01 m·d−1; (a) k0 = 3.095 cm·d−1; d = 2 m;
(b) k0 = 3.83 cm·d−1; d = 1 m. Light green area means parameter values satisfy only Turing bifurcation
condition. Blue area means parameter values satisfy only Neimark-Sacker bifurcation. And Dark green
area means parameter values satisfy both Turing and Neimark-Sacker bifurcation. Note that the figures
are obtained by the software MATLAB 7.12.0 (2011a).

4. Coupled Effects of Turing and Neimark-Sacker Bifurcations on Vegetation Pattern
Self-Organization

On the basis of the bifurcation analysis and the calculation of the parameter space for both Turing
and Neimark-Sacker bifurcations, we will investigate the coupled effects of Turing and Neimark-Sacker
bifurcation on vegetation pattern self-organization. Numerical simulations will be carried out around
the bifurcation point τ0. With the increase of time scale τ, system will go through only Turing
bifurcation to Turing-Neimark-Sacker bifurcation. Note that the color scale in all the following figures
are automatically selected by the software MATLAB 7.12.0 (2011a) command “pcolor” according to
the minimum and the maximum values of vegetation cover at each time. Precisely, the blue area
represents low vegetation coverage, while the red area represents high vegetation coverage. Sometime,
the minimum value of vegetation coverage reaches zero, which means vegetation dies out in the
vegetation-sand system and only bare sand can be seen. Besides, after the simulation of vegetation
pattern self-organization in each figure, the values of vegetation coverage will be mapped to the
integers in the domain [1, 256] (which represents the 256 colors in the color spectrum), and then the
Shannon entropy of each figure will be calculated.

Firstly, vegetation patterns induced by only Neimark-Sacker bifurcation are shown in Figure 4.
Given parameters k0 = 3.095 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1,
n = 0.07 d−1, V0 = 200%, C = 10%, D1 = 0.01 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.01 m·d−1, a2 = 0.01 m·d−1,
d = 2 m, Neimark-Sacker bifurcation occurs when τ = τ0 = 16.6997 days. When τ > 16.6997 days,
spatially heterogenous vegetation patterns can be induced by the Neimark-Sacker bifurcation. With the
increase of τ, wavelength of vegetation patterns becomes smaller, and the whole pattern becomes
more complex as shown in Figure 4b. The type of the spatially heterogeneous vegetation patterns is
complex and irregular, and difficult to define. In this research, we define it as the Neimark-Sacker type
patterns. The values of entropy in Figure 4a,b are calculated as 7.7066 and 7.7708, respectively.
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Figure 4. Patterns induced by Neimark-Sacker bifurcations. Parameters: k0 = 3.095 cm·d−1; h = 0.2 d−1;
Vm = 100%; p = 0.045 cm−1·d−1; m = 0.2 cm·d−1; n = 0.07 d−1; V0 = 200%; C = 10%; D1 = 0.01 m2·d−1;
D2 = 0.01 m2·d−1; a1 = 0.01 m·d−1; a2 = 0.01 m·d−1; d = 2 m; (a) τ = 18.3696 days; (b) τ = 20.0396 days.
Simulations are carried out on 100 × 100 lattices with periodic boundary conditions. Initial conditions
are set as fixed points with heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns
can be obtained.

Figure 5 shows the transformation of vegetation patterns from under Turing bifurcation to
under Turing-Neimark-Sacker bifurcation. Simulations are carried out around the Neimark-Sacker
bifurcation point τ0 = 16.6997 days. When τ < τ0, Turing bifurcation occurs and Figure 5a,b show that
regular striped vegetation patterns can be formed. Note that the amplitude of vegetation patterns in
Figure 5a,b is not very big. When τ > τ0, Neimark-Sacker bifurcation and Turing bifurcation both occur,
and vegetation patterns are changed. As shown in Figure 5c–e, we can see that pattern wavelength
becomes smaller, stripes become narrower, curvy and irregular. Compared with the patterns in Figure 4,
the vegetation patterns in Figure 5c–e are like stripes coupled with the Neimark-Sacker type patterns,
but they are more similar to Neimark-Sacker type patterns. The values of entropy in Figure 5a–e are
calculated as 5.8924, 7.8776, 7.5626, 7.5309 and 7.4856, respectively.
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days; (c) τ = τ0 = 16.6997 days; (d) τ = 17.0337 days; (e) τ = 17.3677 days. Simulations are carried out 
on 100 × 100 lattices with periodic boundary conditions. Initial conditions are set as fixed points with 
heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns can be obtained. 

Figure 6 shows another series of vegetation patterns with the increase of time scale τ. When τ < 
τ0 = 16.0428 days, Turing bifurcation occurs and Figure 6a,b show that regular striped vegetation 
patterns with large amplitude can be formed. When τ > τ0, Neimark-Sacker bifurcation occurs. 
However the striped vegetation patterns seem unchanged as shown in Figure 6c–e. Obviously, these 
patterns are Turing type. The values of entropy in Figure 6a–e are calculated as 7.3101, 7.5809, 7.0303, 
7.5018 and 7.3576, respectively. From Figures 5 and 6, we can see that the coupled effects of Turing-
Neimark-Sacker bifurcations can be different. 
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Figure 5. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters:
k0 = 3.095 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1,
V0 = 200%, C = 10%, D1 = 0.02 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.04 m·d−1, a2 = 0.02 m·d−1, d = 2 m.
(a) τ = 16.2822 days; (b) τ = 16.3323 days; (c) τ = τ0 = 16.6997 days; (d) τ = 17.0337 days; (e) τ = 17.3677
days. Simulations are carried out on 100 × 100 lattices with periodic boundary conditions. Initial
conditions are set as fixed points with heterogeneous random disturbance (0.5%). After t = 2000 days,
the patterns can be obtained.

Figure 6 shows another series of vegetation patterns with the increase of time scale τ.
When τ < τ0 = 16.0428 days, Turing bifurcation occurs and Figure 6a,b show that regular striped
vegetation patterns with large amplitude can be formed. When τ > τ0, Neimark-Sacker bifurcation
occurs. However the striped vegetation patterns seem unchanged as shown in Figure 6c–e. Obviously,
these patterns are Turing type. The values of entropy in Figure 6a–e are calculated as 7.3101, 7.5809,
7.0303, 7.5018 and 7.3576, respectively. From Figures 5 and 6, we can see that the coupled effects of
Turing-Neimark-Sacker bifurcations can be different.
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Figure 6. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters: k0 = 3.83 
cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1, V0 = 200%, C = 10%, D1 = 
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15.7219 days; (c) τ = τ0 = 16.0428 days; (d) τ = 16.0909 days; (e) τ = 16.1230 days. Simulations are carried 
out on 100 × 100 lattices with periodic boundary conditions. Initial conditions are set as fixed points 
with heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns can be obtained. 

Figures 7 and 8 will show two special situations of Turing-Neimark-Sacker bifurcations. From 
previous study, we know that without prevailing wind, labyrinth patterns can be obtained, while 
with prevailing wind, striped patterns can be formed. These two patterns will be shown in Figures 7 
and 8, respectively, and the effects of Turing-Neimark-Sacker bifurcations will be simulated.  
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Figure 6. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters:
k0 = 3.83 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1,
V0 = 200%, C = 10%, D1 = 0.014 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.0196 m·d−1, a2 = 0.014 m·d−1,
d = 1 m. (a) τ = 15.4011 days; (b) τ = 15.7219 days; (c) τ = τ0 = 16.0428 days; (d) τ = 16.0909
days; (e) τ = 16.1230 days. Simulations are carried out on 100 × 100 lattices with periodic boundary
conditions. Initial conditions are set as fixed points with heterogeneous random disturbance (0.5%).
After t = 2000 days, the patterns can be obtained.

Figures 7 and 8 will show two special situations of Turing-Neimark-Sacker bifurcations.
From previous study, we know that without prevailing wind, labyrinth patterns can be obtained,
while with prevailing wind, striped patterns can be formed. These two patterns will be shown in
Figures 7 and 8, respectively, and the effects of Turing-Neimark-Sacker bifurcations will be simulated.
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(c) τ = τ0 = 22.1035 days; (d) τ = 22.3245 days; (e) τ = 22.5456 days. Simulations are carried out on 100 
× 100 lattices with periodic boundary conditions. Initial conditions are set as fixed points with 
heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns can be obtained. 

Figure 7a,b show that labyrinth patterns can be induced by Turing bifurcation, but Neimark-
Sacker bifurcations destroy the self-organizations and induces spots as shown in Figure 7c–e. With 
the increase of parameter τ, vegetation spots become less and more isolated. The values of entropy 
in Figure 7a–e are calculated as 7.1693, 6.9560, 3.5169, 2.1530 and 2.0576, respectively. 
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Figure 7. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters:
k0 = 3.865 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1, V0 = 200%,
C = 10%, D1 = 0.015 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0 m·d−1, a2 = 0 m·d−1, d = 1 m. (a) τ = 21.6614 days;
(b) τ = 21.8825 days; (c) τ = τ0 = 22.1035 days; (d) τ = 22.3245 days; (e) τ = 22.5456 days. Simulations
are carried out on 100 × 100 lattices with periodic boundary conditions. Initial conditions are set as
fixed points with heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns can
be obtained.

Figure 7a,b show that labyrinth patterns can be induced by Turing bifurcation, but Neimark-Sacker
bifurcations destroy the self-organizations and induces spots as shown in Figure 7c–e. With the increase
of parameter τ, vegetation spots become less and more isolated. The values of entropy in Figure 7a–e
are calculated as 7.1693, 6.9560, 3.5169, 2.1530 and 2.0576, respectively.
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Figure 8. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters: k0 = 3.83 
cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1, V0 = 200%, C = 10%, D1 = 
0.015 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.225 m·d−1, a2 = 0.015 m·d−1, d = 1 m. (a) τ = 15.4011 days; (b) τ = 
15.7219 days; (c) τ = τ0 = 16.0428 days; (d) τ = 16.0909 days; (e) τ = 16.1230 days. Simulations are carried 
out on 100 × 100 lattices with periodic boundary conditions. Initial conditions are set as fixed points 
with heterogeneous random disturbance (0.5%). After t = 2000 days, the patterns can be obtained. 
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and Turing-Neimark-Sacker bifurcations induce the breakdown of the self-organizations as shown 
in Figure 8c–e. Vegetation stripes can also be formed, but the number and the width of vegetation 
stripes drastically decreases. With the increase of parameter τ, vegetation stripes become less and 
shorter. The values of entropy in Figure 8a–e are calculated as 7.0886, 6.3024, 2.3306, 4.1024 and 
2.9138, respectively. 

The different simulation results in Figures 5–8 need to be discussed. From the comparison 
between Figures 5a and 6a, we can see that the intensity of Turing bifurcation is different. Although 
we cannot assess the density of Turing bifurcation quantitatively, we can tell the relative intensity 
from the amplitude of the patterns. Clearly, the amplitude of vegetation patterns in Figure 6a is bigger 
than that in Figure 5a. Therefore, when Neimark-Sacker bifurcation also occurs, the coupled effects 
of Turing and Neimark-Sacker bifurcations will make Figure 5a more like Neimark-Sacker type 
patterns, and make Figure 6a more like Turing type patterns. Simulations in Figures 7 and 8 show 
quite different results. From Figures 7 and 8, we can see that vegetation patterns induced by Turing-
Neimark-Sacker bifurcations are neither Turing type (especially Figure 7) nor Neimark-Sacker Type 
patterns. It seems that the coupled effects of Turing and Neimark-Sacker bifurcations make the 
degradation process of vegetation fiercer. Therefore, labyrinth patterns are broken down into spots, 
vegetation stripes become less. It is necessary to point out that simulations in Figures 7 and 8 may 
depend on the special coupling of Turing and Neimark-Sacker bifurcations. 

Figure 8. Patterns induced by Turing and Turing-Neimark-Sacker bifurcations. Parameters:
k0 = 3.83 cm·d−1, h = 0.2 d−1, Vm = 100%, p = 0.045 cm−1·d−1, m = 0.2 cm·d−1, n = 0.07 d−1,
V0 = 200%, C = 10%, D1 = 0.015 m2·d−1, D2 = 0.01 m2·d−1, a1 = 0.225 m·d−1, a2 = 0.015 m·d−1, d
= 1 m. (a) τ = 15.4011 days; (b) τ = 15.7219 days; (c) τ = τ0 = 16.0428 days; (d) τ = 16.0909 days;
(e) τ = 16.1230 days. Simulations are carried out on 100 × 100 lattices with periodic boundary
conditions. Initial conditions are set as fixed points with heterogeneous random disturbance (0.5%).
After t = 2000 days, the patterns can be obtained.

Figure 8a,b show that regular striped vegetation patterns can be induced by Turing bifurcation
and Turing-Neimark-Sacker bifurcations induce the breakdown of the self-organizations as shown
in Figure 8c–e. Vegetation stripes can also be formed, but the number and the width of vegetation
stripes drastically decreases. With the increase of parameter τ, vegetation stripes become less and
shorter. The values of entropy in Figure 8a–e are calculated as 7.0886, 6.3024, 2.3306, 4.1024 and
2.9138, respectively.

The different simulation results in Figures 5–8 need to be discussed. From the comparison
between Figures 5a and 6a, we can see that the intensity of Turing bifurcation is different. Although
we cannot assess the density of Turing bifurcation quantitatively, we can tell the relative intensity from
the amplitude of the patterns. Clearly, the amplitude of vegetation patterns in Figure 6a is bigger
than that in Figure 5a. Therefore, when Neimark-Sacker bifurcation also occurs, the coupled effects of
Turing and Neimark-Sacker bifurcations will make Figure 5a more like Neimark-Sacker type patterns,
and make Figure 6a more like Turing type patterns. Simulations in Figures 7 and 8 show quite different
results. From Figures 7 and 8, we can see that vegetation patterns induced by Turing-Neimark-Sacker
bifurcations are neither Turing type (especially Figure 7) nor Neimark-Sacker Type patterns. It seems
that the coupled effects of Turing and Neimark-Sacker bifurcations make the degradation process of
vegetation fiercer. Therefore, labyrinth patterns are broken down into spots, vegetation stripes become
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less. It is necessary to point out that simulations in Figures 7 and 8 may depend on the special coupling
of Turing and Neimark-Sacker bifurcations.

In the real world, vegetation bands are not perfectly straight. There have been several explanations
on this issue. Some researchers think that this may be due to the stochastic micro-topography.
There is another interpretation in [26], that the self-organization process takes a very long time
(about 30,000 days). Before the regular bands are formed, the values of some parameters may change.
For example, advection coefficients a1 and a2, as the speed and the direction of prevailing wind are
changing all the time. Therefore, the patterns in the real world are curvy bands. In this research,
we propose another possible explanation. We choose the parameter τ to be the varying parameter
because the variation of time scale reflects the variation of wind frequency well. As wind frequency
is changing all the time, the variation of τ becomes meaningful. Then the variation of τ causes the
occurring of Neimark-Sacker bifurcation. Neimark-Sacker bifurcation and Turing bifurcation may occur
at the same time. The coupled effects of Neimark-Sacker and Turing bifurcations make vegetation
patterns more irregular and similar to real vegetation patterns in nature. Therefore, the irregular
patterns of vegetation may be induced by the coupled effects of Neimark-Sacker and Turing bifurcation.

From the calculated values of entropy in all figures, we can see that the values of entropy don’t
vary much in Figures 4–6, but the values of entropy in Figures 7 and 8 decrease drastically when
Turing and Neimark-Sacker bifurcations both occur. The decrease of entropy reflects the decrease
of information in the figures. This is consistent with what we can observe directly from the figures,
as most vegetation dies out due to the coupled effects of Turing and Neimark-Sacker bifurcations,
leaving only little vegetation.

5. Conclusions

The continuous model of wind-induced vegetation patterns is quite new and attractive. In this
research, we transform it to a discrete model. The discretization of the continuous vegetation-sand
model is due to the consideration that wind events and sand movements are both discrete. Based on
the discrete model, this research considered Neimark-Sacker bifurcation, which was not considered
in the previous study [26]. Special and complex vegetation patterns can be self-organized (Figure 4)
when parameter values satisfy Neimark-Sacker bifurcation. Simulation results also show that
labyrinth (as shown in Figure 7a,b) and striped vegetation patterns (as shown in Figures 6 and 8a,b)
can be obtained, which are the key results in [26]. Besides, with the increase of time scale τ,
we simulated how vegetation patterns transform from Turing bifurcation to Turing-Neimark-Sacker
bifurcation (Figures 5–8). Especially the transformations from Figure 5a–e, the transformations from
Figure 7a–e and the transformations from Figure 8a–e reveal the coupling effects of Turing and
Neimark-Sacker bifurcations.

From all the bifurcation analysis, simulations and discussion, we can conclude that:

(a) The method of discretization provides a new scenario in the study on wind-induced vegetation
patterns. It preserves the patterns that can be obtained in [26].

(b) After discretization, the variation of time scale becomes possible. This variation helps to
understand pattern self-organization under different ecological scales.

(c) With the discrete vegetation-sand model, we investigated the coupled effects of Turing and
Neimark-Sacker bifurcations. Under both bifurcation conditions, the type of simulated patterns
depends on the intensity of each bifurcation. Sometime one bifurcation effect dominates the
self-organization of patterns, while specially they couple with each other and lead to pattern
variation, which can also be supported by the variance of entropy in Figures 7 and 8. However,
the coupled effects of Turing and Neimark-Sacker bifurcations are so complex that new methods
may be needed to assess the intensity of each bifurcation.
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Appendix A

Appendix A.1. Neimark-Sacker Bifurcation Analysis

First we transform the discrete model into a map, and we can obtain:(
S
V

)
→
(

S + τ(k0 + mV(1− V
V0
)− nS)

V + τ(hV(1− V
Vm

)− pS V
C+V )

)
(A1)

According to [41], Neimark-Sacker bifurcation requires three conditions. The first condition of
Neimark-Sacker bifurcation requires the eigenvalues at fixed point λ1, λ2 are conjugate and their
modules are 1, shown as:

λ2 = λ1, |λ1| = |λ2| = 1. (A2)

Then we get:
tr0

2 − 4∆0 < 0, ∆0 = 1. (A3)

Which is:

(h− n− 2hV1

Vm
− pS1C

(C + V1)
2 )

2 − 4(−nh +
2nhV1

Vm
+

npS1C

(C + V1)
2 +

mpV1(−2V1 + V0)

(C + V1)V0
) < 0 (A4)

Then we can obtain the Neimark-Sacker bifurcation point τ0:

τ = τ0 =
n− h + 2hV1

Vm
+ pS1C

(C+V1)
2

−nh + 2nhV1
Vm

+ npS1C
(C+V1)

2 +
mpV1(−2V1+V0)

(C+V1)V0

(A5)

Let:
w = S− S1,z = V −V1, (A6)

and we obtain a new map:

 w
z
τ̃

→


a11w + a12z + a13
2 z2 + O

(
(|w|+ |z|+ |τ̃|)4

)
a21w + a22z + a23

2 z2 + a24wz + a27
6 z3 + a28

2 wz2

+O
(
(|w|+ |z|+ |τ̃|)4

)
τ̃

 (A7)

In which:
a11 = 1− nτ, a12 = τm(−2V1+V0)

V0
,

a13 = − 2mτ
V0

, a21 = − τpV1
C+V1

, a22 = 1 + τ(h− 2hV1
Vm
− pS1C

(C+V1)
2 ),

a23 = ( 2CpS1

(C+V1)
3 − 2h

V1m )τ , a24 = τpV1

(C+V1)
2 −

τp
C+V1

,

a27 = − 6CpS1τ

(C+V1)
4 , a28 = − 2τpV1

(C+V1)
3 +

2τp
(C+V1)

2 ,

(A8)
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with τ = τ0.
The second condition of Neimark-Sacker bifurcation requires that:

d =
d|λ(τ)|

dτ

∣∣∣∣
τ=τ0

=
1
2
(n− h +

2hV1

Vm
+

pS1C

(C + V1)
2 ) 6= 0 (A9)

(λ(τ0))
θ 6= 1, θ = 1, 2, 3, 4 (A10)

in which:

λ(τ0), λ(τ0) =
tr0(τ0)

2
± i

2

√
4∆0(τ0)− tr02(τ0) = α± iβ,i =

√
−1. (A11)

In which tr0(τ0) and ∆0(τ0) are described by Equation (12) with τ = τ0. Equation (A10) is
equivalent to tr0(τ0) 6= −2,−1, 0, 2. However, Equation (A3) requires that tr0(τ0) 6= −2, 2, so from
Equation (A10), we can obtain:

τ0(n− h +
2hV1

Vm
+

pS1C

(C + V1)
2 ) 6= 2, 3. (A12)

The Neimark-Sacker bifurcation analysis will be performed based on the normal form of map
(A7). Applying the invertible transformation:(

w
z

)
=

(
a12 0

α− a11 −β

)(
w̃
z̃

)
, (A13)

to map (A7), then the map becomes:(
w̃
z̃

)
→
(

α −β

β α

)(
w̃
z̃

)
+

1
a12β

(
G1(w̃, z̃)
G2(w̃, z̃)

)
. (A14)

where:
G1(w̃, z̃) =

a13

2
β(α− a11)

2w̃2 +
a13

2
β3z̃2 − a13β2(α− a11)w̃z̃ + O((|w̃|+ |z̃|)4), (A15)

G2(w̃, z̃) = (( a13
2 (α− a11)− a13a23

2 )(α− a11)
2 − a2

12a24(α− a11))w̃2

+( a13
2 (α− a11)− a13a23

2 )β2z̃2 + β(a2
12a24 − (a13(α− a11)− a13a23)(α− a11))w̃z̃

−( a2
12a28

2 + a12a27
6 (α− a11))(α− a11)

2w̃3 − a12β2( a12a28
2 + a27

2 (α− a11))w̃z̃2

+a12(α− a11)β(a12a28 +
a27
2 (α− a11))w̃2z̃ + a12a27

6 β3z̃3 + O((|w̃|+ |z̃|)4)

. (A16)

The second-order and third-order partial derivatives of G1(w̃, z̃) and G2(w̃, z̃) at w̃ = 0 and τ̃ = 0
are calculated as:

G1w̃w̃ = a13
2 β(α− a11)

2, G1w̃z̃ = −a13β2(α− a11),

G1z̃z̃ =
a13
2 β3, G1w̃w̃w̃ = G1w̃w̃z̃ = G1w̃z̃z̃ = G1z̃z̃z̃ = 0,

G2w̃w̃ = ( a13
2 (α− a11)− a13a23

2 )(α− a11)
2 − a2

12a24(α− a11),

G2w̃z̃ = β(a2
12a24 − (a13(α− a11)− a13a23)(α− a11)), G2z̃z̃ = ( a13

2 (α− a11)− a13a23
2 )β2,

G2w̃w̃w̃ = −( a2
12a28

2 + a12a27
6 (α− a11))(α− a11)

2,

G2w̃w̃z̃ = a12(α− a11)β(a12a28 +
a27
2 (α− a11)),

G2w̃z̃z̃ = −a12β2( a12a28
2 + a27

2 (α− a11)), G2z̃z̃z̃ =
a12a27

6 β

(A17)
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The third condition of Neimark-Sacker bifurcation requires:

a = −Re

((
1− 2λ

)
λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re

(
λξ21

)
6= 0, (A18)

in which:
ξ20 =

1
8

((
Fx̃x̃ − Fỹỹ + 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ − 2Fx̃ỹ

))
, (A19)

ξ11 =
1
4

((
Fx̃x̃ + Fỹỹ

)
+ i
(

Gx̃x̃ + Gỹỹ

))
, (A20)

ξ02 =
1
8

((
Fx̃x̃ − Fỹỹ − 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ + 2Fx̃ỹ

))
, (A21)

ξ21 =
1

16

((
Fx̃x̃x̃ + Fx̃ỹỹ + Gx̃x̃ỹ + Gỹỹỹ

)
+ i
(

Gx̃x̃x̃ + Gx̃ỹỹ − Fx̃x̃ỹ − Fỹỹỹ

))
. (A22)

Then we can calculate a as:

a = − AN−MB
32a2

12β2((1−α)2+β2)
− 1

32a2
12β2 ((G1w̃w̃ + G1z̃z̃)

2 + (G2w̃w̃ + G2z̃z̃)
2)

− 1
64a2

12β2 ((G1w̃w̃ − G1z̃z̃ − 2G2w̃z̃)
2 + (G2w̃w̃ − G2z̃z̃ + 2G1w̃z̃)

2)

+ 1
16a12β (α(G2w̃w̃z̃ + G2z̃z̃z̃) + β(G2w̃w̃w̃ + G2w̃z̃z̃)) 6= 0

(A23)

in which:

M = β(3− 4α)
(
α2 − β2)− 2αβ

(
(1− α)(1− 2α)− 2β2),

N =
(
1− 3α + 2α2 − 2β2)(α2 − β2)+ (6α− 8α2)β2,

A = (G1w̃w̃ + G1z̃z̃)(G1w̃w̃ − G1z̃z̃ + 2G2w̃z̃)− (G2w̃w̃ + G2z̃z̃)(G2w̃w̃ − G2z̃z̃ − 2G1w̃z̃),

B = (G2w̃w̃ + G2z̃z̃)(G1w̃w̃ − G1z̃z̃ + 2G2w̃z̃) + (G1w̃w̃ + G1z̃z̃)(G2w̃w̃ − G2z̃z̃ − 2G1w̃z̃).

(A24)

When the conditions (A4), (A5), (A9), (A12) and (A23) are satisfied, Neimark-Sacker bifurcation
occurs at (S1,V1). Besides, when a < 0 and d > 0, an attracting invariant circle bifurcates from (S1,V1)
for τ > τ0; and when a > 0 and d > 0, a repelling invariant circle bifurcates for τ < τ0.

Appendix A.2. Turing Bifurcation Analysis

As we transformed the continuous model into a discrete one, the Turing bifurcation needs to
be re-investigated. According to [42], Turing bifurcation requires two conditions. First, a nontrivial
homogeneous stationary state exists and is stable to spatially homogeneous perturbations, which has
been obtained in Section 2. Second, the stable stationary state is unstable to at least one type of spatially
heterogeneous perturbations. Eigenvalues of discrete ∇d and ∇2

d are different as those in continuous
model, according to the method in [43], the eigenvalues of ∇d can be obtained as:

λ1
kl = 2 sin φk exp

((
φk −

π

2

)
i
)

. (A25)

where φk = (k− 1)π/N, k ∈ {1, 2, 3, · · · , N} and i represents the complex unit, that is i =
√
−1. While

the eigenvalues of ∇2
d can be obtained as:

λkl = 4
(

sin2 φk + sin2 φl

)
, (A26)

in which φk = (k− 1)π/N, φl = (l − 1)π/N, and k, l ∈ {1, 2, 3, · · · , N}.
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Spatially heterogeneous perturbations are introduced to perturb the stable homogeneous
stationary state (S1,V1). The spatially heterogeneous perturbations on S and V are given by:

S̃(i,j,t) = S(i,j,t) − S1, (A27)

Ṽ(i,j,t) = V(i,j,t) −V1. (A28)

Noticing ∇2
dS̃(i,j,t) = ∇2

dS(i,j,t) and ∇2
dṼ(i,j,t) = ∇2

dV(i,j,t). Substituting Equations (A27) and (A28)
into Equations (2)–(5) leads to:

S̃(i,j,t+1) = a11

(
S̃(i,j,t) +

τ
d a1∇dS̃(i,j,t) +

τ
d2 D1∇2

dS̃(i,j,t)

)
+a12

(
Ṽ(i,j,t) +

τ
d a2∇dṼ(i,j,t) +

τ
d2 D2∇2

dṼ(i,j,t)

)
+O

((∣∣∣S̃(i,j,t)

∣∣∣+ ∣∣∣Ṽ(i,j,t)

∣∣∣)2
) , (A29)

Ṽ(i,j,t+1) = a21

(
S̃(i,j,t) +

τ
d a1∇dS̃(i,j,t) +

τ
d2 D1∇2

dS̃(i,j,t)

)
+a22

(
Ṽ(i,j,t) +

τ
d a2∇dṼ(i,j,t) +

τ
d2 D2∇2

dṼ(i,j,t)

)
+O

((∣∣∣S̃(i,j,t)

∣∣∣+ ∣∣∣Ṽ(i,j,t)

∣∣∣)2
) , (A30)

where a11, a12, a21 and a22 are described by Equation (A8). The two-order terms in Equations (A29) and
(A30) can be ignored when the perturbations are small. Through simple calculation, we can obtain:

∇d

(
∇2

d

(
Xij
))

= ∇2
d

(
∇d

(
Xij
))

, (A31)

Therefore, we can use the corresponding eigenfunction Xij
kl of the eigenvalue λkl to multiply

Equations (A29) and (A30), and obtain:

Xij
kl S̃(i,j,t+1) = a11Xij

kl S̃(i,j,t) + a12Xij
klṼ(i,j,t) +

τ
d a11Xij

kl∇dS̃(i,j,t) +
τ
d a12Xij

kl∇dṼ(i,j,t)

+ τ
d2 a11Xij

kl∇
2
dS̃(i,j,t) +

τ
d2 a12δXij

kl∇
2
dṼ(i,j,t)

, (A32)

Xij
klṼ(i,j,t+1) = a21Xij

kl S̃(i,j,t) + a22Xij
klṼ(i,j,t) +

τ
d a21Xij

kl∇dS̃(i,j,t) +
τ
d a22Xij

kl∇dṼ(i,j,t)

+ τ
d2 a21Xij

kl∇
2
dS̃(i,j,t) +

τ
d2 a22δXij

kl∇
2
dṼ(i,j,t)

. (A33)

Summing Equations (A32) and (A33) for all i and j obtains:

∑ Xij
kl S̃(i,j,t+1) = a11∑ Xij

kl S̃(i,j,t) + a12∑ Xij
klṼ(i,j,t) +

τ
d2 a11∑ Xij

kl∇
2
dS̃(i,j,t)

+ τ
d2 a12δ∑ Xij

kl∇
2
dṼ(i,j,t)

, (A34)

∑ Xij
klṼ(i,j,t+1) = a21∑ Xij

kl S̃(i,j,t) + a22∑ Xij
klṼ(i,j,t) +

τ
d2 a21∑ Xij

kl∇
2
dS̃(i,j,t)

+ τ
d2 a22δ∑ Xij

kl∇
2
dṼ(i,j,t)

. (A35)

Let St = ∑ Xij
kl S̃(i,j,t+1) and Vt = ∑ Xij

klṼ(i,j,t+1), Equations (A34) and (A35) can be transformed
into the following form:

St+1 = a11

(
1 +

τ

d
a1λ1

kl −
τ

d2 D1λkl

)
St + a12

(
1 +

τ

d
a2λ1

kl −
τ

d2 D2λkl

)
Vt, (A36)



Entropy 2017, 19, 478 20 of 22

Vt+1 = a21

(
1 +

τ

d
a1λ1

kl −
τ

d2 D1λkl

)
St + a22

(
1 +

τ

d
a2λ1

kl −
τ

d2 D2λkl

)
Vt. (A37)

Equations (A36) and (A37) describes the dynamics of spatially heterogeneous perturbations
integrating all the lattices. If Equations (A36) and (A37) converge, the discrete system will go back to
the spatially homogeneous stationary state. Only the divergence of Equations (A36) and (A37) can
lead to the breaking of homogeneous state and the self-organization of Turing patterns. Calculating
the two eigenvalues associated with Jacobian matrix of Equations (A36) and (A37) obtains:

λ±(k, l, τ) = −1
2

tr(k, l, τ)± 1
2

√
tr(k, l, τ)2 − 4∆(k, l, τ), (A38)

in which:

tr(k, l, τ) = tr0(τ) +
τ

d
(a11(τ)a1 + a22(τ)a2)a1λ1

kl +
τ

d2 (a11(τ)D1 + a22(τ)D2)λkl , (A39)

∆(k, l, τ) = ∆0(τ)
(

1 +
τ

d
a1λ1

kl − D1
τ

d2 λkl

)(
1 +

τ

d
a2λ1

kl −
τ

d2 D2δλkl

)
. (A40)

Here tro(τ), ∆0(τ), a11(τ), and a22(τ) are denoted for reminding that they are dependent on τ.
Based on the two eigenvalues, define:

λm(k, l, τ) = max(|λ+(k, l)|, |λ−(k, l)|), (A41)

λmm(τ) =
N

max
k=1,l=1

λm(k, l, τ). (A42)

where λmm(τ) represents the maximal value of absolute modulus of both eigenvalues in Equation
(A41). When λmm(τ) > 1, Turing instability occurs; when λmm(τ) < 1, the discrete system stabilizes at
the homogeneous states. Therefore, the threshold condition for the occurrence of Turing bifurcation
requires λmm(τ) = 1.
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