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Abstract: Long memory plays an important role in many fields by determining the behaviour and
predictability of systems; for instance, climate, hydrology, finance, networks and DNA sequencing.
In particular, it is important to test if a process is exhibiting long memory since that impacts the
accuracy and confidence with which one may predict future events on the basis of a small amount
of historical data. A major force in the development and study of long memory was the late Benoit
B. Mandelbrot. Here, we discuss the original motivation of the development of long memory and
Mandelbrot’s influence on this fascinating field. We will also elucidate the sometimes contrasting
approaches to long memory in different scientific communities.
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1. Introduction

In many fields, there is strong evidence that a phenomenon called “long memory” plays
a significant role, with implications for forecast skill, low frequency variations, and trends.
In a stationary time series, the term “long memory”—sometimes “long range dependence” (LRD) or
“long term persistence”—implies that there is non-negligible dependence between the present and all
points in the past. To dispense quickly with some technicalities, we clarify here that our presentation
follows the usual convention in statistics [1,2] and define a stationary finite variance process to have
long memory when its two-sided autocorrelation function (ACF) diverges:limN→∞ ∑N

k=−N ρ(k)→ ∞.
This is equivalent to its power spectrum having a pole at zero frequency [1,2]. In practice, this means the
ACF and the power spectrum both follow a power-law, because the underlying process does not have
any characteristic decay timescale. This is in striking contrast to many standard (stationary) stochastic
processes where the effect of each data point decays so fast that it rapidly becomes indistinguishable
from noise. The study of long memory processes is important because they exhibit nonintuitive
properties where many familiar mathematical results fail to hold, and because of the numerous
datasets [1,2] where evidence for long memory has been found. In this paper, we will give a historical
account of three key aspects of long memory: (1) The environmetric observations in the 1950s which first
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sparked interest: the anomalous growth of range in hydrological time series, later known as the “Hurst”
phenomenon; (2) After more than a decade of controversy, the introduction by Mandelbrot of the
first stationary model-fractional Gaussian noise (FGN)—which could explain the Hurst phenomenon
(this was in itself controversial because it explicitly exhibited LRD, which he dubbed “the Joseph
effect”); and (3) The incorporation of LRD, via a fractional differencing parameter d, into the more
traditional ARMA(p, q) models, through Hosking and Granger’s ARFIMA(p, d, q) model.

The development of the concept of long memory, both as a physical notion and a formal
mathematical construction, should be of significant interest in the light of controversial application
areas like the study of bubbles and business cycles in financial markets [3], and the quantification
of climate trends [4]. Yet few articles about long memory cover the history in much detail. Instead,
most introduce the concept with passing reference to its historical significance; even books on LRD
tend to have only a brief history. Notable exceptions include Montanari [5], the semi-autobiographical
Mandelbrot and Hudson [6], and his posthumous autobiography [7], as well as the reminiscence of
his former student Murad Taqqu [8]. This lack of historical context is important not just because
a knowledge of the history is intrinsically rewarding, but also because understanding the conceptual
development of a research field can help to avoid pitfalls in future. Here, we attempt to bridge the gap
in a way that is both entertaining and accessible to a wide statistical and scientific audience. We assume
no mathematical details beyond those given in an ordinary time series textbook (e.g., [9]), and any
additional notation and concepts will be kept to a minimum.Our narrative is not intended to replace
excellent reviews such as those of Beran et al. [2], Samorodnitsky [10] and Baillie [11] to which we refer
readers seeking more detail or rigour.

The key questions that we seek to answer are “Who first considered long memory processes in
time series analysis, and why?” and “How did these early studies begin to evolve into the modern-day
subject?” For specificity, we clarify here that our interpretation of “modern-day subject” comprises of
the definitions of long memory given above, together with the ARFIMA(p, d, q) processes defined in
Section 4. For more details, see any modern time series text (e.g., [9]). As we shall see, this evolution
took less than three decades across the middle of the twentieth century. During this period, there was
significant debate about the mathematical, physical, and philosophical interpretations of long memory.
It is both the evolution of this concept, and the accompanying debate (from which we shall often
directly quote), in which we are mostly interested. The kind of memory that concerns us here was
a conceptually new idea in science, and rather different, for example, from that embodied in the laws
of motion developed by Newton and Kepler. Rather than Markov processes where the current state of
a system is enough to determine its immediate future, the fractional Gaussian noise model requires
information about the complete past history of the system.

As will become evident, the late Benoît B. Mandelbrot was a key figure in the development of
long memory. Nowadays, most famous for coining the term and concept “fractal”, Mandelbrot’s
output crossed a wide variety of subjects from hydrology to economics as well as pure and applied
mathematics. During the 1960s, he worked on the theory of stochastic processes exhibiting heavy
tails and long memory, and was the first to distinguish between these effects. Because of the diversity
of the communities in which he made contributions, it sometimes seems that Mandelbrot’s role in
statistical modelling is under-appreciated (in contrast, say, to within the physics and geoscience
communities [12,13]). It certainly seemed this way to him:

Of those three [i.e., economics, engineering, mathematics], nothing beats my impact on
finance and mathematics. Physics—which I fear was least affected—rewarded my work
most handsomely [7].

A significant portion of this paper is devoted to his work. We do not, however, intend to convey in
any sense his “ownership” of the LRD concept, and indeed much of the modern progress concerning
long memory in statistics has adopted an approach (ARFIMA) that he did not agree with.

Mandelbrot’s motivation in developing an interest in long memory processes stemmed from
an intriguing study in hydrology by Harold Edwin Hurst [14]. Before we proceed to discuss this
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important work, it is necessary to give a brief history of hydrological modelling, Hurst’s contributions,
and the reactions to him from other authors in that area in Section 2. Then, we discuss Mandelbrot’s
initial musings, his later refinements, and the reactions from the hydrological community in Section 3.
In Section 4, we discuss the development in the 1980s of fractionally differenced models culminating
from this sequence of thought. Section 5 offers our conclusions.

2. Hurst, and a Brief History of Hydrology Models

Water is essential for society to flourish since it is required for drinking, washing, irrigation and for
fuelling industry. For thousands of years going back to the dawn of settled agricultural communities,
humans have sought methods to regulate the natural flow of water. They tried to control nature’s
randomness by building reservoirs to store water in times of plenty, so that lean times are survivable.
The combined factors of the nineteenth century Industrial Revolution, such as fast urban population
growth, the requirement of mass agricultural production, and increased energy requirements, led to
a need to build large scale reservoirs formed by the damming of river valleys. When determining the
capacity of the reservoir, or equivalently the height of the required dam, the natural solution is the
“ideal dam”:

An “ideal dam” for a given time period is such that] (a) the outflow is uniform, (b) the
reservoir ends the period as full as it began, (c) the dam never overflows, and (d) the
capacity is the smallest compatible with (a), (b) and (c) [15].

The concept of the ideal dam obviously existed long before Mandelbrot, however the quotation is
a succinct mathematical definition. Naturally, this neat mathematical description ignores complications
such as margins of error, losses due to evaporation etc., but the principle is clear. Actually, as Hurst [14]
pointed out: “increased losses due to storage are disregarded because, unless they are small, the site is
not suitable for over-year storage”.

From a civil engineer’s perspective, given the parameters of demand (i.e., required outflow) and
time horizon, how should one determine the optimal height of the dam? To answer this question,
we clearly need an input, i.e., river flows. It is not hard to imagine that for a given set of inputs it
would, in principle, be possible to mathematically solve this problem. A compelling solution was first
considered by Rippl [16] “whose publication can . . . be identified with the beginning of a rigorous
theory of storage reservoirs” [17].

Despite solving the problem, Rippl’s method was clearly compromised by its requirement to
know, or at least assume, the future variability of the river flows. A common method was to use the
observed history at the site as a proxy; however, records were rarely as long as the desired time horizon.
Clearly a stochastic approach was required, involving a simulation of the future using a stochastic
process known to have similar statistical properties to the observed past. This crucial breakthrough,
heralding the birth of stochastic hydrology, was made by Hazen [18] who used the simplest possible
model; an iid Gaussian process.

In practice, just one sample path would be of little use so, in principle, many different sample paths
could be generated, all of which could be analysed using Rippl’s method to produce a distribution
of ‘ideal heights’. This idea of generating repeated samples was pursued by Sudler [19], however the
stochastic approach to reservoir design was not generally accepted in the West until the work of Soviet
engineers was discovered in the 1950s. The important works by Moran [20] and Lloyd [21] are jointly
considered to be the foundations of modern reservoir design, and helped establish this approach as
best practice.

2.1. Hurst’s Paper

Harold Edwin Hurst had spent a long career in Egypt (ultimately spanning 1906–1968) eventually
becoming Director-General of the Physical Department where he was responsible for, amongst other
things, the study of the hydrological properties of the Nile basin. For thousands of years, the Nile had
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helped sustain civilisations in an otherwise barren desert, yet its regular floods and irregular flows
were a severe impediment to development. Early attempts at controlling the flow by damming at
Aswan were only partially successful. Hurst and his department were tasked with devising a method
of water control by taking an holistic view of the Nile basin, from its sources in the African Great Lakes
and Ethiopian plains, to the grand delta on the Mediterranean.

In his studies of river flows, Hurst [14] used a method similar to Rippl’s in which he analysed
a particular statistic of the cumulative flows of rivers over time called the “adjusted range”, R.
Let {Xk} be a sequence of random variables, not necessarily independent, with some non-degenerate
distribution. We define the nth partial sum Yn =: X1 + · · ·+ Xn. Feller [22] then defines the Adjusted
Range, R(n), as:

R(n) = max
1≤k≤n

{
Yk −

k
n

Yn

}
− min

1≤k≤n

{
Yk −

k
n

Yn

}
.

Hurst referred to this as simply the ‘range’ which is now more commonly used for the simpler
statistic R∗(n) = max1≤k≤n{Yk} −min1≤k≤n{Yk}. Moreover, he normalised the adjusted range by
the sample standard deviation to obtain what is now called the Rescaled Adjusted Range statistic,
denoted R/S(n):

R/S(n) =
max1≤k≤n

{
Yk − k

n Yn

}
−min1≤k≤n

{
Yk − k

n Yn

}
√

1
n ∑n

k=1

(
Xk − 1

n Yn

)2
.

The attraction of using R/S is that, for a given time period of say n years, R/S(n) is
a (dimensionless) proxy for the ideal dam height over that time period.

Hurst [14] then examined 690 different time series, covering 75 different geophysical phenomena
spanning such varied quantities as river levels, rainfall, temperature, atmospheric pressure, tree rings,
mud sediment thickness, and sunspots. He found that in each case, the statistic behaved as R/S(n) ∝ nk

for some k. As discussed below, he estimated k using linear regression, and we will follow him in
denoting this estimate as K. He found that K was approximately normally distributed with mean
0.72± 0.006. He did acknowledge that “K does vary slightly with different phenomena”, and that
it was “the mean value of a quantity that has ranged from 0.46 to 0.96” (large for a Gaussian fit),
however to a first approximation it appeared that the value of 0.72 might hold some global significance.

At this point, it is worth highlighting an aspect of Hurst’s work which often gets overlooked.
As we shall see, the R/S statistic has enjoyed great use over the past fifty years (although its use tends
now to be deprecated in favour of more accurate ways of estimation). However, the modern method
of estimating the R/S exponent k is not that originally used by Hurst. His estimate K was obtained by
assuming a known constant of proportionality: specifically he assumed the asymptotic (i.e., for large n)
law that R/S(n) = (n/2)k. A doubly logarithmic plot of values of R/S(n) against n/2 should produce
a straight line, the slope of which is taken as K. By assuming a known constant of proportionality,
Hurst was effectively performing a one parameter log-regression to obtain his estimate of k.

His reason for choosing this approach was that it implies R/S(2) = 1 exactly (it actually equals
1/
√

2 but Hurst was calculating population rather than sample standard deviations, i.e., dividing by n
rather than n− 1), and consequently this ‘computable value’ could be used in the estimation procedure.
This methodology would nowadays be correctly regarded as highly dubious because it involves fitting
an asymptotic (large n) relationship while making use of an assumed small fixed value for the n = 1
point. This logical flaw was immediately remarked upon in the same journal issue by Te Chow [23].
As we will see, Mandelbrot later introduced the now-standard method of estimation by dropping
this fixed point and performing a two-parameter log-regression to obtain the slope. Hurst’s original
method was forgotten and most authors are unaware that it was not the same as the modern method;
indeed, many cite Hurst’s result of 0.72 unaware that is was obtained using an inappropriate analysis.
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Notwithstanding these shortcomings, Hurst’s key result that estimates of k were about 0.72
would likely not have been either noteworthy or controversial in itself had he not shown that,
using contemporary stochastic models, this behaviour could not be explained.

In the early 1950s, stochastic modelling of river flows was immature and so the only model
that Hurst could consider was the iid Gaussian model of Hazen [18] and Sudler [19]. Rigorously
deriving the distribution of the range under this model was beyond Hurst’s mathematical skills, but by
considering the asymptotics of a coin tossing game and appealing to the central limit theorem, he did
produce an extraordinarily good heuristic solution. His work showed that, under the independent
Gaussian assumption, the exponent k should equal 0.5. In other words, Hurst had shown
that contemporary hydrological models fundamentally did not agree with empirical evidence.
This discrepancy between the theory and practice became known as the ‘Hurst phenomenon’.
It is worth clarifying a potential ambiguity here: since the phrase was coined, the ‘Hurst Phenomenon’
has been attributed to various aspects of time series and/or stochastic processes. For clarity, we will
use the term to mean “the statistic R/S(n) empirically grows faster than n1/2”.

Hurst’s observation sparked a series of investigations that ultimately led to the formal
development of long memory. Hurst himself offered no specific explanation for the effect although he
clearly suspected the root cause might lie in the independence assumption:

Although in random events groups of high or low values do occur, their tendency to occur
in natural events is greater. ... There is no obvious periodicity, but there are long stretches
when the floods are generally high, and others when they are generally low. These stretches
occur without any regularity either in their time of occurrence or duration ([14], §6).

After these crucial empirical observations, and several follow-up publications [24–26],
Hurst himself played no direct part in the long-term mathematical development of long memory.
The specific purpose of his research was to design a system to control the Nile with a series of small
dams and reservoirs. These plans were later turned into the Aswan High Dam with Hurst still acting
as scientific consultant into his eighties [6].

2.2. Reactions to the Hurst Phenomenon

Hurst’s finding took the hydrological community by surprise, not only because of the intrinsic
puzzle, but because of its potential importance. As previously mentioned, the R/S(n) statistic is
a proxy for the ideal dam height over n years. If Hurst’s finding was to be believed, and R/S(n)
increased faster than n1/2, there would be potentially major implications for dam design. In other words,
dams designed for long time horizons might be too low, with floods as one potential consequence.

Although the debate over Hurst’s findings, which subsequently evolved into the debate about
long memory, was initially largely confined to the hydrological community, fortuitously it also
passed into more mainstream mathematical literature—a fact which undoubtedly helped to raise
its cross-disciplinary profile in later years. Despite the unclear mathematical appeal of what was
essentially a niche subject, the eminent probabilist William Feller [22] contributed greatly by publishing
a short paper. By appealing to the theory of Brownian motion, he proved that Hurst was correct;
for sequences of standardised iid random variables with finite variance, the asymptotic distribution of
the adjusted range, R(n), should obey the n1/2 law: E[R(n)] ∼

(
π
2
)1/2 n1/2. It should be emphasised

that Feller was studying the distribution of the adjusted range, R(n), not the rescaled adjusted range
R/S(n). The importance of dividing by the standard deviation was not appreciated until Mandelbrot,
however Feller’s results would later be shown to hold for this statistic as well.

By proving and expanding (since the Gaussianity assumption could be weakened) Hurst’s result,
Feller succeeded in both confirming that there was a phenomenon of interest, and also that it should
interest mathematicians as well as hydrologists. Over the course of the 1950s more precise results
were obtained although attention was unfortunately deflected to consideration of the simple range
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(e.g., [27]) as opposed to R/S. The exact distribution of R(n) was found to be, in general, intractable;
a notable exception being that for the simplest iid Gaussian case, where [28]

E[R(n)] =
(π

2

)1/2
(

1
π

n−1

∑
k=1

1√
k(n− k)

)
n1/2.

Having conclusively shown that Hurst’s findings were indeed worthy of investigation,
several different possible explanations of the eponymous phenomenon were put forward. It was
assumed that the effect was caused by (at least) one of the following properties of the process:
(a) an “unusual” marginal distribution, (b) non-stationarity, (c) transience (i.e., pre-asymptotic
behaviour), or (d) short-term auto-correlation effects.

For Hurst’s original data, the first of these proposed solutions was not relevant because much of his
data were clearly Gaussian. Moran [29] claimed that the effect could be explained by using a sequence
of iid random variables with a particular moment condition on the distribution. Although this case
had been shown by Feller [22] to still asymptotically produce the n1/2 law, Moran showed that in such
cases the transient (or the pre-asymptotic) phase exhibiting the Hurst phenomenon could be extended
arbitrarily. Moran used a Gamma distribution, although to achieve the effect the distribution had to
be heavily skewed, thus ruling it out as a practical explanation for Hurst’s effect. Furthermore,
Moran pointed out that if the finite variance assumption was dropped altogether, and instead
a symmetric α-stable distribution was assumed, the Hurst phenomenon could apparently be explained:
E[R(n)] ∼ `n1/α, for 1 < α ≤ 2. and some known (computable) `. However, as Mandelbrot later
showed, the division by the standard deviation is indeed crucial. In other words, whilst Moran’s
arguments were correct, they were irrelevant because the object of real interest was the rescaled adjusted
range. Several Monte Carlo studies, notably those by Mandelbrot and Wallis [30], confirmed that for iid
random variables, R/S(n) asymptotically follows a n1/2 law. Subsequent proofs by Mandelbrot [31]
and Mandelbrot and Taqqu [32] have ensured mathematical interest in the R/S statistic to the
present day. However, there is a subtlety: in the case of iid random variables with finite variance,
n−1/2R/S(n) converges in distribution to a function of the Brownian bridge, while in a stable case
n−1/2R/S(n) converges in distribution to a function of a Poisson random measure, as discussed
by Samorodnitsky [10]. The normalization is the same, but the limiting behaviour is different.

The second potential explanation of the Hurst phenomenon, non-stationarity, is harder to discount
and is more of a philosophical (and physical) question than a mathematical one.

Is it meaningful to talk of a time-invariant mean over thousands of years? If long enough
realizations of such time series were available would they in fact be stationary ([33], §3.2)?

Once we assume the possibility of non-stationarity, it is not hard to imagine that this could lead
to an explanation of the phenomenon. Indeed, Hurst [34] himself suggested that non-stationarity
might be an explanation; however, his heuristics involving a pack of playing cards were far from being
mathematically formalisable. Klemeš [35] and Potter [36] later provided more evidence, however the
first rigorous viable mathematical model was that by Bhattacharya et al. [37], in which the authors
showed that a short-memory process perturbed by a non-linear monotonic trend can be made to
exhibit the Hurst phenomenon. Their study shows why it is crucial to distinguish between the “Hurst
phenomenon” and “long memory”. The process described by Bhattacharya et al. does not have long
memory yet it exhibits the Hurst phenomenon (recall our specific definition of this term).

In his influential paper, Klemeš [35] not only showed that the Hurst phenomenon could be
explained by non-stationarity, but argued that assuming stationarity may be mis-founded:

The question of whether natural processes are stationary or not is likely a philosophical
one. . . . there is probably not a single historic time series of which mathematics can
tell with certainty whether it is stationary or not . . . Traditionally, it has been assumed
that, in general, the geophysical, biological, economical, and other natural processes are
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nonstationary but within relatively short time spans can be well approximated by stationary
models [35].

As an example, Klemeš suggested that a major earthquake might drastically affect a river basin
so much as to induce a regime-change (i.e., an element of non-stationarirty). However, on a larger
(spatial and temporal) scale, the earthquake and its local deformation of the Earth may be seen as
part of an overall stationary “Earth model”. Thus, choosing between the two forms is, to some
extent, a matter of personal belief. Mandelbrot did in fact consider (and publish) other models with
a particular type of nonstationary switching himself, even while formulating his stationary FGN model,
but unfortunately Klemeš was unaware of that work, about which a more fruitful discussion might
perhaps have occurred.

If we discount this explanation and assume stationarity, we must turn to the third and
fourth possible explanations, namely transience (i.e., pre-asymptotic behaviour) and/or the lack of
independence. These two effects are related: short-term auto-correlation effects are likely to introduce
significant pre-asymptotic behaviours. As mentioned earlier, Hurst himself suggested some kind of
serial dependence might explain the effect, and Feller suggested:

It is conceivable that the [Hurst] phenomenon can be explained probabilistically, starting
from the assumption that the variables {Xk} are not independent . . . Mathematically,
this would require treating the variables {Xk} as a Markov process [22].

Soon however, Barnard [38] claimed to have shown that Markovian models still led to the n1/2 law
and it would be shown later [31,39] that any then-known form of auto-correlation must asymptotically
lead to the same result. The required condition on the auto-correlation function turned out to be that it
is summable, whereby for iid random variables with ACF ρ(·) [40]:

E[R/S(n)] ∼
(π

2

)1/2
(

∞

∑
k=−∞

ρ(k)

)1/2

n1/2. (1)

Even before this was formally proved, it was generally known that some complicated
auto-correlation structure would be necessary to explain the Hurst phenomenon:

It has been suggested that serial correlation or dependence [could cause the Hurst
phenomenon]. This, however, cannot be true unless the serial dependence is of a very
peculiar kind, for with all plausible models of serial dependence the series of values is
always approximated by a [Brownian motion] when the time-scale is sufficiently large.
A more plausible theory is that the experimental series used by Hurst are, as a result of
serial correlation, not long enough for the asymptotic formula to become valid [20].

Thus Moran was arguing that, since no “reasonable” auto-correlation structure could account for
the Hurst phenomenon, it should be assumed that the observed effect was caused by pre-asymptotic
behaviour, the extent of which was influenced by some form of local dependence. In other words,
he was suggesting that a short-memory process could account for the Hurst phenomenon over
observed time scales.

This issue has both a practical and philosophical importance. It would later be argued by some
that, regardless of the “true” model, any process that could exhibit the Hurst phenomenon over
the observed (or required) time scales would suffice for practical purposes. Using such processes
requires a choice. One might accept the Hurst phenomenon as genuine and acknowledge that,
although theoretically incorrect, such a model is good enough for the desired purpose. Alternatively,
one might reject the Hurst phenomenon as simply a pre-asymptotic transient effect, and therefore any
model which replicates the effect over observed ranges of n is potentially valid. Mandelbrot, for one,
was highly critical of those who followed the latter approach:



Entropy 2017, 19, 437 8 of 21

So far, such a convergence [to the n1/2 law] has never been observed in hydrology. Thus,
those who consider Hurst’s effect to be transient implicitly attach an undeserved importance
to the value of [the sample size] . . . These scholars condemn themselves to never witness
the full asymptotic development of the models they postulate [39].

Despite this, the concept of short-memory-induced transience was explored both before and
after Mandelbrot’s work. Matalas and Huzzen [41] performed a rigorous Monte Carlo analysis of the
AR(1) model and demonstrated that for medium n and heavy lag-one serial correlation, the Hurst
phenomenon could be induced (albeit Matalas and Huzzen were actually using Hurst’s original
erroneous K estimate). Fiering [42] succeeding in building a more sophisticated model; however he
found he needed to use an AR(20) process to induce the effect—an unrealistically large number of lags
to be useful for modelling.

To summarise, by the early 1960s, more than a decade on from Hurst’s original discoveries,
no satisfactory explanation for the Hurst phenomenon had yet been found. To quote [35] again:

Ever since Hurst published his famous plots for some geophysical time series . . . the by
now classical Hurst phenomenon has continued to haunt statisticians and hydrologists.
To some, it has become a puzzle to be explained, to others a feature to be reproduced by
their models, and to others still, a ghost to be conjured away.

It was at this point that Benoît Mandelbrot heard of the phenomenon.

3. Mandelbrot’s Fractional Models

In the early 1960s, Mandelbrot had worked intensively on the burgeoning subject of mathematical
finance and the problem of modelling quantities such as share prices. Central to this subject was the
‘Random Walk Hypothesis’ which provided for Brownian motion models. This was first implicitly
proposed in the seminal (yet long undiscovered) doctoral thesis by Bachelier [43]. The detailed
development of this topic is also interesting but beyond the scope of this paper. It suffices to say here
that, although Bachelier’s model was recognised as an adequate working model which seemed to
conform to both intuition and the data, it could also benefit from refinements. Various modifications
were proposed but one common feature they all shared was the underlying Gaussian assumption.

In a ground-breaking paper, Mandelbrot [44] proposed dropping the Gaussianity assumption
and instead assuming a heavy tailed distribution, specifically the symmetric α-stable distribution
(e.g., [45], §1.1). In short, this notion was highly controversial; for example see Cootner [46]. However,
the paper was significant for two reasons. Firstly it helped to give credibility to the growing study
of heavy tailed distributions and stochastic processes. Secondly, it was indicative of Mandelbrot’s
fascination with mathematical scaling. The α-stable distributions have the attractive property that
an appropriately re-weighted sum of such random variables is itself an α-stable random variable.
This passion for scaling would remain with Mandelbrot throughout his life, and is epitomised by his
famous fractal geometry.

Returning to Hurst’s results, Mandelbrot’s familiarity with scaling helped him immediately
recognise the Hurst phenomenon as symptomatic of this, and, as he later recounted [6,47], he assumed
that it could be explained by heavy tailed processes. He was therefore surprised when he realised that,
not only were Hurst’s data essentially Gaussian, but as discussed previously, the rescaled adjusted range
is not sensitive to the marginal distribution. Instead, he realised that a new approach would be required.
In keeping with the idea of scaling, he introduced the term “self-similar”, and formally introduced the
concept in its modern form: Let Y(t) be a continuous-time stochastic process. Then Y(t) is said to be

self-similar, with self-similarity parameter H, if for all positive c, Y(ct) d
= cHY(t). Using this concept,

Mandelbrot [48], laid the foundations for the processes which would initially become the paradigmatic
models in the field of long memory, the self-similar fractional Brownian motion (FBM) model and
its increments, the long range dependent fractional Gaussian noise (FGN) model. Mandelbrot later
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regretted the term “self-similar” and came to prefer “self-affine”, because scaling in time and space
were not necessarily the same, but the revised terminology never caught on to the same extent.

At this point, it is necessary to informally describe FBM. It is a continuous-time Gaussian process,
and is a generalisation of ordinary Brownian motion, with an additional parameter h. This parameter
can range between zero and one (non-inclusive to avoid pathologies) with different values providing
qualitatively different types of behaviour. The case h = 1/2 corresponds to standard Brownian motion.

We remark that the naming and notation of the parameter h has been a source of immense
confusion over the past half-century, with various misleading expressions such as the “Hurst
parameter”, the “Hurst exponent”, the “Hurst coefficient”, the “self-similarity parameter” and the
“long memory parameter”. Moreover, the more traditional notation of an upper-case H does not
help since it disobeys the convention of using separate cases for constants (parameters) and random
variables (statistics). For clarity, in what follows, we will reserve the notation h simply to denote
the “fractional Brownian motion parameter”, and will distinguish it from experimentally obtained
estimators such as Hurst’s K or Mandelbrot’s estimator J, and the self-similarity parameter H. In certain
cases, all these will be the same, but we wish to allow for the possibility that they will not be.

Fractional Brownian motion can be thought of in several different and equivalent ways,
for example as a fractional derivative of standard Brownian motion, or as stochastic integral. These
details need not concern us here; the most important fact is that FBM is exactly self-similar, which means
that a “slowed-down” version of a process will, after a suitable spatial re-scaling, look statistically
identical to the original, i.e., they will have the same finite dimensional distributions. In this sense, FBM,
like standard Brownian motion (which of course is just a special case of FBM), has no characteristic
time-scale, or “tick”.

In practical applications, it is necessary to use a modification of FBM because it is (like standard
Brownian motion) a continuous time process and non-stationary. Thus, the increments of FBM
are considered; these form a discrete process which can be studied using conventional time series
analysis tools. These increments, called fractional Gaussian noise (FGN), can be considered to be
the discrete approximation to the “derivative” of FBM. Note that in the case of h = 1/2, FGN is
simply the increments of standard Brownian motion, i.e., white noise. (Mandelbrot and Van Ness [49],
corollary 3.6) showed that this process is stationary, but most importantly (for its relevance here),
it exhibits the Hurst phenomenon: for some c > 0, R/S(n) ∼ cnh. This result was immensely
significant; it was the first time since Hurst had first identified the phenomenon, that anyone had been
able to exhibit a stationary, Gaussian stochastic process capable of reproducing the effect. The mystery
had been partially solved; there was such a process, and for over a decade it remained the only model
known to be able to fully explain the Hurst phenomenon.

Mandelbrot [48] then proceeded to show that such a process must have a spectral density function
that blows up at the origin. By proposing such a model, he realised he was attempting to explain
with one parameter h both low- and high-frequency effects, i.e., he was “. . . postulating the same
mechanism for the slow variations of climate and for the rapid variations of precipitation”. He also
recognised that the auto-correlation function of the increments would decay slower than exponentially,
and (for 1/2 < h < 1) would not be summable. This correlation structure, which is now often taken to
be the definition of long memory itself, horrified some. Concurrently, the simplicity of FGN, possessing
only one parameter h, concerned others. We shall consider these issues in depth later, but the key point was
that although Mandelbrot had ‘conquered’ the problem, to many it was somewhat of a Pyrrhic victory [35].

3.1. Initial Studies of Mandelbrot’s Model

Mandelbrot immediately attempted to expand on the subject although his papers took time to get
accepted. He ultimately published a series of five papers in 1968–1969 through collaborations with the
mathematician John Van Ness and the hydrologist James Wallis. Taken as a whole, these papers offered
a comprehensive study of long memory and fractional Brownian motion. They helped publicise the
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subject within the scientific community and started the debates about the existence of long memory
and the practicality of FGN, which have continued until the present day.

The first of these papers [49] formally introduced FBM and FGN and derived many of their
properties and representations. The aim of this paper was simply to introduce these processes
and to demonstrate that they could provide an explanation for the Hurst phenomenon; this was
succinctly stated:

We believe that FBMs do provide useful models for a host of natural time series and wish
therefore to present their curious properties to scientists, engineers and statisticians.

Mandelbrot and Van Ness argued that all processes thus far considered have “the property
that sufficiently distant samples of these functions are independent, or nearly so”, yet in contrast,
they pointed out that FGN has the property “that the ‘span of interdependence’ between [its] increments
can be said to be infinite”. This was a qualitative statement of the difference between short and long
memory and soon led to the formal definition of long memory. As motivation for their work, they cited
various examples of observed time series which appeared to possess this property: in economics [50,51],
“1/ f noises” in the fluctuations of solids [52], and hydrology [14].

Intriguingly, and undoubtedly linked to Mandelbrot’s original interest in heavy-tailed processes,
(Mandelbrot and Van Ness [49], §3.2) noted:

If the requirement of continuity is abandoned, many other interesting self-similar
processes suggest themselves. One may for example replace [the Brownian motion] by
a non-Gaussian process whose increments are [α-] stable . . . Such increments necessarily
have an infinite variance. “Fractional Lévy-stable random functions” have moreover an
infinite span of interdependence.

In other words, the authors postulated a heavy-tailed, long memory process. It would be over
a decade before such processes were properly considered due to difficulties arising from the lack of
formal correlation structure in the presence of infinite variance. However, a preliminary demonstration
of the robustness of R/S as a measure of LRD was given in [30], using a heavy tailed modification of
fBm which the authors dubbed “fractional hyperbolic motion”.

One key point which is often overlooked is that Mandelbrot and Van Ness did not claim that
FGN is necessary to explain the Hurst phenomenon: “. . . we selected FBM so as to be able to derive
the results of practical interest with a minimum of mathematical difficulty”. Often, Mandelbrot was
incorrectly portrayed as insisting that his, and only his, model solved the problem. Indeed, Mandelbrot
himself took an interest in alternative models [52], although as we will later see, he essentially rejected
Granger and Hosking’s ARFIMA which was to become the standard replacement of FGN in statistics
and econometrics literatures.

Furthermore, neither did the authors claim that they were the first to discover FBM.
They acknowledged that others (e.g., [53]) had implicitly studied it; however, Mandelbrot and Van Ness
were undoubtedly the first to attempt to use it in a practical way.

Having ‘solved’ Hurst’s riddle with his stationary fractional Gaussian model, Mandelbrot was
determined to get FGN and FBM studied and accepted, in particular by the community which had
most interest in the phenomenon, hydrology. Therefore, his remaining four important papers were
published in the leading hydrological journal Water Resources Research. These papers represented
a comprehensive study of FBM in an applied setting, and were bold; they called for little short of
a revolution in stochastic modelling:

... current models of statistical hydrology cannot account for either [Noah or Joseph] effect
and must therefore be superseded. As a replacement, the ‘self-similar’ models that we
propose appear very promising [39].

As its title suggests, Mandelbrot and Wallis [39] introduced the colourful terms “Noah Effect” and
“Joseph Effect” for heavy tails and long memory respectively; both labels referencing key events of
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the Biblical characters’ lives. Ironically, the river level data were, in fact, close enough to Gaussian to
dispense with the “Noah Effect” so the actual content of the paper was largely concerned with the
“Joseph Effect”, but rainfall itself provides a rich source of heavy tailed, “Noah” datasets. However,
Mandelbrot preferred treating these two effects together as different forms of scaling; spatial in the
former and temporal in the latter.

Mandelbrot and Wallis [39] defined the “Brownian domain of attraction” (BDoA) and showed
that such BDoA cannot account for either effect and should therefore be discarded. The BDoA was
(rather loosely) defined as the set of discrete-time stochastic processes which obey three conditions;
namely, the Law of Large Numbers, the Central Limit Theorem, and asymptotic independence of past
and future partial sums. Alternatively, the BDoA is the set of processes which are either asymptotically
Brownian, or can be well-approximated by Brownian motion. A process in the BDoA is, in some sense,
“nice”, i.e., it is Gaussian or Gaussian-like and has short memory, and was given the term “smooth”.
Processes outside of the BDoA were labelled “erratic” . This “erratic” behaviour could be caused by
one, or both, of the Joseph and Noah effects. Mandelbrot and Wallis showed that processes lying within
the BDoA will, after an initial transient behaviour, obey the n1/2 law. They rejected, on philosophical
grounds, the idea that the Hurst phenomenon might be caused by transient effects. Mandelbrot later
preferred the terms “mild” to “nice”, and subdivided “erratic” into heavy tailed “wild” and strongly
dependent “slow”. We stick with his original terminology.

Mandelbrot proceeded to provide more evidence in support of his model. Mandelbrot and
Wallis [15] included several sample graphs of simulated realisations of FGN with varying h. The explicit
aim was to “encourage comparison of [the] artificial series with the natural record with which the reader
is concerned”. These simulations were performed by using one of two methods developed by the
authors which were different types of truncated approximations. As documented by Mandelbrot [54],
it was soon found that one of their approximations was far from adequate because it failed to accurately
reproduce the desired effects. The algorithms were also slow to implement; a significant practical
problem when computer time was expensive and processing power limited. Mandelbrot [54] therefore
introduced a more efficient algorithm. Later, an exact algorithm would be created [55,56] which forms
the basis for modern algorithms [1,57] which use the Fast Fourier Transform. Mandelbrot and Wallis
wanted to subject their simulations to R/S analysis but they recognised the previously mentioned
logical flaw in Hurst’s approach.They therefore developed a systematic two-parameter log-regression
to obtain an estimate of the FGN parameter h using the R/S exponent. This approach has since become
the standard method for estimating the R/S exponent. Following the recommendation of Mandelbrot
in his “Selecta” volumes, we will use J to denote the exponent estimated by this method.

The simulated sample paths were subjected to both R/S and spectral analysis, and for both
cases it was found that the simulated paths largely agreed with the theory, i.e., the sample paths
seemed sufficiently good representations of the theoretical processes. For the R/S analysis, it was
found, as expected, that there existed three distinct regions: transient behaviour, ‘Hurst’ behaviour,
and asymptotic “1/2” behaviour. This last region was caused entirely because the simulations were
essentially short memory approximations to the long memory processes; infinite moving averages
were truncated to finite ones. Thus, this third region could be eliminated by careful synthesis, i.e.,
by making the running averages much longer than the ensemble length. Furthermore the transient
region was later shown [58] to be largely a feature of a programming error.

Mandelbrot and Wallis [59] applied their R/S method to many of the same data types as
Hurst [14,24] and Hurst et al. [26], and similarly found significant evidence in favour of the long
memory hypothesis. In a comparison of Hurst’s K with their J, Mandelbrot and Wallis pointed out
that K will tend to under-estimate h when h > 0.72 but over-estimate when h < 0.72. So Hurst’s
celebrated finding of a global average of 0.72 was heavily influenced by his poor method, and his
estimated standard deviation about this mean was underestimated. This important point, that the
original empirical findings which helped spawn the subject of long memory were systematically
flawed, has long been forgotten.
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Next, Mandelbrot and Wallis [30] undertook a detailed Monte Carlo study of the robustness to
non-Gaussianity of their R/S method. As previously mentioned, in general R/S was shown to be
very robust. The different distributions studied were Gaussian, lognormal, “hyperbolic” (a skewed
heavy-tailed distribution—not α-stable but attracted to that law), and truncated Gaussian (to achieve
kurtosis lower than Gaussian). The distribution of the un-normalised adjusted range, R(n), was shown
to be highly dependent on the distribution, however the division by S(n) corrected for this. For any
sequence of iid random variables, their estimated J was always (close to) 1/2.

When studying dependent cases, they considered various non-linear transformations (such as
polynomial or exponential transforms) and found that robustness still held. However, R/S was shown
to be susceptible in the presence of strong periodicities; a fact rather optimistically dismissed: “Sharp
cyclic components rarely occur in natural records. One is more likely to find mixtures of waves that
have slightly different lengths . . . ”.

Finally, Mandelbrot and Wallis [30] intriguingly replaced the Gaussian variates in their FGN
simulator with ‘hyperbolic’ variates. Although now known to have drawbacks, this was for a long
time the only attempt at simulating a heavy-tailed long memory process.

3.2. Reactions to Mandelbrot’s Model

By proposing heavy tailed models to economists, Mandelbrot had had a tough time advocating
against orthodoxy [7]. Because his fractional models were similarly unorthodox, he learned from his
previous experience, and was more careful about introducing them to hydrologists. By producing
several detailed papers covering different aspects of FBM, he had covered himself against charges of
inadequate exposition. Unsurprisingly however, many hydrologists were unwilling to accept the full
implications of his papers.

Firstly, Mandelbrot’s insistence on self-similar models seemed somewhat implausible and
restrictive, and seemed to totally ignore short-term effects. Secondly, Mandelbrot’s model was
continuous-time which, although necessary to cope with self-similarity, was only useful in a theoretical
context because we live in a digital world; data are discrete and so are computers. Mandelbrot was
primarily interested in FBM; he saw the necessary discretisation, FGN, as its derivative, both literally
and metaphorically. As soon as his models were applied to the real world, they became compromised:

The theory of fractional noise is complicated by the motivating assumptions being in
continuous time and the realizable version being needed in discrete time ([60], §6.2).

In one major respect, Mandelbrot was simply unlucky with timing. Soon after his papers
about FBM were published, the hugely influential book by Box and Jenkins [61] was published,
revolutionising the modelling of discrete time series in many subject areas.

Prior to 1970, multiple-lag auto-regressive or moving average models had been used (and as
previously mentioned had failed to adequately replicate the Hurst phenomenon), but the Box–Jenkins
models combined these concepts, together with an integer differencing parameter d, to produce
the very flexible class of ARIMA(p, d, q) models. As in other scientific fields, many hydrologists
were attracted to these models, and sought to explore the possibility of using them to replicate the
Hurst phenomenon.

It is important to note that ARIMA models cannot genuinely reproduce the asymptotic Hurst
phenomenon since all ARIMA models either have short memory, or are non-stationary. However,
by choosing parameters carefully, it can be shown that it is possible to replicate the observed Hurst
phenomenon over a large range of n. O’Connell [33] was an early exponent of this idea; specifically,
he used an ARMA(1, 1) model which could (roughly) preserve a given first-lag auto-correlation as
well as h. For completeness, we mention that other modelling approaches were investigated to try and
replicate the Hurst phenomenon. One such model was the so-called “broken-line” process detailed by
Rodriguez-Iturbe et al. [62], Garcia et al. [63], and Mejia et al. [64,65] which sought to preserve a twice
differentiable spectrum. This was criticised by Mandelbrot [66] and did not prosper.
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To summarise, in the early 1970s, there were two distinct approaches to modelling hydrological
processes. One could use traditional AR processes (or their more advanced ARMA cousins) which,
although able to partially replicate the Hurst phenomenon, were essentially short memory models.
Alternatively, one could use Mandelbrot’s FGN process in order to replicate the Hurst phenomenon
accurately. Unfortunately, this dichotomy was strong and the choice of approach largely came down
to whether accounting for low- or high-frequency effects was the principal aim for the modeller.
Mandelbrot himself was well aware (c.f. [39], p. 911) that he was suggesting switching the usual order
of priority when modelling stochastic processes. Many were uncomfortable with this approach because,
whereas the ARMA models could be coerced into replicating the Hurst phenomenon, FGN was
completely uncustomisable with regards to high frequencies.

It remains for the hydrologist to decide which type of behaviour [low- or high-frequency]
is the more important to reproduce for any particular problem. No doubt derivations of
FGN’s preserving both high and low frequency effects will eventually emerge and such
a choice will not be necessary ([33], §2.3).

Further studies involving ARMA processes were undertaken by Wallis and O’Connell [67],
Lettenmaier and Burges [68] (who proposed a mixture of an ARMA(1,1) model with an independent
AR(1) model), and the set of papers by McLeod and Hipel [69] and Hipel and McLeod [55,56].
These latter authors were the first to apply to long memory processes the full Box–Jenkins philosophy
of time series estimation: model identification, parameter estimation, and model-checking. To compare
models, they were the first to use formal procedures such as information criteria, and formally test
residuals for whiteness. With this setup they fitted models to six long-run geophysical time series
suspected of possessing long memory, and found that in each case the best fitting ARMA models
were chosen in preference to FGN. They also fitted more complex ARMA models (than ARMA(1,1))
and showed again that the observed Hurst statistic can be maintained over the length of series used.
As an aside, the set of papers by McLeod and Hipel were also remarkable for two other reasons.
As mentioned previously, they developed an exact FGN simulator (using the Cholesky decomposition
method), which although computationally expensive, was the first time anyone had been able to
simulate genuine long memory data. Secondly, the authors derived a maximum likelihood estimator
for the FGN parameter h. This was the first proper attempt at parametric modelling of FGN. Mandelbrot
and Taqqu [32] were dismissive of this approach due to the strong assumptions needed, however from
a theoretical statistical point of view it was a clear breakthrough.

Along with their practical difficulty, another ground for rejecting Mandelbrot’s models was
his sweeping assertions about their physical interpretation. Slightly paraphrasing, he claimed that,
since long memory was the only explanation for the Hurst phenomenon, the underlying physical
processes must possess long memory. This approach of inferring physics from an empirical model
was generally rejected. For a start, many were reluctant to drop the natural Markovian assumption
about nature:

The past influences the future only through its effect on the present, and thus once a certain
state of the process has been reached, it matters little for the future development how it
was arrived at [35].

Indeed, the renowned hydrologist Vit Klemeš was a leading opponent of Mandelbrot’s
interpretation. As indicated earlier, he personally suspected non-stationarity might be the true cause
for the observed Hurst phenomenon. Whilst he was convinced of the importance of the Hurst effect,
and accepted FGN as an empirical model (he used the phrase “operational model”) he strongly rejected
using it to gain an understanding of physics:

An ability to simulate, and even successfully predict, a specific phenomenon does not
necessarily imply an ability to explain it correctly. A highly successful operational model
may turn out to be totally unacceptable from the physical point of view [35] .
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He likened the apparent success of Mandelbrot’s FGN in explaining the Hurst phenomenon
to the detrimental effect that the Ptolemaic planetary model had on the development of astronomy.
Klemeš had strong reservations about the concept of long memory, asking:

By what sort of physical mechanism can the influence of, say, the mean temperature of
this year at a particular geographic location be transmitted over decades and centuries?
What kind of a mechanism is it that has carried the impact of the economic crisis of the
1930s through World War II and the boom of the 1950s all the way into our times and will
carry it far beyond?

though he conceded that there were in fact possible mechanisms in the man-made world, although not,
in his view, in the physical one.

More than 20 years later, interviewed by physicist Bernard Sapoval for the online Web of Stories
project, Mandelbrot was to give an answer to Klemeš’ criticism, showing the influence of subsequent
work in physics on critical phenomena on his worldview:

The consequences of this fundamental idea are hard to accept ... [a]nd many people in
many contexts have been arguing strongly against it, ... If infinite dependence is necessary
it does not mean that IBM’s details of ten years ago influence IBM today, because there’s no
mechanism within IBM for this dependence. However, IBM is not alone. The River Nile is
[not] alone. They’re just one-dimensional corners of immensely big systems. The behaviour
of IBM stock ten years ago does not influence its stock today through IBM, but IBM the
enormous corporation has changed the environment very strongly. The way its price varied,
went up, or went up and fluctuated, had discontinuities, had effects upon all kinds of other
quantities, and they in turn affect us. And so my argument has always [sic] been that each
of these causal chains is totally incomprehensible in detail, [and] probably exponentially
decaying. There are so many of them that a very strong dependence may be perfectly
compatible. Now I would like to mention that this is precisely the reason why infinite
dependence exists, for example, in physics, in a magnet-because [although] two parts far
away have very minor dependence along any path of actual dependence, there are so many
different paths that they all combine to create a global structure.

Mandelbrot’s esprit d’escalier notwithstanding, Klemeš’ paper remains very worthwhile reading
even today. It also showed how at least two other classes of model could exhibit the Hurst effect,
(i) integrated processes, such as random walks, or AR(1) with a φ parameter close to 1; and (ii) models
of the alternating renewal type with heavy-tailed distributions of the times between changes in the
mean. Ironically, these last renewal models were very similar in spirit to a model that Mandelbrot had
discussed almost 10 years earlier [52,70]. We refer the reader to a recent historical investigation [71] of
these neglected papers, which were many years ahead of their time.

Klemeš was not alone in his concern over the interpretation of Mandelbrot’s models:

Using self-similarity (with h 6= 1/2) to extrapolate the correlated behaviour from
a finite time span to an asymptotically infinite one is physically completely unjustified.
Furthermore, using self-similarity to intrapolate [sic] to a very short time span . . . is
physically absurd [72].

Interestingly, in his reply, Mandelbrot [73] somewhat missed the point:

[The] self-similar model is the only model that predicts for the rescaled range statistic
. . . precisely the same behaviour as Harold Edwin Hurst has observed empirically.
To achieve the same agreement with other models, large numbers of ad hoc parameters are
required. Thus the model’s justification is empirical, as is ultimately the case for any model
of nature.
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Yet another argument used to oppose the use of long memory models arose from a debate about
their practical value. By not incorporating long memory into models, at how much of a disadvantage
was the modeller? Clearly, this is a context-specific question, but the pertinent question in hydrology
is: by how much does incorporating long memory into the stochastic model change the ideal dam
height? One view, shared by Mandelbrot:

The preservation within synthetic sequences . . . [of h] is of prime importance to engineers
since it characterizes long term storage behaviour. The use of synthetic sequences which
fail to preserve this parameter usually leads to underestimation of long term storage
requirements [33].

By ignoring the Hurst phenomenon, we would generally expect to underestimate the ideal
dam height but how quantifiable is the effect? Wallis and Matalas [74] were the first to demonstrate
explicitly that the choice of model did indeed affect the outcome: by comparing AR(1) and FGN using
the Sequential Peak algorithm—a deterministic method of assessing storage requirements based on
the work of Rippl [16] and further developed in the 1960s. Wallis and Matalas showed that the height
depends on both the short and long memory behaviours, and in general, FGN models require larger
storage requirements, as expected. Lettenmaier and Burges [68] went into more detail by looking at
the distribution of the ideal dam height (rather than simply the mean value) and found it followed
extreme value theory distributions. Lettenmaier and Burges also showed that long memory inputs
required slightly more storage, thus confirming the perception that long memory models need to be
used to guard against ‘failure’.

However Klemeš et al. [75] argued against using this philosophy; instead suggesting that “failure”
is not an absolute term. In the context of hydrology, “failure” would mean being unable to provide
a large enough water supply; yet clearly a minimal deficit over a few days is a different severity to
a substantial drought over many years. Any “reasonable” economic analysis should take this into
account. Klemeš et al. [75] claimed that the incorporation of long memory into models used to derive
the optimum storage height is essentially a “safety factor”, increasing the height by a few percent,
however “. . . in most practical cases this factor will be much smaller than the accuracy with which the
performance reliability can be assessed.”

In summary therefore, Mandelbrot’s work was controversial because, although it provided an
explanation of Hurst’s observations, the physical interpretation of the solution was unpalatable.
There was no consensus regarding the whole philosophy of hydrological modelling; should the
Hurst phenomenon be accounted for, and if so implicitly or explicitly? Moreover, the new concept
of long memory, borne out of the solution to the riddle, was both non-intuitive and mathematically
unappealing at the time.

Much of the debate outlined above was confined to the hydrological community, in particular
the pages of Water Resources Research. With the exception of articles appearing in probability journals
concerning the distributions of various quantities related to the rescaled adjusted range, little else
was known about long memory by statisticians.This was rectified by a major review paper by
Lawrance and Kottegoda [60] which helped bring the attention of the Hurst phenomenon to the
wider statistical community.

One of those non-hydrologists who took up the Hurst “riddle” was the eminent econometrician
Clive Granger. In an almost-throwaway comment at the end of a paper, Granger [76] floated the idea
of “fractionally differencing” a time series, whose spectrum has a pole at the origin. The ubiquity
of 1/ f spectra had been a puzzle to physicists since the work of Schottky in 1918. Adenstedt [77],
derived some properties of such processes but his work went largely unnoticed until the late 1980s,
while Barnes and Allan [78] considered a model of 1/ f noise explicitly based on fractional integration.
Granger’s observation was followed up by both himself, and independentlyin hydrology by Jonathan
Hosking [79], who between them laid the foundations for a different class of long memory model.
This class of ARFIMA models are the most commonly used long memory models of the present day.
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If the empirical findings of Hurst helped to stimulate the field, and the models of Mandelbrot helped to
revolutionise the field, the class of ARFIMA models can be said to have made the field accessible to all.

4. Fractionally Differenced Models

Hosking and Granger’s ARFIMA(p,d,q) process Xt is defined (see Beran [1] and Beran et al. [2]
for details) as

φ(B)(1−B)dXt = ψ(B)εt (2)

Here, the backshift operator is defined by BXt = Xt−1. The polynomials φ = 1−∑
p
k=1 φkzk and

ψ = 1+∑
q
k=1 ψkzk describe the autoregressive and moving average terms respectively. The innovations

εt are Gaussian, stationary, zero mean, independent and identically distributed, with variance σ2
ε i.e.,

they form a white Gaussian noise process. Xt is second-order stationary and invertible, having a Wold
decomposition of

Xt =
∞

∑
j=0

ajεt−j (3)

The coefficients aj obey

aj = (−1)j Γ(1− d)
Γ(j + 1)Γ(1− d− j)

(4)

and allow a power series representation of the fractional differencing terms using

A(z) = (1− z)−d =
∞

∑
j=0

ajzj (5)

This expansion allows the spectral density function f (.) of Xt to be obtained. Its behaviour at the
origin is found to be

f (λ) ∼ σ2
ε

2π

|ψ(1)|2
|φ(1)|2 |λ|

−2d (6)

which may be compared with the leading order behaviour of FGN at the origin:

f (λ) ∼ c f |λ|1−2H (7)

so d = H− 1/2. One of the objections to Mandelbrot’s fractional Gaussian noise was that it was
a discrete approximation to a continuous process. Hosking [79] explained how FGN can be roughly
thought of as the discrete version of a fractional derivative of Brownian motion. In other words, FGN is
obtained by fractionally differentiating, then discretising. Hosking proposed to reverse this order of
operations, i.e discretising first, then fractionally differencing.

The advantage of this approach is that the discrete version of Brownian motion has an intuitive
interpretation; it is the simple random walk, or ARIMA(0, 1, 0) model. We may fractionally difference
this using the well-defined ‘fractional differencing operator of order d’ to obtain the ARFIMA(0, d, 0)
process, which for 0 < d < 1/2 is stationary and possesses long memory. From this loose derivation,
we immediately see a clear advantage of this process: it is formalisable as a simple extension to the
classical Box–Jenkins ARIMA models.

Granger and Joyeux [80] arrived at a similar conclusion noticing that it was both possible to
fractionally difference a process and, in order not to over- or under difference data, it may be desirable
to do so. Direct motivation was provided by [81] who showed that such processes could arise as
an aggregation of independent AR(1) processes, where the Auto-Regressive parameters were distributed
according to a Beta distribution (this aggregation of micro-economic variables was a genuine motivation,
rather than a contrived example). Furthermore, Granger and Joyeux pointed out that in long-term
forecasts it is the low frequency component that is of most importance. It is worth remarking that
forecasting is quite different from synthesis discussed earlier; the former takes an observed sequence and,
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based on a statistical examination of its past, attempts to extrapolate its future. This is a deterministic
approach and, given the same data and using the same methods, two practitioners will produce
the same forecasts. Synthesis on the other hand is a method of producing a representative sample
path of a given process and is therefore stochastic in nature. Given the same model and parameters,
two practitioners will produce different sample paths (assuming their random number generator seeds
are not initiated to the same value). However, their sequences will have the same statistical properties.

Both Granger and Joyeux [80] and Hosking [79] acknowledged that their model was based
on different underlying assumptions to Mandelbrot’s models. They also recognised the extreme
usefulness of introducing long memory to the Box–Jenkins framework. By considering their fractionally
differenced model as an ARIMA(0, d, 0) process, it was an obvious leap to include the parameters
p, q in order to model short-term effects; thence, the full ARFIMA(p, d, q) model. By developing
a process which could model both the short and long memory properties, the authors had removed
the forced dichotomy between ARMA and FGN models. By being able to model both types of memory
simultaneously, ARFIMA models immediately resolved the main practical objection to Mandelbrot’s
FGN model.

Depending on the individual context and viewpoint, ARFIMA models can either be seen as
pure short memory models adjusted to induce long memory behaviour, or pure long memory
models adjusted to account for short-term behaviour. ARFIMA models are more often introduced
using the former of these interpretations—presumably because most practitioners encounter the
elementary Box–Jenkins models before long memory—however, it is arguably more useful to consider
the latter interpretation.

Although slow to take off, the increased flexibility of ARFIMA models, and their general ease
of use compared to Mandelbrot’s FGN, meant that they gradually became the long memory model
of choice in many areas including hydrology and econometrics, although we have found them still
to be less well known in physics than FGN. Apart from their discreteness (which may, or may not be
a disadvantage depending on the point of view) the only disadvantage that ARFIMA models have is
that they are no longer completely self-similar. The re-scaled partial sums of a “pure” ARFIMA(0, d, 0)
model converge in distribution to FBM (see e.g., [82], §6), so, in some sense, the process can be seen as
the increments of an asymptotically self-similar process. However, any non-trivial short memory (p or q)
component introduces a temporal “tick” and destroys this self-similarity.

Perhaps inevitably given his original motivation for introducing self-similarity as an explanation
for the Hurst phenomenon, and his further development of the whole concept of scaling into fractal
theory, Mandelbrot was not attracted to ARFIMA models. Decades after their introduction, and despite
their popularity, Mandelbrot would state:

[Granger] prefers a discrete-time version of FBM that differs a bit from the Type I and Type II
algorithm in [15]. Discretization is usually motivated by unquestionable convenience, but I
view it as more than a detail. I favor very heavily the models that possess properties
of time-invariance or scaling. In these models, no time interval is privileged by being
intrinsic. In discrete-time models, to the contrary, a privileged time interval is imposed
nonintrinsically [83].

Convenience would seem to rule the roost in statistics, however, as ARFIMA-based inference is
applied in practice far more often than FBM/FGN. Many practitioners would argue that it is not hard
to justify use of a “privileged time interval” in a true data analysis context: the interval at which the
data are sampled and/or at which decisions based on such data would typically be made, will always
enjoy privilege in modeling and inference.

As we saw above, the introduction of the LRD concept into science came with Mandelbrot’s
application of the fractional Brownian models of Kolmogorov to an environmetric observation—Hurst’s
effect in hydrology. Nowadays, an important new environmetric application for LRD is to climate
research. Here, ARFIMA plays an important role in understanding long-term climate variability and in
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trend estimation [84] but remains less well known in some user communities compared to, for example,
SRD models of the Box-Jenkins type, of which AR(1) is still the most frequently applied. Conversely,
in many branches of physics the fractional α-stable family of models including FBM remain rather
better known than ARFIMA. The process of codifying the reasons for the similarities and differences
between these models, and also the closely related anomalous diffusion models such as the Continuous
Time Random Walk, in a way accessible to users, is under way but much more remains to be done
here, particularly on the “physics of FARIMA”.

5. Conclusions

We have attempted to demonstrate the original motivation behind long memory processes,
and trace the early evolution of the conceptof long memory, from the early 1950s to the late 1970s.
Debates over the nature of such processes, and their applicability or appropriateness to reality, are still
ongoing.Importantly, the physical meaning of FBM has been clarified by studies which show how
it plays the role of the noise term in the generalised Langevin equation when a particular (“1/ f ”)
choice of heat bath spectral density has been made and when a fluctuation-dissipation theorem
applies, see for example [85]. In the mathematical, statistical and econometric communities, several
mechanisms for LRD have been investigated, including the aggregation referred to earlier, and some
which emulate LRD behaviour by regime switching [86] or trends (see also [71]). Further discussion of
these topics can be found in [10]. The initial R/S diagnostic of LRD has been further developed, e.g.,
by Lo [87], and there is now a very extensive mathematical and statistical literature on estimation and
testing of long memory using both parametric and non-parametric methods, reviewed for example in
Chapter 5 of [2].

Rather than draw our own conclusions, we intended to illuminate the story of this fascinating
area of science, and in particular the role played by Benoit Mandelbrot, who died in 2010. The facet
of Mandelbrot’s genius on show here was to use his strongly geometrical mathematical imagination
to link some very arcane aspects of the theory of stochastic processes to the needs of operational
environmetric statistics. Quite how remarkable this was can only be fully appreciated when one
reminds oneself of the available data and computational resources of the early 1960s, even at IBM.
The wider story [6,7] in which this paper’s theme is embedded, of how he developed and applied in
sequence, first the α-stable model in economics, followed by the fractional renewal model in 1/ f noise,
and then FBM, and a fractional hyperbolic precursor to the linear fractional stable models, and finally
a multifractal model, all in the space of about 10 years, shows both mathematical creativity and a real
willingness to listen to what the data was telling him. The fact the he (and his critics) were perhaps
less willing to listen to each other is a human trait whose effects on this story—we trust—will become
less significant over time.
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Abbreviations

ACF Auto-Correlation Function
ARFIMA AutoRegressive Fractionally Integrated Moving Average
BDoA Brownian Domain of Attraction
FBM Fractional Brownian Motion
FGN Fractional Gaussian Noise
LRD Long Range Dependence
SRD Short Range Dependence
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