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Abstract: A group-constrained maximum correntropy criterion (GC-MCC) algorithm is proposed
on the basis of the compressive sensing (CS) concept and zero attracting (ZA) techniques and
its estimating behavior is verified over sparse multi-path channels. The proposed algorithm is
implemented by exerting different norm penalties on the two grouped channel coefficients to
improve the channel estimation performance in a mixed noise environment. As a result, a zero
attraction term is obtained from the expected l0 and l1 penalty techniques. Furthermore, a reweighting
factor is adopted and incorporated into the zero-attraction term of the GC-MCC algorithm which is
denoted as the reweighted GC-MCC (RGC-MMC) algorithm to enhance the estimation performance.
Both the GC-MCC and RGC-MCC algorithms are developed to exploit well the inherent sparseness
properties of the sparse multi-path channels due to the expected zero-attraction terms in their
iterations. The channel estimation behaviors are discussed and analyzed over sparse channels in
mixed Gaussian noise environments. The computer simulation results show that the estimated
steady-state error is smaller and the convergence is faster than those of the previously reported MCC
and sparse MCC algorithms.

Keywords: sparse MCC algorithms; mixed noise environment; zero-attracting technique; norm penalties

1. Introduction

With the rapid rise of various wireless technologies, wireless transmissions have been widely
developed in various fields such as mobile communications and satellite communication systems [1,2].
However, the signal might be distorted due to the diffraction, refraction, reflection or deviation from
obstacles such as buildings, mountains and so on, resulting in transmission delays and other adverse
effects. In the wireless communication transmission channels, the selective fading will lead to delays,
which is also known as multi-path effects. In fact, the multi-path channel is always sparse [3–5], which
means that most of the channel impulse response (CIR) coefficients are small while only a few of them
are large in magnitude [6]. Since the CIR is sparse, many channel estimation algorithms have been
presented to utilize this characteristic to improve the communication quality [2,7]. It is known that
the adaptive filtering (AF) algorithm can be used for implementing channel estimation. Thus, various
AF algorithms have been reported and used for channel estimation. Among these AF algorithms,
the most typical algorithm is the least mean square (LMS) which is invented by B. Widrow. The LMS

Entropy 2017, 19, 432; doi:10.3390/e19080432 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-2450-6028
http://dx.doi.org/10.3390/e19080432 
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 432 2 of 18

algorithm has been extensively investigated in channel estimation and noise cancellation owing to its
simple implementation, high stability and fast convergence speed [4,8]. However, its performance is
not satisfactory for sparse channel estimation with a low signal to noise ratio (SNR).

Recently, the compressive sampling (CS) concept has been introduced into AF algorithms to handle
the sparse signals [9,10]. After that, Y. Chen et al. put forward to the zero attracting LMS (ZA-LMS) and
reweighting ZA-LMS (RZA-LMS) algorithms [11]. ZA-LMS and RZA-LMS algorithms are implemented
by integrating l1-norm and reweighting l1-norm into the LMS’s cost function, respectively. These
two algorithms achieve lower steady-error and faster convergence speed than that of the basic LMS
algorithm for handling sparse signals owing to the constructed zero attractors. Moreover, l0-norm
and lp-norm have also been employed and introduced into the LMS’s cost function to improve the
performance of the ZA- and RZA-LMS algorithms in the sparse signal processing area [12–16]. All of
those norm-constrained LMS algorithms can effectively exploit sparse characteristics of the in-nature
sparse channels. However, they have a common drawback, i.e., their sensitivity to the input signal
scaling (ISS) and noise interferences. In order to reduce the effects of the ISS, several improved AF
algorithms have been presented by using high order error criteria or mixed error norms such as least
mean fourth (LMF), least mean squares-fourth (LMS/F) and so on [17–20]. Similarly, their related
sparse forms have also been developed based on the above mentioned norm penalties [17,21–27].
However, those AF algorithms and their related sparse forms are not good enough for dealing with
the sparse channel under non-Gaussian or mixed noise environments.

In recent years, information theoretic quantities were used for implementing cost function in
adaptive systems. The effective entropy-based AF algorithms include the maximum correntropy
criterion (MCC) and the minimum error entropy (MEE) [28–32]. In [28], it is shown that the MEE is
more complex than the MCC algorithm in the computational overhead. Therefore, the MCC algorithm
has been extensively developed in non-Gaussian environments [29,31,32]. Furthermore, the MCC has
low complexity which is nearly the same as that of the LMS-like algorithms. However, the performance
of the MCC algorithm may be degraded for sparse signal processing. In order to enhance the MCC
algorithm for handling sparse signal and sparse system identification, l1-norm and reweighting
l1-norm constraints have been exerted on the channel coefficient vector and integrated into the MCC’s
cost function. Similar to the ZA-LMS and RZA-LMS algorithms, the zero attracting MCC (ZA-MCC)
and reweighting ZA-MCC (RZA-MCC) algorithms [33] were obtained within the zero attracting
framework. Then, the normalized MCC (NMCC) algorithm was also presented [34,35] by referring to
the normalized least mean square (NLMS) algorithm. Recently, W. Ma proposed a correntropy-induced
metric (CIM) penalized MCC algorithm in [33], and Y. Li presented a soft parameter function (SPF)
constrained MCC algorithm [34]. The CIM and SPF are also one kind of l0-norm approximation to
form sparse MCC algorithms, and the SPF-MCC is given in the appendix. As for these improved MCC
algorithms, the l0-norm, CIM and SPF penalties are incorporated into the MCC’s cost function to devise
desired zero attractors. In the ZA-MCC algorithm, the zero attractor gives uniform penalty on all the
channel coefficients, while the l0-norm approximation MCC algorithms will increase the complexity.

In this paper, a group-constrained maximum correntropy criterion (GC-MCC) algorithm based on
the CS concept and zero attracting (ZA) techniques is proposed in order to fully exploit the sparseness
characteristics of the multi-path channels. The GC-MCC algorithm is derived by incorporating a
non-uniform norm into the MCC’s cost function and the non-uniform norm is split into two groups
according to the mean of the magnitudes of the channel coefficients. For the large channel coefficients
group, the l0-norm penalty is used, while the l1-norm penalty is implemented for the small channel
group. Then, a reweighting technique is utilized in the GC-MCC algorithm to develop the reweighted
GC-MCC (RGC-MCC) algorithm. The performance of the GC- and RGC-MCC algorithms is evaluated
and discussed for estimating mix-noised sparse channels. The GC- and RGC-MCC algorithms achieve
superior performance in both steady-error and convergence for sparse channel estimations with
different sparsity levels. Simulation results show that the GC- and RGC-MCC algorithms can effectively
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enhance the sparse channel estimation by using the proposed group constraints and can provide smaller
steady-state errors and faster convergence for application in a mixed noise environment.

The structure of this paper is summarized as follows. In Section 2, the MCC and its related sparse
algorithms are briefly reviewed. Section 3 introduces the GC-MCC and RGC-MCC algorithms, and
mathematically derives them. In Section 4, simulations that show the effectiveness of the proposed
GC-MCC and RCG-MCC algorithms are presented. Finally, our work is summarized in Section 5.

2. Review of the MCC and Its Related Sparse Algorithms

We consider a typical channel estimation system based on the MCC algorithm, which is given
in Figure 1. x (n) is the input training signal with a length of M, which is surveyed to an unknown

sparse channel whose vector form is g = [g1, g2, · · ·, gM]
T
. As a sparse channel, most of the channel

coefficients in the unknown sparse channel g are zeros or near-zeros. Herein, we use K to represent
the number of nonzero coefficients in the unknown sparse channel g. Then, the desired signal can be
written as

d (n) = gTx (n) + r (n) , (1)

where r (n) is a mixed Gaussian noise which is independent of the input training signal x (n). Moreover,
the instantaneous estimation error at n-th iteration is defined as

e (n) = d (n)− ĝT (n) x (n) , (2)

where ĝ (n) denotes the estimated channel vector. The MCC-based channel estimation is to obtain
the minimization of the iterative instantaneous estimation error e (n), and hence, we can estimate the
unknown sparse channel g.

The MCC algorithm is using the localized similarity to solve the following problem

min 1
2‖ĝ (n + 1)− ĝ (n)‖2

subject to ê (n) =
[
1− α exp

(
− e2(n)

2σ2

)]
e (n)

, (3)

where ê (n) = d (n)− ĝT (n + 1) x (n), and σ > 0 is a trade off parameter. Additionally, ‖•‖2 represents
the Euclidean norm [36], and α = βMCC‖x (n)‖2, where βMCC is the step-size of the MCC algorithm.
Based on Equation (3), we can write MCC’s cost function as

J0 (n) =
1
2
‖ĝ (n + 1)− ĝ (n)‖2 + λMCC

(
ê (n)−

[
1− α exp

(
− e2 (n)

2σ2

)]
e (n)

)
, (4)

where λMCC is the multiplier parameter. By utilizing the Lagrange multiplier method (LMM), we can
obtain the partial derivatives of ĝ (n + 1) and λMCC in Equations (5) and (6)

ĝ (n + 1)− ĝ (n)− λMCCx (n) = 0, (5)

ê (n)−
[

1− α exp
(
− e2 (n)

2σ2

)]
e (n) = 0. (6)

Then, we get λMCC

λMCC = α
exp

(
− e2(n)

2σ2

)
e (n)

‖x (n)‖2 . (7)

Substituting (7) into (5), the updating equation with the vector formed of the MCC algorithm is

ĝ (n + 1) = ĝ (n) + βMCC exp
(
− e2 (n)

2σ2

)
e (n) x (n) . (8)
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It can be seen that the recursion of the MCC algorithm is similar to the LMS algorithm, except the
exponential term. Similarly, the MCC algorithm does not utilize the intrinsic sparsity property of the
sparse channels. Motivated by the ZA-LMS and RZA-LMS algorithms, sparse MCC algorithms have
been presented and they are named as zero attracting MCC (ZA-MCC) and reweighting ZA-MCC
(RZA-MCC) [33]. For the ZA-MCC algorithm, it is implemented by integrating a l1-norm into MCC’s
cost function, and solving [33]

min 1
2‖ĝ (n + 1)− ĝ (n)‖2 + θZA‖ĝ (n + 1)‖1

subject to ê (n) =
[
1− α exp

(
− e2(n)

2σ2

)]
e (n)

, (9)

where ‖•‖1 is the l1-norm, and a regularization parameter θZA is used for controlling its ability.
Based on the LMM, the ZA-MCC’s cost function is [33]

J1 (n) = 1
2‖ĝ (n + 1)− ĝ (n)‖2 + θZA‖ĝ (n + 1)‖1 + λZA

(
ê (n)−

[
1− α exp

(
− e2(n)

2σ2

)]
e (n)

)
, (10)

where λZA is the multiplier parameter of the ZA-MCC algorithm. By using LMM, the updating
Equation of the ZA-MCC algorithm is [33]

ĝ (n + 1) = ĝ (n) + βZA exp
(
− e2 (n)

2σ2

)
e (n) x (n)− θZAsgn [ĝ (n)] , (11)

where θZA is a zero attracting ability controlling parameter that is used for giving a tradeoff between the
estimation error and l1-norm constraint, and βZA is the step-size of the ZA-MCC algorithm. However,
we noticed that the zero attraction term −θZAsgn [ĝ (n)] uniformly attracts all the channel coefficients
to zero. Therefore, its performance might be degraded when it deals with less sparse channels.
Then, a reweighting factor is introduced into the zero attraction term −θZAsgn [ĝ (n)], resulting in a
RZA-MCC algorithm whose updating equation is [33]

ĝ (n + 1) = ĝ (n) + βRZA exp
(
− e2 (n)

2σ2

)
e (n) x (n)− θRZA

sgn [ĝ (n)]
1 + ε |ĝ (n)| , (12)

where ε, θRZA and βRZA are the reweighting controlling factor, zero attraction controlling parameter and
the RZA-MCC’s step-size, respectively. It can be seen from the upgrading equation that −θRZA

sgn[ĝ(n)]
1+ε|ĝ(n)|

acts as the zero attractor which exerts different zero attraction to the channel coefficients that depends
on their magnitudes.

Figure 1. Structure diagram of sparse channel estimation.
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3. The Proposed Group-Constrained Sparse MCC Algorithms

From the above discussion, we found that the zero attractor −θZAsgn [ĝ (n)] is realized by
incorporating the l1-norm penalty in the MCC’s cost function, and it can speed up the convergence
and reduce the channel estimation error. Moreover, the l0-norm-constrained MCC algorithm can
further improve the performance since the l0-norm can count the number of the non-zero channel
coefficients. However, the complexity is significantly increased due to the calculation of the l0-norm
approximation and its constraint. In order to fully exploit the sparsity property of the multi-path
channel, we propose a group-constrained MCC algorithm by exerting the l0-norm penalty on the group
of large channel coefficients and forcing the l1-norm penalty on the group of small channel coefficients.
Herein, a non-uniform norm is used to split the non-uniform penalized algorithms into a large group
and a small group, and the non-uniform norm is defined as [37,38]

‖ĝ(n)‖p
p =

M

∑
i=1
|ĝi(n)|p, 0 ≤ p ≤ 1, (13)

which is a l0-norm when p→ 0
lim
p→0
‖ĝ(n)‖p

p = ‖ĝ(n)‖0, (14)

and it is a l1-norm when p is infinitely close to 1

lim
p→1
‖ĝ(n)‖p

p = ‖ĝ(n)‖1. (15)

Herein, the uniform-norm given in Equation (13) is a variable norm which is controlled by the
parameter p. When p is very close to zero, the proposed norm in Equation (13) can be regarded as a
l0-norm. As for p = 1, the norm in Equation (13) is the l1-norm. Then, the constructed non-uniform
norm in Equation (13) is introduced into the MCC’s cost function to devise our proposed GC-MCC
algorithm, and GC-MCC is to solve

min 1
2‖ĝ (n + 1)− ĝ (n)‖2 + θGC ‖ĝ(n + 1)‖p

p,M

subject to ê (n) =
[
1− α exp

(
− e2(n)

2σ2

)]
e (n)

, (16)

where ‖ĝ(n + 1)‖p
p,M is a kind of ‖ĝ(n + 1)‖p

p, which uses a different value of p for each channel
coefficient at M-th position in the sparse channels, here with the introduction of p = [p1, p2, ..., pM],
and θGC is a regularization parameter. Then, the cost function of the GC-MCC algorithm is

JGC (n) =
1
2
‖ĝ (n + 1)− ĝ (n)‖2 + θGC ‖ĝ(n + 1)‖p

p,M + λGC

(
ê (n)−

[
1− α exp

(
− e2 (n)

2σ2

)]
e (n)

)
. (17)

In Equation (17), λGC is a multiplier. Based on the LMM, the gradients of JGC (n) with respect to
ĝ (n + 1) and λGC are

∂JGC (n)
∂ĝ (n + 1)

= 0, (18)

and
∂JGC (n)

∂λGC
= 0. (19)

Then, we can get

ĝi (n + 1) = ĝi (n)− θGC
pi · sgn [ĝi (n + 1)]

|ĝi (n + 1)|1−pi
+ λGCxi (n) , (20)
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and

ê (n) =
[

1− α exp
(
− e2 (n)

2σ2

)]
e (n) , (21)

where pi is the i-th element of matrix p. From Equations (20) and (21), we can obtain λGC

λGC =
α exp

(
− e2(n)

2σ2

)
e (n) + θGC

pi ·sgn[ĝi(n+1)]
|ĝi(n+1)|1−pi

xT
i (n)

‖xi (n)‖2 . (22)

Substituting λGC into Equation (20), the updated equation of the proposed GC-MCC algorithm is

ĝi (n + 1) = ĝi (n) + βGC exp
(
− e2(n)

2σ2

)
e (n) xi (n)− θGC

pi ·sgn[ĝi(n+1)]
|ĝi(n+1)|1−pi

(
1− xi(n)xT

i (n)
‖xi(n)‖2

)
(23)

where βGC is a step-size for GC-MCC algorithm. It can be seen from Equation (23), the matrix
p = [p1, p2, · · · , pM] can assign different pi to each channel coefficients. To better exert the pi to the
channel coefficients, the channel coefficients are classified according to their magnitudes. From the
measurement and the previous investigations of the sparse channels [2,6,7,10–16,21–24,26,27], we
found that few channel coefficients are active non-zero ones, while most of the channel coefficients are
inactive zero or near-zero ones. Thus, we propose a threshold to categorize the channel coefficients
into two groups. Herein, a classify criterion which is used as the threshold is proposed based on the
absolute value expectation of ĝ (n) and it is defined as

y(n) = E [|ĝi(n)|] , ∀1 ≤ i < M. (24)

Then, we categorize the channel coefficients into two groups in terms of the criterion in (24).
When the channel coefficients ĝi(n) > y(n), the channel coefficients belong to the “large” group,
while ĝi(n) < y(n), the channel coefficients are located in the “small” group. In fact, a threshold is
proposed to split the variable norm into the “large” group and the “small” group, where the threshold
is implemented using the mean of the estimated channel coefficients. If the channel coefficients are
greater than this threshold, they are the “large” group. Otherwise, the channel coefficients belong to
the “small” group when the channel coefficients are smaller than this threshold. For the “large” group,
l0-norm penalty is used to count the number of active channel coefficients, and l1-norm penalty is
adopted to uniformly attract inactive coefficients to zero for the “small” group. To effectively integrate
these two groups into (23), we define [37]

fi =
sgn [y(n)− |ĝi(n)|] + 1

2
, ∀1 ≤ i < M. (25)

Therefore, fi is set to be 0 when ĝi(n) > y(n), while fi will be 1 for ĝi(n) < y(n). Finally, the
updated equation of the GC-MCC is

ĝi (n + 1) = ĝi (n) + βGC exp
(
− e2 (n)

2σ2

)
e (n) xi (n)− θGC fisgn [ĝi (n + 1)]

(
1−

xi (n) xT
i (n)

‖xi (n)‖2

)
. (26)

In Equation (26), xi(n)xT
i (n)

‖xi(n)‖2 is far less than 1, so it can be ignored. Thus, the updating recursion of

the GC-MCC algorithm is rewritten as

ĝ (n + 1) = ĝ (n) + βGC exp
(
− e2 (n)

2σ2

)
e (n) x (n)− θGCFsgn [ĝ (n)] . (27)

The last term −θGCFsgn [ĝ (n)] is the proposed zero attraction term which exerts different zero
attracting on the two grouped channel coefficients. We can see that both the l0-norm and l1-norm
constraints are implemented on the channel coefficients in the GC-MCC algorithm, which is different
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from the ZA-MCC and l0-MCC algorithms. For the GC-MCC channel estimation, our proposed zero
attractor can distinguish the value of coefficients and categorize the channel coefficients into two
groups. The proposed GC-MCC algorithm can achieve small steady-state error and fast convergence
due to the term −θGCFsgn [ĝ (n)].

To further enhance the performance of our proposed GC-MCC algorithm, a reweighting factor
is introduced into the GC-MCC’s update equation to implement the RGC-MCC algorithm, which is
similar to the RZA-LMS algorithm. Thus, the RGC-MCC’s updating equation is

ĝ (n + 1) = ĝ (n) + βRGC exp
(
− e2 (n)

2σ2

)
e (n) x (n)− θRGCF

sgn [ĝ (n)]
1 + ε1 |ĝ (n)| , (28)

where θRGC is the zero attraction controlling parameter, ε1 is the reweighting controlling parameter
and βRGC is a step-size of the RGC-MCC algorithm.

With the help of −θRGCF sgn[ĝ(n)]
1+ε1|ĝ(n)|

, our proposed RGC-MCC algorithm can assign well different
values pi to channel coefficients according to the magnitudes of the channel coefficients. Moreover,
we can properly select the value of ε1 to obtain a better channel estimation performance. In fact,
the proposed GC-MCC and RZA-GC-MCC algorithms are the extension of the ZA-MCC and RZA-MCC
algorithms. However, the proposed GC-MCC and RGC-MCC are different with the proposed ZA-MCC,
RZA-MCC and l0-norm penalized MCC algorithms. Our contributions are summarized herein.
The GC-MCC algorithm is realized by incorporating a variable norm in Equation (13) into the cost
function of the traditional MCC algorithm, where the variable norm is controlled by the parameter p.
To distinguish the large channel coefficients and the small channel coefficients, a mean of the estimated
channel coefficients shown in Equation (24) is proposed to provide a threshold. Then, the variable
norm is split into two groups by comparing the channel coefficients with the threshold. As a result,
a large group is given when ĝi(n) > y(n), while a small group is created when ĝi(n) < y(n). For the
channel coefficients in the large group, we use a l0-norm to count the number of the non-zero channel
coefficients. As for the channel coefficients in the small group, l1-norm penalty is used for attracting
the zero or near-zero channel coefficients to zero quickly. It is found that a norm penalty matrix with
values in its diagonal is proposed in Equation (25) to implement the l0 and l1 in the GC-MCC algorithm,
which is also different with the conventional l0- and l1- norm constraints. Then, we use a reweighting
factor to enhance the zero attracting ability in the GC-MCC algorithm to generate the RGC-MCC
algorithm. Both the GC-MCC and RGC-MCC algorithms are developed to exploit well the inherent
sparseness properties of the multi-path channels due to the expected zero-attraction terms in their
iterations. The channel estimation behaviors will be discussed over sparse channels in mixed Gaussian
noise environments in the next section.

4. Computational Simulations and Discussion of Results

In this section, we will construct several experiments to verify the GC- and RGC-MCC’s channel
estimation performance. The steady-state channel estimation error and the convergence are considered
to give an evaluation of the proposed GC- and RGC-MCC algorithms. The results are also compared
with the MCC, NMCC, ZA-, RZA- and SPF-MCC algorithms. From the discussion, we know that the
CIM and SPF are l0-norm approximations. Thus, we first set up an experiment to discuss the zero
attraction ability of the CIM, SPF and l0-norm approximation. The zero attraction ability of these
l0-norm approximations is shown in Figure 2. The related parameters in these l0-norm approximations
are τ1, σ1 and τ. It can be seen that the zero attraction ability of the SPF is close to the l0-norm for larger
τ1, while the zero attraction ability of the CIM approximates to l0-norm when σ1 is small. From these
results, we found that the SPF can give an accurate approximation and can provide a better zero
attraction when τ1 = τ = 5 and σ1 = 0.05. For τ1 = τ = 1 and σ1 = 0.08, the zero attraction ability of SPF
is weak. However, it can give an adaption for a wider range of sparse channel estimation applications.
It can be concluded that the zero attraction ability of the zero attractor produced by SPF is superior.
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Thus, we will choose SPF-MCC to give a comparison with our proposed GC-MCC and RGC-MCC
algorithms in terms of the steady-state error and convergence.
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Figure 2. Zero attraction ability of the zero attracting term produced by soft parameter function (SPF),
l0-norm and correntropy-induced metric (CIM) penalties.

All of the experiments are constructed under a mix-Gaussian noise environment, and the mixed
noise model has been used in the previous study and is a better description of the real wireless
communication environment. The mixed noise model is given by [34,36]

(1− χ) N
(

µ1, ν2
1

)
+ χN

(
µ2, ν2

2

)
, (29)

where N
(
µi, ν2

i
)
(i = 1, 2) represent the Gaussian distribution, and parameters µi, ν2

i and χ

are the means, variances and mixing parameter, respectively. In all the experiments, we set(
µ1, µ2, ν2

1 , ν2
2 , χ
)
= (0, 0, 0.05, 20, 0.05). The estimated performance of our proposed GC-MCC and

RGC-MCC algorithms is given by mean square deviation (MSD), which is defined as

MSD (ĝ (n)) = E
[
‖g− ĝ (n)‖2

]
. (30)

For all the simulations, 300 Monte Carlo runs are performed for obtaining each point in all
mentioned algorithms. Herein, the total length of the unknown channel is M = 16 and the number
of the non-zero channel coefficients is K. The signal-to-noise ratio (SNR) is 30 dB. Those non-zero
channel coefficients are randomly distributed within the length of the channel. Since the regularization
parameters have an important effect on the performance of the proposed GC-MCC and RGC-MCC
algorithms, the effects of regularization parameters θGC, θRGC and βGC/RGC are investigated and given
in Figures 3–5.
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Figure 3. Effects of θGC on the mean square deviation (MSD) of the proposed GC-MCC algorithm.
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Figure 4. Effects of θRGC on the MSD of the proposed RGC-MCC algorithm.

In this experiment, the step size of the GC-MCC and RGC-MCC is 0.026, ε1 = 5 and K = 1.
The influence of θGC on the MSDs of the GC-MCC algorithm is shown in Figure 3, while the influence
of θRGC on the MSDs of the RGC-MCC algorithm is shown in Figure 4. From Figures 3 and 4,
the steady-state error with respect to the MSDs of the GC-MCC is reduced with the decrease of the θGC
ranging from θGC = 3× 10−3 to θGC = 3× 10−4. Then, the steady-state error of the GC-MCC algorithm
becomes worse when the θGC continues to reduce. When θGC = 3× 10−4, the GC-MCC algorithm
achieves the smallest steady-state MSD. As for the RGC-MCC algorithm, the MSD is reduced when
θRGC ranges from θRGC = 7× 10−3 to θRGC = 7× 10−4. Then, the MSD of the RGC-MCC algorithm
is increased with a continuous decrement of θRGC. The RGC-MCC algorithm achieves the smallest
steady-state MSD for θRGC = 7× 10−4. Therefore, we take θGC = 3× 10−4 and θRGC = 7× 10−4 into
consideration to ensure the best channel estimation performance of the proposed GC-MCC and
RGC-MCC algorithms. Next, the effect of the β that includes βGC and βRGC on the proposed GC-MCC
and RGC-MCC algorithms is given in Figure 5. It can be seen that the MSD of the RGC-MCC is
worse than the GC-MCC when the step size is less than 0.013, while the RGC-MCC is better than the
GC-MCC when β > 0.013. It is noted that the steady-state errors of the GC-MCC and RGC-MCC
algorithms become worse as the parameter β increases. Therefore, we should carefully choose the
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step size and the zero attraction controlling parameters to achieve a good estimation performance
for handling sparse channel estimations. The effects of the reweighting controlling parameter are
given in Figure 6. It can be seen that the reweighting controlling parameter mainly affects the small
channel coefficients when ε1 increases from 4 to 25. It means that the reweighted zero attractor mainly
exerts effects on the magnitudes which are comparable to 1/ε1, while little shrinkage is penalized on
the channel coefficients that are far greater than 1/ε1. In the RGC-MCC algorithm, the reweighting
controlling parameter exerts strong zero attracting on the small group to provide a fast convergence.
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Figure 5. MSD performance of the proposed GC-MCC and RGC-MCC algorithms with different β.
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Figure 6. Effects of ε1 on the MSD of the proposed GC-MCC and RGC-MCC algorithm.

As we know, adaptive filters have been extensively investigated and applied for channel estimation,
and have been used in real time systems. Moreover, adaptive filters algorithms have been further
developed for sparse channel estimations. Similar to the previous investigations [2,6,7,10–16,21–24,26,27],
the proposed GC-MCC and RGC-MCC algorithms are investigated and their performance is compared
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with the SPF-MCC algorithm. In the following experiment, the proposed GC-MCC and RGC-MCC
algorithms are investigated in different SNR environments. In this experiment, the step size of the
GC-MCC and RGC-MCC algorithms is 0.026, and θGC = 3× 10−4 and θRGC = 7× 10−4. The MSD
performance at different SNRs is shown in Figure 7. It can be seen that the performance of the proposed
GC-MCC and RGC-MCC algorithms is improved with the increment of SNR. It is worth noting that
the performance of the RGC-MCC is always better than that of the GC-MCC at the same SNR. This is
because the reweighting factor provides a selective zero attracting in the RGC-MCC algorithm.
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Figure 7. Estimation behavior of the proposed GC-MCC and RGC-MCC algorithms with different SNR.

Next, the convergence of the GC-MCC and RGC-MCC algorithms is studied and it is compared with
the MCC, NMCC, ZA-MCC, RZA-MCC and SPF-MCC algorithms at SNR = 30 dB. The corresponding
simulation parameters for the mentioned algorithms are βMCC = 0.0052, βNMCC = 0.085, βZA = 0.01,
θZA = 3× 10−5, βRZA = 0.015, θRZA = 7× 10−5, βSPF = 0.016, θSPF = 2.7× 10−5, τ1 = 100, βGC = 0.026,
θGC = 3× 10−4, βRGC = 0.032, θRGC = 7× 10−4, ε1 = 5 and σ = 1000. Herein, βNMCC is the step
size of the NMCC algorithm. The convergence of the proposed GC-MCC and RGC-MCC algorithms
is given in Figure 8. It can be seen that the convergence of the proposed GC-MCC and RGC-MCC
algorithms is better than that of the MCC, NMCC, ZA-MCC, RZA-MCC and SPF-MCC algorithms at
the same MSD level. Moreover, our RGC-MCC has the fastest convergence speed rate.

Next, the channel estimation performance of our presented GC-MCC and RGC-MCC algorithms is
analyzed under a different sparsity level K that is also the number of the non-zero channel coefficients
of the sparse channel. Firstly, only one non-zero channel coefficient is randomly distributed within
the unknown sparse channel. This means that the sparsity level is K = 1. In this experiment, the
related parameters are the following βMCC = 0.03, βNMCC = 0.4, βZA = βRZA = 0.03, θZA = 8× 10−5,
θRZA = 2× 10−4, βSPF = 0.03, θSPF = 3× 10−5, τ1 = 100, βGC = βRGC = 0.026, θGC = 3× 10−4,
θRGC = 7× 10−4 and ε1 = 5. The MSD performance of the GC-MCC and RGC-MCC algorithms
is demonstrated in Figure 9 for K = 1. It can be seen in Figure 9 that the steady-state MSD of our
presented GC-MCC and RGC-MCC algorithms is lower than that of the mentioned MCC algorithms
with the same convergence speed. The channel estimations with respect to the MSD for K = 3 and
K = 5 are given in Figures 10 and 11, respectively. When the sparsity level increases from K = 3
to K = 5, the MSD floor is increased in comparison with K = 1 because the sparseness is reduced.
However, it is worth noting that our proposed GC-MCC and RGC-MCC algorithms still outperform
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the existing MCC and its sparse forms. In addition, the RGC-MCC always achieves the lowest MSD
for different K.
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Figure 8. Convergence of the proposed GC-MCC and RGC-MCC algorithms.
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Figure 9. MSD performance of the proposed GC-MCC and RGC-MCC algorithms for K = 1.
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Figure 10. MSD performance of the proposed GC-MCC and RGC-MCC algorithms for K = 3.
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Figure 11. MSD performance of the proposed GC-MCC and RGC-MCC algorithms for K = 5.

Then, a realistic IEEE 802.15.4a channel model, which can be downloaded from [39], that works
in CM1 mode is employed to discuss the effectiveness of the proposed GC-MCC and RGC-MCC
algorithms. The simulation parameters are βMCC = 0.002, βNMCC = 0.8, βZA = 0.0011, βRZA = 0.001,
θZA = 6 × 10−6, θRZA = 9 × 10−5, θSPF = 8 × 10−6, τ1 = 100, βSPF = βGC = βRGC = 0.001,
θGC = 5× 10−4, θRGC = 3× 10−4 and ε1 = 5. The simulation result is given in Figure 12. It is found
that the proposed GC-MCC and RGC-MCC algorithms achieve better performance with respect to the
MSD, which means that the proposed GC-MCC and RGC-MCC algorithms have small MSDs.

At last, our GC-MCC and RGC-MCC algorithms are used for estimating an echo channel to further
discuss their channel estimation performance. The sparseness measurement of the echo channel is
defined as ϑ12 =

M
M−
√

M

(
1− ‖g‖1

/√
M‖g‖2

)
. In this experiment, ϑ12 = 0.8222 and ϑ12 = 0.7362 are
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used for discussing the estimation performance for the first 8000 iterations and after 8000 iterations,
respectively. For the echo channel, its total length is 256 and there are 16 non-zero coefficients in the
total echo channel. The simulation parameters are βMCC = 0 .0055, βNMCC = 1.3, βZA = βRZA = 0.0055,
θZA = 4× 10−6, θRZA = 1× 10−5, βSPF = 0.0055, θSPF = 1× 10−5, τ1 = 5, βGC = 0.0045, βRGC = 0.004,
θGC = 3× 10−5, θRGC = 3× 10−5 and ε1 = 5. The estimation behavior of the proposed GC-MCC and
RGC-MCC algorithms for the echo channel is depicted in Figure 13. From Figure 13, we found that
our GC-MCC and RGC-MCC algorithms outperform the MCC, NMCC and spare MCC algorithms
with respect to both the steady-state MSD and convergence. Although the sparsity reduces from
ϑ12 = 0.8222 to ϑ12 = 0.7362, our GC-MCC and RGC-MCC algorithms are still superior to the other
MCC algorithms, which means that our GC-MCC and RGC-MCC algorithms have little effect on the
sparsity under the mixture-noised sparse channel.

Based on the parameter analysis and performance investigation of our proposed GC-MCC and
RGC-MCC algorithms, we can summarize that the proposed RGC-MCC algorithm can provide the
fastest convergence speed rate in comparison with all the mentioned algorithms when they converge
to the same steady-state MSD level. Also, the proposed RGC-MCC algorithm provides the lowest
steady-state MSD when all the MCC algorithms have the same convergence speed rate. In addition,
the proposed GC- and PGC-MCC algorithms outperform the MCC, NMCC and the related sparse
MCC algorithms. This is because the proposed GC- and RGC-MCC algorithms exert the l0-norm
penalty on the large group to seek the non-zero channel coefficients quickly; then, they provide l1-norm
constraint on the small group to attract the zero or near-zero channel coefficients to zero quickly.
Thus, both the GC- and RGC-MCC can provide a faster convergence and a lower steady-state MSD.
However, both the GC- and RGC-MCC increase the computational complexity by calculating the group
matrix. Additionally, the complexity of the RGC-MCC algorithm also comes from the computation
of the reweighting factor. However, the complexity of the GC-MCC and RGC-MCC algorithms is
comparable with the previously reported sparse MCC algorithms. According to the early published
articles, we believe that the proposed GC-MCC and RGC-MCC algorithms can be used in a real system.
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Figure 12. Estimation behavior of the proposed GC-MCC and RGC-MCC algorithms for estimating a
IEEE 802.15.4a channel in CM1 mode.
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Figure 13. Estimation behavior of the proposed GC-MCC and RGC-MCC algorithms for an echo channel.

5. Conclusions

In this paper, a GC-MCC algorithm and a RGC-MCC algorithm have been proposed and they
have been derived mathematically in detail. These two algorithms were implemented by exerting a
non-uniform norm on the MCC’s cost function, and then, the non-uniform norm was split into l0-norm
and l1-norm to give penalties on the large and small groups. The channel estimation behaviors of both
the GC-MCC and RGC-MCC algorithms were investigated over a sparse channel and an echo channel
under the mixture noise environment. The simulation results from these two channels demonstrated
that the proposed GC-MCC and RGC-MCC algorithms can provide faster convergence and smaller
MSD for different sparsity levels. Especially, the RGC-MCC algorithm achieves the fastest convergence
and smallest MSD.
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Appendix A

The soft parameter function (SPF) constraint MCC (SPF-MCC) algorithm.
In [34], a SPF was given by

S (ĝ (n + 1)) =
(

1 + τ−1
1

) (
1− e−τ1|ĝ(n+1)|

)
, (A1)
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where τ1 is greater than 0. The performance of the SPF is shown in Figure A1. It is noted that the SPF
approximates to be a l0-norm when τ1 is larger. In the SPF-MCC algorithm, the SPF is integrated into
the MCC’s cost function to utilize the sparsity of the channels. The cost function of the SPF-MCC is

J4 (n) =
1
2
‖ĝ (n + 1)− ĝ (n)‖2 + θSPFS (ĝ (n + 1)) + λSPF

(
ê (n)−

[
1− α exp

(
− e2 (n)

2σ2

)]
e (n)

)
. (A2)

By using LMM, we can obtain the updating equation of the SPF-MCC, and it is written as

ĝ (n + 1) = ĝ (n) + βSPF exp
(
− e2 (n)

2σ2

)
e (n) x (n)− θSPF (1 + τ1) e−τ1|ĝ(n)|sgn (ĝ (n)) . (A3)

-2 -1
0

0.5

1

1.5

2

=0.001

=1

=5

=20

=100

0 1 2
( )ˆ 1n+g

(
)

(
)

ˆ
1

S
n+

g

1τ

1τ

1τ

1τ

1τ

Figure A1. Features of the soft parameter function with difference τ1.

Herein, βSPF is the step-size of the SPF-MCC algorithm, and −θSPF (1 + τ1) e−τ1|ĝ(n)|sgn (ĝ (n))
is the desired zero attraction term, which is flexible by choosing τ1 to exploit the sparsity of the
sparse channels.
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