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Abstract: This article describes the impact of slip conditions on nanofluid flow through a stretching
sheet. Nanofluids are very helpful to enhance the convective heat transfer in a boundary layer flow.
Prandtl number also play a major role in controlling the thermal and momentum boundary layers.
For this purpose, we have considered a model for effective Prandtl number which is borrowed by
means of experimental analysis on a nano boundary layer, steady, two-dimensional incompressible
flow through a stretching sheet. We have considered γAl2O3-H2O and Al2O3-C2H6O2 nanoparticles
for the governing flow problem. An entropy generation analysis is also presented with the help
of the second law of thermodynamics. A numerical technique known as Successive Taylor Series
Linearization Method (STSLM) is used to solve the obtained governing nonlinear boundary layer
equations. The numerical and graphical results are discussed for two cases i.e., (i) effective Prandtl
number and (ii) without effective Prandtl number. From graphical results, it is observed that the
velocity profile and temperature profile increases in the absence of effective Prandtl number while
both expressions become larger in the presence of Prandtl number. Further, numerical comparison
has been presented with previously published results to validate the current methodology and results.
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1. Introduction

Motivated scientists and researchers have identified the present age as an industrial and
technological era. Thus, several theoretical and experimental studies have been undertaken to enhance
the performance of industrial production methods. Researchers have identified that heat transfer
is essential for the excellence of large scale processes. Usually, thermal characteristics are attained
through conventional fluids but limited heat transfer capabilities have imposed a restriction on their
utilization. Therefore, engineers thought that improved heat transfer routines should be implemented
in order to achieve the desired outputs. For this purpose, they have performed several hypothetical
and thought-provoking studies. Finally, they came up with the notion that the thermal ability of a
carrier fluid can be improved with the escalation of its thermal conductance. Consequently, the idea
of introducing particles into the basic fluid to provide a better transfer medium was introduced.
The dimensions of these supplementary nanoparticles have attracted substantial interest due to
their distinctive physical and chemical features. Now, it is well-established fact that the inclusion
of nanomaterials enhances the thermal performance and conductivity of ordinary fluids. Thus,
the dynamics of convective heat transport phenomenon via nanoparticles has grasped the focus of
enthusiastic workers due to their incredible and extensive demand.
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Choi [1] was the first to mention the idea of nanofluids. He defined nano liquids as an engineered
dispersion of nanoparticles in a carrier fluid. He proved through experiments that the thermal
capability of the host liquid is boosted with the addition of these small-sized materials. Masuda et al. [2]
estimated the disparities in both thermal conductivity and the viscosity of conventional fluids by the
dispersal of ultrafine particles in the host fluid. He reconfirmed that thermal transport in ordinary fluids
increases tremendously with the suspension of ultrafine structures. Buongiorno [3] did seminal work
on nanofluids by presenting a speculative model in order to interrogate the thermal features of carrier
fluids. He contemplated that the improvement in conductance of regular fluid is due to the low volume
fraction and small size of added nanoelements. Actually, nanotechnology is of great significance in
numerous fields, including transportation, metallurgical and chemical devices, manufacturing of
microscale objects, generation of power, cancer therapy, etc. The investigation on nanofluid flow over
linearly stretched sheets was primarily initiated by Khan and Pop [4]. They numerically investigated
the impact of the thermophoretic force and Brownian movement of nanostructures on thermal
conductivity of the fluid. MHD stagnation boundary layer flow with collaborated effects of convective
mode of heating, Brownian movement and thermophoretic force overstretched sheet were probed by
Makinde et al. [5]. Nadeem et al. [6] performed numerical analysis of the magnetohydrodynamic flow
of Maxwell fluids past a stretching sheet in the presence of nanoparticles. Malik et al. [7] performed a
computational study to explore the effects of nanoparticles on an Eyring-Powel fluid model. Raju and
Sandeep [8] addressed thermal and concentration transport due to Casson nanofluids in a rotating
frame. Saleem and Nadeem [9] performed a comprehensive homotopy analysis to anticipate the
impact of higher grade nanofluids over a rotatory cone. Raju et al. [10] conducted a comparative study
to evaluate the fabulous enhancement in host fluid properties considering various types of metallic
nanostructures. He also depicted the collaborative effects of temperature-dependent viscosity. A few
recent studies exploring the the characteristics of nanofluids may be found in [11–15].

New resources to improve the heat transfer properties are becoming very important in many
industrial applications. The study of heat transfer is not limited to an industrial application but also
in much other applications such as wire drawing, metal spinning aerodynamics extrusion of plastic
sheets and hot rolling. Utilization of solid nanoscale particles in working liquids is considered one of
the most advanced techniques for improving their heat transfer characteristics. Several investigations
have been made the effect of heat transfer in a nanofluid. Radiative heat transfer of nanofluids with
variant surface heat flux and the effects of chemically reacting species were demonstrated by Zhang
et al. [16]. Nield and Kuznetsov [17] capitalized on the Buongiorno model to adumbrate convective
heat transfer induced by vertically stretched surfaces immersed in a Darcy medium. They reported that
the strength of the heat transfer rate decreases by escalating the Brownian motion and thermophoresis
parameters. The collective heat and mass features over a permeable exponentially stretched surface
with second order slip were discussed by Rahman et al. [18]. Bhatti et al. [19] examined the numerical
simulation of fluid flow over a shrinking sheet with heat transfer. Moreover, some more investigations
of heat transfer with different geometries such as stretching sheet can be viewed in [20–24].

In 1996 Bejan [25] employed the second law of thermodynamics by means of entropy generation
minimization. He covered the entropy generation minimization, particularly in the field of storage,
heat transfer, thermal science and thermal power conversion. The thermodynamics approach plays
a vital role in optimizing thermal engineering devices for higher energy efficiency. For this purpose,
the minimization of entropy generation is used to determine the level of the available irreversibility in a
process. These discussions clearly indicate that second law of thermodynamics is more reliable than the
first law to determine the efficiency in the heat transfer system. Much more attention needs to be paid
to optimize the heat transfer in electronic devices and engineering systems. Abbas et al. [26] studied the
minimization of entropy generation of the peristaltic flow of nanofluid by using an analytical technique.
Entropy generation of a Casson nanofluid over a stretching sheet has been analyzed by Abolbashari
et al. [27]. For further works about entropy generation of nanofluids, one can refer to [28–32].
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At present, not much work has been mentioned about entropy generation of nanofluids over
a stretching sheet in the presence of slip effects. With all this in mind, the aim of the current work was
to analyze the impact of entropy generation in the presence of Prandtl number and slip conditions
through a stretching sheet.

2. Mathematical Formulation

Let us consider a two-dimensional steady irrotational, incompressible γAl2O3-H2O and
Al2O3-C2H6O2 nanofluid flow through a vertical stretching surface coinciding with a plane at y = 0.
To derive the governing equations, Cartesian coordinates system has been taken with the x-axis
considered as vertically upward. The nanofluid flow occurs due to a stretching of a sheet caused
by a pair of opposite and equal forces along the x-axis. The stretching sheet velocity can be written
as ũw = ax and the temperature at a stretching sheet is T̃w = bx + T̃∞. Where T̃∞ is the ambient
temperature, a and b are constants. The governing equations for the heat transfer for a nanofluid and
steady boundary layer convective flow can be described as [19]:

∂v̌
∂y

+
∂ǔ
∂x

= 0 (1)

(
v̌

∂ǔ
∂y

+ ǔ
∂ǔ
∂x

)
ρn f =

(
Ť − T∞

)
g[ρβ]n f + µn f

∂2ǔ
∂y2 (2)

Their respective boundary conditions are given by:

Ť = Ťw(x), ǔ = ǔw + κ
∂ǔ
∂y̌

, y̌ = 0, as Ť → Ť∞, y→ ∞ ǔ→ 0, (3)

3. Thermophysical Properties of γAl2O3-H2O and Al2O3-C2H6O2 Nanofluids

The heat capacitance
(
ρCp

)
n f , the effective dynamic viscosity ρn f and the coefficient of thermal

expansion (ρβ)n f of a nanofluid are described as:

ρn f = ρ f (1− ϕ) + ρsφ,(
ρCp

)
n f = φ

(
ρCp

)
s +

(
ρCp

)
f ·1− φ

(
ρCp

)
f , (4)

(ρβ)n f = φ(ρβ)s + (ρβ) f − φ(ρβ) f

where, the nanofluid volume fraction in solid form is denoted as φ.

(i) Dynamic viscosity model:

µn f

µ f
= 123φ2 + 7.3φ + 1, for γAl2O3-H2O (5)

µn f

µ f
= 306φ2 − 0.19φ + 1, for γAl2O3-C2H6O2 (6)

(ii) Effective thermal conductivity model:

κn f

κ f
= [φ(4.97φ + 2.72) + 1], for γAl2O3-H2O (7)

kn f

k f
= 28.905φ2 + 2.8273φ + 1, for γAl2O3-C2H6O2 (8)
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(iii) Effective Prandtl number model:

Prn f

Pr f
= 82.1φ2 + 3.9φ + 1, for γAl2O3-H2O (9)

Prn f

Pr f
= 254.3φ2 − 3φ + 1, for γAl2O3-C2H6O2 (10)

To compute the specific heat for nanofluids and the density, Equation (4) is derived for this
purpose. In Equations (5) and (6), the expression for a dynamic viscosity of nanofluid is obtained
by means of least-squares curve fitting of a few scarce experimental results that can be viewed for
considered mixtures [33,34]. Equations (7) and (8) are presented from a model presented by Hamilton
and Crosser [35], associated the nanofluids thermal conductivity, however, the similar case also exists
for γAl2O3 nanofluids [36]. Equations (9) and (10) describe the effective Prandtl number for γAl2O3

nanofluids which are obtained with the help of a curve fitting by means of regression laws [37].
By introducing the similarity variables as:

ξ =

√
a

ν f
y, ũ = ax f ′(ζ), ṽ = −√aν f f (ξ), θ(ζ) =

T̃ − T̃∞

T̃w − T̃∞
. (11)

Using these transformations in Equations (2) and (3), we get:

(
123φ2 + 7.3φ + 1

)
f ′′′ +

(
f f ′′ − f ′2

)(
1− φ + φ

ρs
ρ f

)
+ λθ

(
1− φ + φ

(ρβ)s
(ρβ) f

)
= 0, for γAl2O3-H2O (12)

(
306φ2 − 0.19φ + 1

)
f ′′′ +

(
f f ′′ − f ′2

)(
1− φ + φ

ρs
ρ f

)
+ λθ

(
1− φ + φ

(ρβ)s
(ρβ) f

)
= 0, for γAl2O3-C2H6O2 (13)

θ′′ + Θ
(

f θ′ − f ′θ
)
= 0, (14)

where:

Θ =
Pr f

(
1− φ + φ

ρs
ρ f

)(
82.1φ2 + 3.9φ + 1

)
123φ2 + 7.3φ + 1

, (15)

Θ =
Pr f

(
1− φ + φ

ρs
ρ f

)(
254.3φ2 − 3φ + 1

)
306φ2 − 0.19φ + 1

, (16)

Θ =
Pr f

(
1− φ + φ

ρs
ρ f

)
4.97φ2 + 2.72φ + 1

, (17)

Θ =
Pr f

(
1− φ + φ

ρs
ρ f

)
28.905φ2 + 2.8273φ + 1

, (18)

and λ = gβ f b/a2 is a mixed convection parameter.
The new form of the boundary conditions as:

f ′(0) = β f ′(0) + 1, f ′(∞) = 0, θ(∞) = 0, θ(0) = 1, f (0) = 0 (19)

where slip parameter β = κ
√

a√v f
.

It is worth mentioning that from Equations (15) and (16) the effective Prandtl number for
γAl2O3-H2O and γAl2O3-C2H6O2 respectively, can be deduced. Similarly, the effective Prandtl
number is mentioned in Equations (17) and (18) for γAl2O3-H2O and γAl2O3-C2H6O2 respectively.
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4. Important Physical Quantities

In the current study, the two most important physical quantities for the flow problem are the
Nusselt number and skin friction coefficient which can be described as:

C f =
−2µn f

ρ f u2
w

(
∂ũ
∂y

)
y=0

(20)

the dimensionless form of the skin friction coefficient defined as:

C f
Re1/2

2
= −[φ(123φ + 7.3) + 1] f ′′′ (0), for γAl2O3-H2O (21)

1
2

Re1/2C f = −
(

306φ2 − 0.19φ + 1
)

f ′′ (0), for γAl2O3-C2H6O2 (22)

where Re = ũw(x)x
ν f

is a local Reynolds number and it depends upon the stretching velocity ũw(x) and

Re1/2
x is the skin friction coefficient. The Nusselt number is defined as:

Nux =
−xκn f(

Ťw − Ť∞
)(∂Ť

∂y

)
y=0

(23)

Using Equations (11) and (23), we have:

Re−1/2Nux = −
(

4.97φ2 + 2.72φ + 1
)

θ′(0), for γAl2O3-H2O (24)

Re−1/2Nux = −
(

28.905φ2 + 2.8273φ + 1
)

θ′(0), for γAl2O3-C2H6O2 (25)

5. Entropy Generation Analysis

The entropy generation for a nanofluid can be written as [38–43]:

NG =
κn f

Ť∞2

[(
∂Ť
∂x

)2

+

(
∂Ť
∂y

)2]
+

µn f

Ť∞

(
∂ǔ
∂y

)2
(26)

In the above volumetric rate of entropy generation equation, the first term represents entropy
generation caused by heat transfer along a finite temperature difference. However, the second
term reveals the entropy generation occurs due to viscous dissipation. The dimensionless form
of entropy generation Ng describes the ratio between the local volumetric entropy generation rate
NG to a characteristic rate of entropy generation

(
Ng
)

0. The characteristic entropy generation rate is
described as:

(Ng)0 =
κn f (∆Ť)2

x2Ť∞2
(27)

By taking the ratio of Equations (26) and (27) the entropy generation number can be written as:

Ng =
NG

(Ng)0
(28)

Using Equations (11) and (26), we get:

Ng = θ2(ξ) + θ′
2
(ξ)Re +

[
123φ2 + 7.3φ + 1

4.97φ2 + 2.97φ + 1

]
Br
Ω

Re f ′′ 2(ξ), for γAl2O3-H2O (29)

Ng = θ2(ξ) + θ′
2
(ξ)Re +

[
306φ20− 0.19φ + 1

28.905φ2 + 2.8273φ + 1

]
Br
Ω

Re f ′′ 2(ξ), for γAl2O3-C2H6O2 (30)
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where Ω is dimensionless temperature difference while Br indicates Brinkmann number, defined as:

Br =
µ f ûw

2

κ f ∆Ť
, Ω =

∆Ť
Ť∞

(31)

6. Numerical Method

To proceed with STSLM, let us consider:

f (ξ) = f I(ξ) +
I−1

∑
N=0

fN(ξ), (I = 1, 2, 3, . . .), (32)

In the above equation, f I is the unknown functions that can be solved iteratively using
the linearized governing equations and consider the f I{0 ≤ N ≤ I − 1} are known through the
previous iteration.

Equations (12) and (13) can be written in the following form:

L(linear part) + N(nonlinear part) = 0, (33)

where:

L
[(

123φ2 + 7.3φ + 1
)

f ′′′
]
+ N

[(
f f ′′ − f ′2

)(
1− φ + φ

ρs

ρ f

)
+ λθ

(
1− φ + φ

(ρβ)s
(ρβ) f

)]
= 0,

for γAl2O3-H2O

L
[(

306φ2 − 0.19φ + 1
)

f ′′′
]
+ N

[(
f f ′′ − f ′2

)(
1− φ + φ

ρs

ρ f

)
+ λθ

(
1− φ + φ

(ρβ)s
(ρβ) f

)]
= 0,

for γAl2O3-C2H6O2.
Using Equations (32), (12) and (13), we have:

A2,I−1 f I + A1,I−1 f ′ I + A0,I−1 f ′′ I + f ′′′ I = rI−1,

B2,I−1 f I + BI,I−1 f ′ I + B0,I−1 f ′′ I + f ′′′ I = rI−1,
(34)

along with their following boundary conditions in Equation (19). To obtain the subsequent solution for
fN(N ≥ 1), Equation (34) can be solved iteratively. For this purpose, the algorithm initiated with an
initial guess and with the help of initial approximation. The ith-order approximation solution for f (ξ)
can be written as:

f (ξ) ≈
I

∑
N=0

fN(ξ). (35)

To get the solution for Equation (35), Chebyshev spectral collocation method is used. It is worth to
mentioned that the right-hand side of Equation (34) for various values of i and by using the previous
iterations we can get the coefficient of each parameter. Chebyshev spectral collocation method consists
on the Chebyshev interpolating polynomials as given by:

CK(η) = cos
{

K
cos(ς)

}
(36)

The interval for the above Chebyshev interpolating polynomials are given in the region [−1, 1].
For the implications of this method and to convert the physical infinite region into the finite region
we have applied a domain truncation method from the infinite region to a finite region as i.e.,
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[0, ∞)→ [−1, 1] , and this way the targeted solution can be achieved in the interval [0, l] instead
of [0, ∞). This leads to the mapping:

2ς = l(η + 1), −1 ≤ η ≤ 1, (37)

It can be observed from Equation (37) that to invoke boundary conditions expressed at infinity,
we used the scaling parameter “l”. Gauss-Lobatto collocation points have applied to define the
Chebyshev nodes in [−1, 1]. With the help of interpolating polynomial at each collocation points and
truncated Chebyshev series, the inspection of the variable f I is examined. The series obtained from
truncated Chebyshev is given as:

f I(η) =
i

∑
K=0

f I(ηK)CK
(
ηJ
)
, J = 0, 1 . . . i, (38)

where CK is the Kth Chebyshev polynomials. The derivatives of the variables at collocation points can
be written as:

dp f I
dςp =

i

∑
K=0

Dp
KJ f I(ηK), J = 0, 1 . . . i, (39)

In the above Equation (39) the terms p and D are the order of differential matrix and Chebyshev
spectral differentiation matrix, respectively. Using Equations (38) and (39) into Equation (34) we have:

AI−1GI = φI−1. (40)

where:
AI−1 = (A1,i−1 −MI)D + D2 A0,I−1 + D3 + A2,i−1,

GI = [ f I(η0), f I(η1), . . . f I(ηi)]
t,

φ̆I−1 =
{

φ̆_(I − 1) (η_0), φ̆_(I − 1) (η_1), . . . ..φ̆_(I − 1) (η_i),
}t

In the above equations, the terms t, AK,I−1 and (i + 1)× (i + 1), represent the transpose, diagonal
matrix of size and identity matrix, respectively. The BC f I(ηi) = 0, is employed by removing the last
column and last row of AI−1 and by removing the last rows of GI and φI−1. Setting the last and first
rows of φ̆I−1 and GI to be zero. The solution for f I(η1), f I(η2), . . . , f I(ηi−1) are iteratively obtained
after solving:

GI = AI−1
−1φ̆I−1 (41)

It is worth to mentioned also that after obtaining the solution from Equation (41), we can apply
directly the Chebyshev pseudo-spectral method to Equation (14) we have:

ZA = B (42)

With their relevant boundary conditions:

θ(η0) = 0, θ(ηi) = 1, (43)

where Z is the set linear differential equations and A is the corresponding boundary conditions and B
is a vector of zeros. The obtained boundary conditions from Equation (43) is followed by the first and
last rows of B and Z, respectively.

7. Results and Discussion

This section describes the numerical and graphical results against all the governing parameters
involved in the present flow problem. To analyze the proposed technique named Successive Taylor
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Series Linearization Method (STSLM), we have presented a comparison with previously published
results and it is seen that the present results are in excellent agreement, which ensures the validity
of the present methodology. In this methodology, the appropriate number of collocation points is
considered as i = 70 while the suitable value of l is considered to be l = 20. It is analyzed that
the values of the parameters mentioned above are the best ever results as far as the current flow
is concerned, moreover, the present findings are in excellent agreement with the published results.
STSLM is computationally quite efficient and accurate in comparison with other numerical methods as
it provides precise results prominently when a governing problem is directly solved. Table 1 represents
the thermo-physical properties of alumina, ethylene glycol and water whereas Table 2 reveals the
numerical comparison of −θ′(0) with previously published results [44–46]. Table 3 shows skin friction
coefficient for various values of Prandtl number and the numerical results of Nusselt number and
mixed convection parameter. Figures 1–10 are sketched for different values of Prandtl number Pr slip
parameter β, volume fraction of nano particle φ, mixed convection parameter λ, Brinkmann number
Br and Reynolds number Re etc. against velocity profile f ′(ξ), temperature profile θ′(ξ) and entropy
profile Ng.

Table 1. Properties of thermo-physical alumina, water and ethylene glycol.

Cp (J/kg·K) β×10−5 (K−1) ρ (kg/m3) k (W/m·K)

Water (H2O) 4182 20.06 998.3 0.60
Ethylene glycol (C2H6O2) 2382 65 1116.6 0.249

Alumina (Al2O3) 765 0.85 3970 40

Table 2. Numerical comparison of −θ′(0) with previously published results.

λ Pr Ali [34] Grubka and Bobba [35] Ishak et al. [36] Present Results

0 0.72 0.8058 0.8086 0.8086 0.80883
1 1.0000 1.0000 1.0000 1.00001
3 1.9237 1.9144 1.9237 1.92368
7 3.0723 3.07225

10 3.7006 3.7207 3.7207 3.72067
100 12.2940 12.2941 12.29408

1 1 1.0873 1.08728
2 1.1423 1.14234
3 1.1853 1.18528

Table 3. Local Nusselt number and Skin friction coefficient, Numerical values.

Pr

1
2 Re−0.5Cf Re−0.5Nux

1
2 Re−0.5Cf Re−0.5Nux

For γAl2O3-H2O For Al2O3-C2H6O2

With
Effective
Prandtl
Parameter

Without
Effective
Prandtl
Parameter

With
Effective
Prandtl
Parameter

Without
Effective
Prandtl
Parameter

With
Effective
Prandtl
Parameter

Without
Effective
Prandtl
Parameter

With
Effective
Prandtl
Paramet

Without
Effective
Prandtl
Paramet

1 1.29991 1.28495 1.25372 0.78594 1.43666 1.39986 27.6293 14.0726
3 1.31432 1.30461 2.30596 1.49072 1.45995 1.43458 50.1784 26.4527
6.96 1.32164 1.31481 3.60726 2.36655 1.4718 1.45394 78.076 41.9535
10 1.32407 1.31821 4.35964 2.87282 1.47573 1.46041 94.2088 50.9162

Figures 1–3 are sketched for the velocity profiles against multiple values of the slip parameter β,
mixed convection parameter λ, and volume fraction of nanoparticles φ. It is observed in Figure 1 that
the slip parameter significantly reduces the velocity profile for both γAl2O3-C2H6O2 and γAl2O3-H2O
nanofluids. However, in the absence of an effective Prandtl number, the velocity profile rises. Figure 2
shows the variation of velocity against multiple values of the mixed convection parameter λ. In this
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figure, we can see that the mixed convection parameter λ does do not cause any major effect on
γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids. Mixed convection parameter λ enhances the velocity
profile in the absence and presence of effective Prandtl number. Figure 3 depicts the effect of
nanoparticle volume fraction φ on velocity. The results for single-phase flow can be reduced by
taking φ→ 0 in the governing equations.
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In these figures, we can see that the nanoparticle volume fraction φ significantly boost the velocity
profiles, however, there is not significant effect of effective Prandtl number on γAl2O3-H2O fluid,
whereas for γAl2O3-C2H6O2 fluid the effective Prandtl number tends to diminish the velocity more
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significantly as compared to γAl2O3-H2O fluid. Figures 4–6 displayed the behavior of temperature
profile against Prandtl number Pr, Slip parameter β, and nanoparticle volume fraction φ. Figure 4
depicts that reduction in temperature profile for both γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids
for larger values of Prandtl number Pr. Prandtl number is helpful to control the relative thickness of
the thermal and momentum boundary layers in heat transfer cases. The heat diffuses more rapidly
as compared to velocity in the presence of a small Prandtl number. However, the greater impact
of Prandtl number reveals that momentum diffusivity is more dominating over thermal diffusivity.
Figure 5 is sketched for different values of slip parameter β. In this figure, we can see that the slip
effects causes marked increment in the temperature profile for both γAl2O3-C2H6O2 and γAl2O3-H2O
nanofluids. Figure 6 represents the variation of nanoparticle volume fraction φ on temperature profile.
It can be viewed from Figure 6 that the temperature profiles for both γAl2O3-C2H6O2 and γAl2O3-H2O
nanofluids increase when the Prandtl number does not exist, however, the behavior becomes quite the
contrary in the presence of an effective Prandtl number. In Figures 4–6 we find that the magnitude of
the temperature profile is significantly lower in the presence of an effective Prandtl number.
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Figures 7–10 elucidate the behavior of the entropy profile against the various values of slip
parameter β, volume fraction of nanoparticles φ, Brinkmann number Br and Reynolds number Re.
It can be observed from Figure 7 that an increment in slip parameter β, significantly enhances the
entropy profile. However, it is found that in the presence of effective Prandtl number the entropy
profile rises for γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids. Figure 8 depicts that the entropy profile
increases for higher values of the nanoparticle volume fraction φ in the presence of an effective Prandtl
number whereas the behavior is contrary in the absence of an effective Prandtl number. An interesting
thing observed here that in the absence of an effective Prandtl number, the entropy profile changes its
behavior when ξ > 0.5 for both γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids.
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Figure 9 is sketched for different values of Brinkmann number Br and temperature difference
Ω. It is seen from this figure that the entropy profile increases for higher values of Br/Ω. However,
for γAl2O3-C2H6O2 nanofluid, the variation in entropy profile is very small. Figure 10 shows that
an increment in Reynolds number Re markedly enhances the entropy profile due to heat transfer
in a boundary layer and nanofluid friction for both γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids.
An increment in Reynolds number causes a disturbance in the flow field and then chaos occurs in the
movement of fluid. The presence of an effective Prandtl number enhances the entropy profile.Entropy 2017, 19, 414  12 of 15 
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8. Conclusions

In this article, we have considered the slip effects on nanofluid flow through a stretching sheet
in the absence and presence of an effective Prandtl number. A numerical technique (STSLM) with
the combination of the Chebyshev spectral collocation method has been used to obtain the numerical
solutions. A good numerical comparison with previously published results has been presented
to validate the current methodology and results. The current investigation leads to the following
important conclusions:

i. An increment in nanoparticle volume fraction causes a marked increment in the velocity
of nanofluids.

ii. Slip effects tend to provide a significant resistance in the velocity profile for both
γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids. The existence of Prandtl number tends to
diminish the velocity profile.

iii. A remarkable reduction occurs in the temperature profile by increasing the Prandtl number for
both γAl2O3-C2H6O2 and γAl2O3-H2O nanofluids.
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iv. The impact of slip conditions significantly enhances the temperature profile in the presence
and absence of an effective Prandtl number.

v. The temperature profile is enhanced due to nanoparticle volume fraction in the absence of an
effective Prandtl number, whereas the converse behavior is seen in the presence of an effective
Prandtl number.

vi. Due to the increment in slip parameter the entropy profile decreases whereas an effective
Prandtl number enhances entropy generation.

vii. Reynolds number and Brinkmann number also enhance the entropy profile and a similar
relation has been observed in the presence of an effective Prandtl number.
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Nomenclature

Ťw Temperature of wall
Prn f Nanofluid, Prandtl number
g,m/s2 Gravity
kn f Nanofluid, thermal conductivity
Ť Nanofluid temperature
Pr f Base fluid Prandtl number
Nux Nusselt number of nano fluid
C f skin friction coefficient
k f Base fluid, thermal conductivity
Ť∞ ambient temperature
ũ, ṽ m/s Expression of velocity in horizontal and vertical directions, Respectively
ks Nanoparticles, thermal conductivity

Greek Symbols

λ parameter of mixed convection
φ volume fraction of the model
ρn f nanofluid effective density
µn f viscosity of the nanofluid effective dynamic
(ρβ)s coefficient of Nanoparticles thermal expansion
µ f the base fluid dynamic viscosity
(ρβ) f Base fluid thermal expansion coefficient
ρs Nanoparticles density
ρ f base fluid density
(ρβ)n f nanofluid thermal expansion coefficient
ξ variable of space
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