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Abstract: One main interest of information geometry is to study the properties of statistical models
that do not depend on the coordinate systems or model parametrization; thus, it may serve as an
analytic tool for intrinsic inference in statistics. In this paper, under the framework of Riemannian
geometry and dual geometry, we revisit two commonly-used intrinsic losses which are respectively
given by the squared Rao distance and the symmetrized Kullback–Leibler divergence (or Jeffreys
divergence). For an exponential family endowed with the Fisher metric and α-connections, the two
loss functions are uniformly described as the energy difference along an α-geodesic path, for some
α ∈ {−1, 0, 1}. Subsequently, the two intrinsic losses are utilized to develop Bayesian analyses of
covariance matrix estimation and range-spread target detection. We provide an intrinsically unbiased
covariance estimator, which is verified to be asymptotically efficient in terms of the intrinsic mean
square error. The decision rules deduced by the intrinsic Bayesian criterion provide a geometrical
justification for the constant false alarm rate detector based on generalized likelihood ratio principle.

Keywords: intrinsic loss; information geometry; exponential family; covariance matrix estimation;
range-spread target detection

1. Introduction

In Bayesian analysis, the choices of a particular loss function and a featured type of priors
strongly influence the resulting inference. From the standpoint of purely inference, the final results
are typically required to be independent of the way that the model has been parameterized. Thus, in
order to produce a Bayes estimator or action which only depends on the model assumed and the data
observed, an intrinsic loss and a noninformative (or uninformative) prior are demanded. In an early
paper [1], the intrinsic losses are also called the noninformative losses, since they are considered as an
analogous determination of the noninformative priors. The reference [1] describes an intrinsic loss as
the automated derivation from the sampling distribution without subjective inputs. Whereafter, the
entropy and Hellinger losses are suggested there as two appropriate distances between distributions,
and their properties are studied especially for exponential families. Some latter works by Barcelona et
al. regard the additional requirements as reasonable that the intrinsic losses need be invariant under
reduction to sufficient statistics [2]. A symmetric version of Kullback–Leibler (KL) divergence (also
named “the intrinsic discrepancy”) as such an intrinsic loss is highly recommended, and has been
widely applied to develop intrinsic Bayesian analyses of hypothesis testing [3,4], point estimation [4–7],
and interval estimation [2,4,7].

The invariance criteria achieved by the intrinsic losses are indeed consistent with one main topic
of information geometry, which concentrates on excavating the properties of statistical manifolds
that are preserved over coordinate system transformations [8]. Under certain regularity conditions,
each parametric statistical model possesses a Riemannian manifold structure given by the Fisher

Entropy 2017, 8, 405; doi:10.3390/e19080405 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6203-3583
http://dx.doi.org/10.3390/e19080405
http://www.mdpi.com/journal/entropy


Entropy 2017, 8, 405 2 of 16

metric, with the parametrization identical to a coordinate system [9]. The parameters are merely
labels for probability distributions, just as the coordinates for geometric objects. Moreover, the
manifold structure supplied by the Fisher metric and α-connections are proven to be invariant under
transformations of coordinates and reduction by sufficiency [10]. Following this line, a concept is
intrinsic if it has a well-defined geometrical meaning. The Riemannian distance in this case—also
named the Rao distance [11]—is taken as an intrinsic measure for the dissimilarity between two
probability distributions. The reference [12] regards the squared Rao distance between the models
labelled by the actual value of the parameter and its estimate as the most natural intrinsic loss, which
has been utilized to seek intrinsic Bayes estimators in some concrete univariate examples. In the wider
literature, statisticians also apply the Rao distance measure to stimulate the intrinsic study of nonlinear
filtering [13], estimation fusion [14,15], and target tracking [16]. Besides, the intrinsic versions of the
bias, mean square error (MSE) and Cramér–Rao bound (CRB) are put forward [17,18], which help
conduct a systematic analysis for intrinsic estimation theory.

From the above, we can conclude that the Rao distance and the KL divergence are widely accepted
as foundation quantities for the intrinsic losses. The former is well-defined on the statistical manifolds
with consideration of its usual Riemannian structure, while the later is extremely famous in information
theory and is also associated with the canonical divergence in Amari’s dual geometries [9,19]. In this
paper, we revisit two intrinsic losses that are given by the squared Rao distance and the symmetric KL
divergence (also called the Jeffreys divergence), by integrating them in the framework of information
geometry. For the exponential families, they are shown to be uniformly described as the energy
difference along an α-geodesic path on the statistical manifold, with some α ∈ {−1, 0, 1}. Additionally,
the Jeffreys prior—as one of the most popular noninformative priors—corresponds to the Riemannian
volume in this setting [20]. The elucidation of their geometrical meanings contributes to deepen
our understanding and capabilities in intrinsic Bayesian analysis. Subsequently, we apply these two
intrinsic losses to develop Bayesian approaches to covariance matrix estimation and range-spread
target detection, which are both hot issues in radar signal processing. The sample covariance matrix
(the maximum likelihood estimator (MLE) using a set of zero-mean Gaussian samples) is proven to be
intrinsically biased [18]. We provide a Bayesian approach to estimate the scale factor of the sample
covariance matrix, which leads to an intrinsically unbiased and asymptotically efficient covariance
estimator. The detection of range-spread target is, in essence, a decision problem. Intrinsic analysis
supplies a novel way to derive a consistent decision rule under different coordinate systems of
measurement. The produced detectors are equivalent to a classical result based on generalized
likelihood ratio principle, which will benefit an intuitive interpretation about the geometrical nature of
the latter.

In the next section, we review some basic facts about information geometry and exponential
family. In Section 3, we present the intrinsic Bayesian approaches to point estimation and hypothesis
testing. In Section 4, some applications to covariance matrix estimation and range-spread target
detection are studied in detail. Section 5 concludes.

2. The Riemannian Geometry and Dual Geometry of Exponential Family

2.1. The Fisher Metric and the α-Connections

Assume a statistical model S = {p(x|ξ) : ξ ∈ Ξ} to describe the probabilistic behavior of a
random variable x, with the parameter space Ξ being an open set of Rn. Under certain regularity
conditions, S can be regarded as a differentiable manifold, with ξ = [ξ1, . . . , ξn] being a coordinate
system. The manifold S carries the Riemannian structure induced by the Fisher information matrix
G(ξ) = [gij(ξ)],

gij(ξ) = Eξ

[
∂ log p(x|ξ)

∂ξ i
∂ log p(x|ξ)

∂ξ j

]
, (1)
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where Eξ signifies the expectation with respect to p(x|ξ). In this geometric setting, G plays the key
role of a metric tensor [11], called the Fisher metric. Then, the infinitesimal squared distance between
two closely-spaced distributions p(x|ξ) and p(x|ξ + dξ) is defined as [21]

ds2 =
n

∑
i,j=1

gij(ξ)dξ i dξ j.

For a smooth manifold, the notion of affine connections permits a covariant differential calculus on
its tangent bundle. A statistical manifold S possesses a one-parameter family of affine connections
related to the Fisher metric, named the α-connections (see [9,22]). For an arbitrary real number α, the
α-connection ∇(α) can be given by the Christoffel symbols of the first kind

Γ(α)
ij,k(θ) = Eξ

[(
∂2 log p(x|ξ)

∂ξ i∂ξ j +
1− α

2
∂ log p(x|ξ)

∂ξ i
∂ log p(x|ξ)

∂ξ j

)
∂ log p(x|ξ)

∂ξk

]
, (2)

for i, j, k = 1, . . . , n. Specially, the 0-connection ∇(0) is exactly the Riemannian (or Levi–Civita)
connection with respect to the Fisher metric, and the exponential connection ∇(1) and the mixture
connection ∇(−1) also have good applications in statistical analysis (e.g., [23,24]).

As detailed in [9], the geometric structure given by the Fisher metric and the α-connections obeys
the following two invariance principles:

(1) It is invariant under one-to-one reparameterizations.
(2) It is invariant under reduction to sufficient statistics.

2.2. Geometric Structure of Exponential Family

An exponential family is a statistical model S consisting of probability densities of the form

p(x|θ) = exp
{

C(x) +
n

∑
i=1

θiFi(x)− ψ(θ)

}
, (3)

where C(x) and Fi(x), i = 1, . . . , n, are real-valued functions of x, θ = [θ1, . . . , θn] are the so-called
natural parameters, and ψ(θ) corresponds to the normalization constant. Besides, the n + 1 functions
1, F1(x), . . . , Fn(x) are generally required to be linearly independent [8]. The exponential families
include many common statistical models, such as Gaussian, Poisson, Bernoulli, Gamma, and
Dirichlet distributions.

For an exponential family S, let us investigate its geometric structure with respect to the Fisher
metric g and α-connection ∇(α). From Equation (3), we can obtain

∂ log p(x|θ)
∂θi = Fi(x)− ∂ψ(θ)

∂θi and
∂2 log p(x|θ)

∂θi∂θ j = −∂2ψ(θ)

∂θi∂θ j . (4)

Note that in information geometry, the differentiation and integration of p(x|θ) are customarily
assumed to be interchangeable [9]. We can easily verify that an exponential family satisfies this
assumption by reference to [25]. Thus from Equations (1) and (4), it is possible to write the components
of g as

gij(θ) = −E
[

∂2 log p(x|θ)
∂θi∂θ j

]
=

∂2ψ(θ)

∂θi∂θ j . (5)

Further computations by Equation (2) give the expressions for ∇(α). Especially, we have Γ(1)
ij,k = 0 for

i, j, k = 1, . . . , n.
In essence, the differential geometry with respect to the Fisher metric and the 0-connection

coincides with the usual Riemannian geometry. For all exponential families, it is difficult to derive
a general theory of their Riemannian geometric structures. Individually, however, the properties
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of univariate and multivariate Gaussian distributions are well-studied under the framework of
Riemannian geometry in [26].

Amari and Nagaoka [9,19] propose the analysis of the geometric structures of statistical models
through duality. Typically, an exponential family S has a dually flat structure (g,∇(±1)). That is to
say, S is flat with respect to the dual connections ∇(1) and ∇(−1). On the dual flat space (S, g,∇(±1)),
the natural parameters θ constitute the 1-affine coordinate system, while the (−1)-affine coordinate
system can be given by the expectation parameters η = [η1, . . . , ηn] = E[x]. Furthermore, we can prove
that the two potential functions provided by ψ(θ) and φ(η) = θ · η− ψ(θ) satisfy

ηi =
∂ψ(θ)

∂θi , θi =
∂φ(η)

∂ηi
(6)

gij =
∂2ψ(θ)

∂θi∂θ j , gij =
∂2φ(η)

∂ηi∂ηj
,

D(p, q) = ψ(θq) + φ(ηp)− θq · ηp, (7)

where gij is the (i, j)-th entry of the inverse Fisher information matrix G−1, θq are the 1-affine
coordinates of q ∈ S, ηp are the (−1)-affine coordinates of p ∈ S, and D(p, q) denotes the KL
divergence from p to q.

2.3. α-Geodesics

In the presence of an affine connection, geodesics are defined to be curves whose tangent vectors
remain parallel if they are transported along it. Specifically, an α-geodesic γ(t) is characterized by
the equation

∇(α)γ̇

dt
(t) = 0, (8)

where γ̇ denotes the derivative with respect to t.
It is well-known in differential geometry that the (locally) shortest curve between two points

of the manifold (if it exists) is a 0-geodesic (namely the geodesic in usual Riemannian geometry;
e.g., [27]). Usually, a description is used that the 0-geodesic has “constant speed”, since its velocity
fields have constant Riemannian norm. Under certain boundary conditions, when α = 0, an explicit
solution to Equation (8) for univariate or multivariate Gaussian distributions has been derived
in [26,28,29]. However, it seems complicated to give out a general closed form of the 0-geodesics
for all exponential families.

From the viewpoint of flatness, the manifold S of exponential family is dually flat with respect to
∇(±1). We can know from [19] that any (−1)- or 1-geodesic on S is a straight line with respect to the
corresponding affine coordinate system. Thus, in terms of the θ and η coordinates, the ±1-geodesics
γ
(1)
p,q and γ

(−1)
p,q connecting any p, q ∈ S can be expressed by

γ
(1)
p,q : θ(t) = (1− t)θp + tθq,

γ
(−1)
p,q : η(t) = (1− t)ηp + tηq,

(9)

with the parameter t ∈ [0, 1]. Note that in Equation (9), the velocity fields θ̇, η̇ are constant along t, but
γ
(1)
p,q and γ

(−1)
p,q do not have constant speeds.

Example 1 (Univariate Gaussian Distribution). The probability density of a univariate Gaussian distribution
with mean µ and variance σ2 can be expressed as

p(x|µ, σ2) =
1

2πσ
exp

{
− (x− µ)2

2σ2

}
= exp

{ 2

∑
i=1

θiFi(x)− ψ(θ)

}
,
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where θ = [θ1, θ2] = [ µ

σ2 ,− 1
2σ2 ], F1(x) = x, F2(x) = x2, and

ψ(θ) = − (θ1)2

4θ2 −
1
2

log(−θ2) +
1
2

log π.

Further, we can compute the expectation parameters η =
[
E[x],E[x2]

]
= [µ, µ2 + σ2]. Figure 1 illustrates the

0- and ±1-geodesics on the manifold of univariate Gaussian distributions.
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Figure 1. The 0- and ±1-geodesics on the manifold of univariate Gaussian distributions with given
endpoints [µ1, σ2

1 ] = [1, 1] and [µ2, σ2
2 ] = [2, 1.44], under (a) the 1-affine coordinate system θ and (b) the

(−1)-affine coordinate system η.

2.4. The Length and Energy of a Curve

The length of a piecewise smooth curve γ(t) = [ξ1(t), . . . , ξn(t)], t ∈ [a, b] is defined as

L(γ) =
∫ b

a

√
∑
i,j

gij ξ̇ i ξ̇ j dt. (10)

In some occasions, it may be more convenient to work with another related quantity termed the
“energy function”, which is given by the integration of the Fisher information along the curve:

E(γ) =
∫ b

a
∑
i,j

gij ξ̇
i ξ̇ j dt. (11)

Minimizing energy turns out to be equivalent to minimizing length, and both lead to the 0-geodesics
on the manifold.

Remark 2. On a manifold, both the length and energy of a curve γ(t) do not change under different coordinate
systems or model parameterizations, but the latter will depend on the curve parametrization t 7→ γ(t) [30].

Now we discuss the lengths and energies of the 0- and ±1-geodesics on the manifold S of
exponential family. If there exists a unique 0-geodesic connecting p, q ∈ S, the length of this
0-geodesic segment equals the well-known Rao distance between p and q [26], written as ρ(p, q).
From Remark 2, the energy of a curve is meaningless without specifying its parametrization. What we
mainly consider in this paper are the 0- and±1 geodesics parameterized by [0, 1]. Since the 0-geodesics
have constant speed, it means that the integrands in Equations (10) and (11) are constant over t. Thus,
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given a 0-geodesic γ
(0)
p,q : [0, 1] → S connecting p and q, its length and energy have the following

relationship [30]:
E
(
γ
(0)
p,q
)
= L2(γ(0)

p,q
)
.

The ±1-geodesics on S have explicit expressions, shown in Equation (9). Furthermore, the theorem
given below describes their energy functions.

Theorem 3. The energies of the ±1-geodesics γ
(±1)
p,q given in Equation (9) are equal to the Jeffreys divergence

J(p, q) between p and q.

Proof. By using Equation (5), the energy of γ
(1)
p,q connecting p = θ(0) and q = θ(1) is

E
(
γ
(1)
p,q
)
=
∫ 1

0

n

∑
i,j=1

gij θ̇
i θ̇ j dt =

∫ 1

0

n

∑
i,j=1

∂2ψ(θ)

∂θi∂θ j
dθi

dt
dθ j

dt
dt

=
∫ 1

0
ψ̈(θ(t))dt = ψ̇(θ(t))

∣∣∣t=1

t=0

=
n

∑
i=1

∂ψ(θ(t))
∂θi

dθi

dt

∣∣∣t=1

t=0

= (ηq − ηp) · (θq − θp),

where the last equality above follows from Equations (6) and (9). On the other side, according to the
expression of D(p, q) in Equation (7), we have

J(p, q) , D(p, q) + D(q, p)

=
(
ψ(θq) + φ(ηq)

)
+
(
ψ(θ)p + φ(ηp)

)
− θq · ηp − θp · ηq

= θq · ηq + θp · ηp − θq · ηp − θp · ηq

= (ηq − ηp) · (θq − θp).

Then, E
(
γ
(1)
p,q
)
= J(p, q). Similarly, we can prove the other half of this theorem.

As an example, on the manifold of univariate Gaussian distributions, Figure 2 shows the energy
differences along the α-geodesics parameterized by [0, 1], for α = −1, 0, 1. We have known that the
0-geodesic path follows the minimum energy variation, which is also demonstrated in Figure 2. Below
is a straightforward corollary of Theorem 3.
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Figure 2. The energy differences along the 0- and ±1-geodesics parameterized by [0, 1] on the manifold
of univariate Gaussian distributions, with start point [µ1, σ2

1 ] = [1, 1] and end point [µ2, σ2
2 ] = [3, 4].

Corollary 4. If p and q belong to the same exponential family, then J(p, q) ≥ ρ2(p, q).
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3. Intrinsic Bayesian Analysis

3.1. Two Intrinsic Losses

Suppose that the observed data x are generated by p(x|ξ), for some ξ ∈ Ξ. Let ξa be the actual
(unknown) value of the parameter, and ξg ∈ Ξ be a given value which may represent an estimator
or a hypothesis. For the problems of statistical inference, we define a loss function l(ξa, ξg), aiming
at measuring the consequences of estimating ξa by ξg in statistical estimation [5] or judging the
compatibility of ξg with the observations x in hypothesis testing [3].

Many conventional loss functions (such as the squared error loss, the zero-one loss) are defined to
compare ξa and ξg in the parameter space, while an intrinsic loss function tends to directly measure
the dissimilarity between p(x|ξa) and p(x|ξg). As customary, the intrinsic losses are required to be
invariant under one-to-one transformations of either x or ξ (e.g. [2,5]). Let S = {p(x|ξ) : ξ ∈ Ξ} form
an n-dimensional manifold. From the viewpoint of information geometry, the aforementioned criteria
are satisfied if a loss function has a well-defined geometrical meaning. Therefore, based on the contents
of Section 2.4, we will consider the following two intrinsic losses:

(i) Intrinsic loss based on the squared Rao distance (hereafter referred to as the Rao loss):

lR(ξa, ξg) = ρ2(ξa, ξg), (12)

which stands for the energy difference along a 0-geodesic connecting ξa and ξg on S and
parameterized by [0, 1].

(ii) Intrinsic loss based on the Jeffreys divergence (hereafter referred to as the Jeffreys loss):

lJ(ξa, ξg) = J(ξa, ξg), (13)

which stands for the energy difference along a (−1)- or 1-geodesic connecting ξa and ξg on S and
parameterized by [0, 1] if S is an exponential family.

Since the Jeffreys divergence is a symmetrized KL divergence, it has all the properties of a metric
as defined in topology except the triangle inequality property, and is thus not termed a distance. In
recent years, this quantity has sometimes been used for model selection [31,32]. There exists another
symmetrized version of KL divergence proposed in [2,5] for intrinsic analysis, which takes a minimum
over

{
D(ξa, ξg), D(ξg, ξa)

}
and thus copes better with the case when p(x|ξg) and p(x|ξg) have nested

supports. Even so, we prefer to adopt the Jeffreys loss lJ in this paper since it has a better-understood
geometrical interpretation.

3.2. Priors

Apart from the loss function, an appropriate choice of the prior distribution plays an equally strong
role for Bayesian analysis. A particular type of priors have been developed to cope with noninformative
settings, where the term “noninformative” expresses that a prior distribution in the Bayes theory
is expected to have minimal effect on the posterior inference [5]. A common noninformative prior
for the Bayesian paradigm is the Jeffreys prior, which is proportional to the Riemannian volume
corresponding to the Fisher metric [20]. As we have learned from the geometric theory, this is an
intrinsic concept and is thus not dependent on the model parametrizations.

In many early works, the Jeffreys priors are not recommended for multiparameter cases.
Bernardo [33] has initiated the reference priors in Bayesian inference (also known as objective Bayesian
inference), which is widely accepted for various multiparameter Bayesian problems. However, in
most multidimensional occasions, the analytical evaluations related to an inference prior appear to
be quite cumbersome. Thus, some numerical algorithms are designed to do the computations in
objective Bayesian inference (e.g., [34,35]), which seems unfavorable for the theoretical derivations
of this paper. Additionally, in Section 4, the applications of Jeffreys priors yield an appropriate scale
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of the eigenvalues of sample covariance matrix, and also reproduce the classic constant false alarm
ratio (CFAR) detector in radar detection theory. Hence, we believe that the Jeffreys prior may give a
different consequence in intrinsic Bayesian analysis.

3.3. Intrinsic Bayesian Analysis

Let p(ξ|x) ∝ p(x|ξ)p(ξ) be the posterior distribution with respect to the prior p(ξ). From a
Bayesian viewpoint, the corresponding posterior expected loss is

r(ξg, x) =
∫

Ξ
l(ξ, ξg)p(ξ|x)dξ.

Considering the invariance criteria, we take the loss function as lR or lJ and use the Jeffreys
prior πJ . This paper will discuss two aspects of intrinsic Bayesian inference: point estimation and
hypothesis testing.

As formulated in [3], a hypothesis testing problem is to decide how the observed data x are
compatible with the null hypothesis. Specifically, when the null hypothesis contains only one value ξ0,
an intrinsic Bayesian approach to this hypothesis test is based on the positive statistic r(ξ0, x), which
suggests to reject the null hypothesis if r(ξ0, x) > γ with some threshold γ; for the composed null
hypothesis case, it is suggested to take minξ0∈Ξ0 r(ξ0, x) as the test statistic, where Ξ0 denotes the null
parameter space.

When we come to deal with a point estimation problem, the Bayes estimator of ξ is obtained by
minimizing the posterior expected loss function:

ξ̂(x) = arg min
ξ∈Ξ

r(ξ, x),

from which the obtained estimator ξ̂(x) is invariant under invertible transformations of either x or ξ.
Besides, the property of ξ̂(x) can be further analyzed using the intrinsic estimation theory.

Before finishing this subsection, it is convenient to introduce some basic concepts of intrinsic
estimation theory. Fix a ξ ∈ Ξ and let TξS be the tangent space at ξ. Associated with a considered
connection ∇, the corresponding geodesic curve with starting point ξ and initial direction v ∈ TξS is
denoted by γv(t), t ∈ [0, 1]. Such a curve exists when v belongs to a small neighborhood of the origin
at TξS. In this case, the exponential map is defined as Expξ(v) = γv(1). Given an estimator ξ̂(x), the

estimator vector field is induced on S through the inverse of exponential map: Aξ(x) = Exp−1
ξ (ξ̂(x)).

Further, the bias vector field is defined as

Bξ = Eξ [Aξ ].

If ‖Bξ‖ = 0 for any ξ ∈ Ξ, the estimator ξ̂(x) is called intrinsically unbiased. Obviously, these
definitions above are dependent on the specific choice of ∇ [18]. When a flat connection is considered,
an estimator will be intrinsically unbiased if and only if it is unbiased under the corresponding
affine coordinate system. Generally speaking, however, the notion of intrinsic unbiasedness is widely
acknowledged only in the Riemannian case (namely, when ∇ is the Riemannian connection). Thus,
in this paper, when we say that an estimator is intrinsically unbiased, we mean that this is true with
regard to the 0-connection. The intrinsic MSE is defined by the mean square of the Rao distance

MSE(ξ̂(x)) = E[ρ2(ξ, ξ̂(x))], (14)

where, in the Bayesian sense, E denotes the expectation taken over both x and ξ. An intrinsic version
of the CRB gives a lower bound on the intrinsic MSE performance of any intrinsically unbiased or
biased estimator. The relevant developments can be found in [17,18,36].
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4. Applications

4.1. Covariance Estimation

Let x1, . . . , xn be random samples of size n from a zero-mean p-variate Gaussian distribution
with unknown covariance matrix Σ. Consider the Jeffreys prior distribution for Σ ([37], p. 426),

πJ(Σ) = |Σ|−
p+1

2 . A sufficient statistic is provided by

S =
1
n

n

∑
i=1

xixT
i ,

which is recognized as the sample covariance matrix of the data set [38]. Assume that n > p; then, S is
positive definite with probability one. Thus, the corresponding posterior distribution based on the
Jeffreys prior is easily found to be

π(Σ|S) ∝ p(S|Σ)πJ(Σ) ∝ |Σ|−
n+p+1

2 exp
{
− n

2
tr(Σ−1S)

}
,

which follows an inverse Wishart distribution with n degrees of freedom and scale matrix nS.
Now we restrict to consider a family of covariance estimators having the form

Σg = aS, a ∈ (0,+∞), which contain the MLE S. The Rao distance between Σ1 and Σ2 is [39]

ρ(Σ1, Σ2) =
1√
2

√
tr
(

log2(Σ
− 1

2
1 Σ2Σ

− 1
2

1 )

)
, (15)

while the Jeffreys divergence is [40]

J(Σ1, Σ2) =
1
2

(
tr(Σ−1

1 Σ2) + tr(Σ−1
2 Σ1)− 2p

)
.

Taking the intrinsic losses into account, we can obtain an intrinsic estimator by minimization of the
posterior expected Rao loss function:

Σ̂R = arg min
Σg∈{aS|a>0}

∫
lR(Σ, Σg)π(Σ|S)dΣ = arg min

a∈(0,+∞)

EΣ|S

[
ρ2(aS, Σ)

]
, (16)

where EΣ|S signifies the expectation with respect to π(Σ|S). By Equation (15), we have

ρ2(aS, Σ) =
1
2

tr
(

log2(aΣ−
1
2 SΣ−

1
2 )

)
=

1
2

p

∑
i=1

log2(aλi),

where λi, i = 1, . . . , p denote the p eigenvalues of the matrix Σ−1S. In fact, it proves quite difficult
to directly solve the conditional expectation in Equation (16) as a closed form. However, if we let
c = log a, it is easy to show that the objective function in Equation (16) is a strictly convex function
with respect to c. Thus, we can resort to the Lagrange equation to seek the minimum point. Write the
posterior expected Rao loss function as

rR(c) = EΣ|S

[
ρ2(aS, Σ)

]
= EΣ|S

[
1
2

p

∑
i=1

(c + log λi)
2
]

.

Then, let
drR
dc

=
d
dc

EΣ|S

[
1
2

p

∑
i=1

(c + log λi)
2
]
= 0.
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By Leibniz’s rule [41], we can interchange the integral and differential operators, obtaining

drR
dc

= EΣ|S

[
1
2

d
dc

p

∑
i=1

(c + log λi)
2
]
= EΣ|S

[ p

∑
i=1

(c + log λi))

]
= pc +EΣ|S

[
log |Σ−1S|

]
= 0. (17)

Since Σ|S ∼ Inverse Wishart(n, nS), S
1
2 Σ−1S

1
2 |S ∼ Wishart(n, n−1 Ip). Combining with the fact that

|S 1
2 Σ−1S

1
2 | = |Σ−1S|, we can calculate the conditional expectation in Equation (17) by the law of

log-determinant of a Wishart matrix [42]:

EΣ|S

[
log |Σ−1S|

]
=

p

∑
i=1

ψ

(
n + 1− i

2

)
+ p log 2− p log n,

where ψ(·) is the well-known digamma function defined as ψ(x) = d
dx log Γ(x). Thus, from

Equation (17), the intrinsic covariance estimator based on the Rao loss is Σ̂R = âRS, with

âR = exp(ĉ) =
n
2

exp
{
− 1

p

p

∑
i=1

ψ

(
n + 1− i

2

)}
. (18)

Alternatively, if we consider the Jeffreys loss function lJ , then

lJ(aS, Σ) =
1
2

(
a tr(Σ−1S) + a−1 tr(ΣS−1)− 2p

)
.

It is easy to calculate that EΣ|S
[

tr(Σ−1S)
]
= p, and when n > p + 1,

EΣ|S
[

tr(ΣS−1)
]
=

np
n− p− 1

.

Therefore, the intrinsic covariance estimator based on the Jeffreys loss is Σ̂J = âJS, with

âJ =

√
n

n− p− 1
.

In Table 1, the scale factors âR and âJ are evaluated for various values of n and p = 10.

Table 1. The scale factors of sample covariance matrix for some values of n and p = 10.

n âR âJ n âR âJ

12 2.06698 3.46410 50 1.12585 1.13228
13 1.87853 2.54951 100 1.05867 1.06000
14 1.74997 2.16025 200 1.01114 1.02869
16 1.58326 1.78885 500 1.04598 1.01118
18 1.47864 1.60357 103 1.00553 1.00555
20 1.40640 1.49071 104 1.00055 1.00055

We now come to examine the bias and efficiency of these two intrinsic estimators.

Proposition 5. Let W ∼Wishart(v, Ip) with v ≥ p, then E[logk(W)] = mIp, where m is a constant decided
by p, k, and v.
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Proof. For a p× p unitary matrix U, the random matrix UWUT follows the same distribution with W .
Thus,

E
[

logk(W)
]
= E

[
logk(UWUT)

]
.

Recall the important fact that log(A−1BA) = A−1 log(B)A, where A and B are two nonsingular
matrices. Thus, a further step yields

E
[

logk(W)
]
= UE

[
logk(W)

]
UT .

Note that the equality above holds for an arbitrary unitary matrix U; then, we can conclude that
E
[

logk(W)
]

must be a scalar multiple of the identity matrix.

Theorem 6. The covariance estimator Σ̂R given by Equation (18) is intrinsically unbiased.

Proof. For a p-dimensional positive-definite matrix X, the inverse of the exponential map defined on
the manifold of positive definite matrices is given by [43]

exp−1
Σ (X) = Σ

1
2 log

(
Σ−

1
2 XΣ−

1
2
)
Σ

1
2 .

Thus, we have

E
[

exp−1
Σ (Σ̂R)

]
= E

[
Σ

1
2 log

(
âRΣ−

1
2 SΣ−

1
2
)
Σ

1
2
]

= Σ
1
2

(
log[âR Ip] +E

[
log(Σ−

1
2 SΣ−

1
2 )
])

Σ
1
2 . (19)

Generally, it is difficult to directly solve the expectation of the logarithm of a Wishart matrix. However,
since nΣ−

1
2 SΣ−

1
2 ∼Wishart(n, Ip), by Proposition 5, the expectation in Equation (19) has this form

E
[

log(nΣ−
1
2 SΣ−

1
2 )
]
= mIp (20)

with a certain constant m. In addition, since

tr
(
E
[

log[nΣ−
1
2 SΣ−

1
2 ]
])

= E
[

log |Σ−
1
2 SΣ−

1
2 |
]
=

p

∑
i=1

ψ

(
n + 1− i

2

)
+ p log 2,

we can obtain

m =
1
p

p

∑
i=1

ψ

(
n + 1− i

2

)
+ log 2. (21)

Substituting Equations (18), (20) and (21) into Equation (19), we have EΣ

[
exp−1

Σ (Σ̂R)
]
= 0, which

indicates that the covariance estimator Σ̂R is intrinsically unbiased.

Given a real number a > 0, the posterior expected Rao loss of aS can be computed by

EΣ|S

[
ρ2(aS, Σ)

]
= EΣ|S

[
1
2

tr
(

log2(aΣ−
1
2 SΣ−

1
2 )

)]
=

1
2

tr
(
EΣ|S

[
1
2

log2(aS
1
2 Σ−1S

1
2 )

])
.

Using Proposition 5 again, we know that the right-hand side of the second equality above is constant
on the sample space. Thus, the posterior expected Rao losses of Σ̂R, Σ̂J , and S are equal to their Bayes
risks under Rao loss that average the Rao loss functions over both sample space and parameter space.
Similar consequences can be deduced for the posterior expected Jeffreys losses of Σ̂R, Σ̂J , S, and their
Bayes risks under Jeffreys loss. It is still difficult to seek an explicit expression for the posterior expected
Rao loss. Hence, a Monte Carlo simulation is used with 1000 trials to calculate the Bayes risks under
Rao loss. The comparisons are illustrated in Figure 3.
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Figure 3. Comparisons of Bayes risks among Σ̂R (solid line), Σ̂J (dashed line), and S (dotted line) for
p = 10 under (a) Rao loss and (b) Jeffreys loss.

In Figure 4, we compare the intrinsic MSEs (see Equation (14)) of the considered estimators with
an intrinsic version of the CRB given in ([18], Theorem 4), which serves as a lower bound for any
intrinsically unbiased covariance estimator. In fact, for our case, the intrinsic MSEs of Σ̂R, Σ̂J and S are
equal to their Bayes risks under Rao loss. Recalling that the MLE S is not intrinsically unbiased but
always asymptotically efficient [18], we can conclude that the Bayes estimator Σ̂R under Rao loss is
intrinsically unbiased and also asymptotically efficient. This property is also demonstrated in Figure 4.

100 101 102

n / p

-10

-5

0

5

10

In
tr

in
si

c 
M

S
E

 (
dB

)

CRB
Rao estimator
Jeffreys estimator
MLE

Figure 4. The intrinsic MSEs of Σ̂R (solid line), Σ̂J (dashed line), and S are compared with an intrinsic
version of Cramér–Rao bound (CRB) (marked line) for p = 10.

4.2. Range-Spread Target Detection

The target detection in the background of Gaussian noise is a basic problem in radar signal
processing. Suppose that an unknown target is spatially distributed across H range cells. Data
collected from these H cells—called the primary data—consist of the possible target echoes plus
Gaussian noises. As in [44], we assume that a set of secondary data coming from K cells arranged
around the target are available, which serve as training samples for noise covariance estimation. Here
the homogeneous noise environment is considered, which means that the secondary data are free
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of signal components and share the same distribution as the noise-only part of the primary data.
Therefore, the considered detection problem can be formulated as [44]

H0 : zi = wi, i = 1, . . . , H + K,

H1 :

{
zi = pi + wi, i = 1, . . . , H,
zi = wi, i = H + 1, . . . , H + K,

(22)

where pi, i = 1, . . . , H denote the N-dimensional unknown signal vectors, and wi, i = 1, . . . , H + K,
are independent and identically distributed Gaussian noises with mean zero and unknown covariance
matrix M. For the brevity of notation, let us introduce the matrix forms

Zp = [z1, . . . , zH ], Zs = [zH+1, . . . , zH+K], P = [p1, . . . , pH ].

Denote Z = [Zp, Zs] and P̃ = [P, 0], then the matrix Z of measurements is Gaussian distributed with
mean P̃ and covariance IH+K ⊗M. In the absence of target, we have P = 0 under the null hypothesis.
Therefore, the Rao distance between the assumed model and the null model is [45]

ρ
(
[P̃, IH+K ⊗M], [0, IH+K ⊗M]

)
=

√√√√ H

∑
i=1

pT
i M−1 pi. (23)

We shall adopt again the Jeffreys prior distribution for parameters (P, M) [35]:

πJ(P, M) ∝ |M|−
N+H+1

2 .

The joint density for Z is proportional to

|M|−
H+K

2 exp
{
− 1

2
tr
(

M−1(S1 + S2)
)}

,

where S1 = (Zp − P)(Zp − P)T , S2 = ZsZT
s . Thus, the corresponding posterior distribution satisfies

π(P, M|Z) ∝ πJ(P, M)p(Z|P, M) ∝ |M|−
N+H+1

2 · |M|−
H+K

2 exp
{
− 1

2
tr
(

M−1(S1 + S2)
)}

= |M|−
H
2 exp

{
− 1

2
tr(M−1S1)

}
· |M|−

H+K+N+1
2 exp

{
− 1

2
tr(M−1S2)

}
.

Since π(P, M|Z) = π(P|M, Z)π(M|Z), we can conclude that

π(P|M, Z) = Normal(Zp, IH ⊗M), π(M|Z) = Inverse Wishart(H + K, S2). (24)

Therefore, the posterior expected Rao loss of determining the null hypothesis is derived as follows:

EP,M|Z

[
lR

(
[P̃, IH+K ⊗M], [0, IH+K ⊗M]

)]
= EM|Z

[
EP|M,Z

[ H

∑
i=1

pT
i M−1 pi

]]
= EM|Z

[ H

∑
i=1

zT
i M−1zi + N

]
= N + (H + K)

H

∑
i=1

zT
i S−1

2 zi.

Hence, the decision rule for the compatibility of the null hypothesis with the observed data Z can be
given as

Reject H0 if and only if
H

∑
i=1

zT
i S−1

2 zi > γ,
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where the threshold γ is chosen by the required false alarm probability. In fact, this result reproduces
the two-step generalized likelihood ratio test [46] or Wald test [47], which is verified to have CFAR
property [46].

Besides, since in this case,

lJ

(
[P̃, IH+K ⊗M], [0, IH+K ⊗M]

)
= lR

(
[P̃, IH+K ⊗M], [0, IH+K ⊗M]

)
,

we can derive an equivalent decision rule using the Jeffreys loss.
Finally, as a conclusion of this section, we will conduct a discussion about the relationship between

the geometric invariance principle and the CFAR property. If we transform the random variables
x to y without altering the structures of statistical model and testing problem, it is equivalent to
derive a transformation on the parameter space Ξ. Let a decision statistic be an intrinsic concept in
the geometrical meaning. Thus, this statistic is invariant by changing x to y, which indicates that it
maintains a CFAR behavior over an orbit of the parameter space.

5. Conclusions

In this paper, the Rao loss and Jeffreys loss—which are, respectively, based on the squared Rao
distance and the Jeffreys divergence—are uniformly considered in the framework of information
geometry. We have elucidated their geometrical meaning based on some results of Riemannian
geometry and dualistic geometry. In particular, on the manifold of an exponential family, the Rao loss
and Jeffreys loss are essentially the energy differences along α-geodesic paths parameterized by [0, 1],
for α = −1, 0, 1. Based on this, they certainly enjoy the invariance properties under the one-to-one
transformations of random variables and model parameters. Subsequently, these two intrinsic loss
functions are unitized to develop intrinsic Bayesian analysis of covariance estimation and range-spread
target detection. We use the intrinsic losses to derive the scale factor of sample covariance matrix,
which leads to an intrinsically unbiased and asymptomatically efficient covariance estimator. On the
other hand, the detectors provided by the posterior expected intrinsic losses have been proven to
coincide with the classic CFAR detector in radar detection theory. In this respect, it seems to be a novel
but promising approach to derive a detector having CFAR property though intrinsic analysis.
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