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Abstract: Analysis of global energy efficiency of thermal systems is of practical importance for
a number of reasons. Cycles and processes used in thermal systems exist in very different
configurations, making comparison difficult if specific models are required to analyze specific thermal
systems. Thermal systems with small temperature differences between a hot side and a cold side also
suffer from difficulties due to heat transfer pinch point effects. Such pinch points are consequences
of thermal systems design and must therefore be integrated in the global evaluation. In optimizing
thermal systems, detailed entropy generation analysis is suitable to identify performance losses
caused by cycle components. In plant analysis, a similar logic applies with the difference that the
thermal system is then only a component, often industrially standardized. This article presents how
a thermodynamic “black box” method for defining and comparing thermal efficiency of different
size and types of heat engines can be extended to also compare heat pumps of different apparent
magnitude and type. Impact of a non-linear boundary condition on reversible thermal efficiency is
exemplified and a correlation of average real heat engine efficiencies is discussed in the light of linear
and non-linear boundary conditions.

Keywords: global efficiency; energy efficiency; heat engine; heat pump; utilization; Carnot efficiency;
comparison; thermal system; cycle analysis

1. Introduction

When optimizing a thermal plant, using a heat driven power cycle or a heat pump, practical
experience indicates that one seldom have the luxury of choosing the components in any of the
systems considered. Instead, the plant designer often needs to choose between preexisting, industrially
standardized machines. Such preexisting thermal systems will have characteristics almost according
to the designer’s preferences, but seldom exactly. Each of the potential thermal system will respond
differently to optimizations of the plant. Unless the providers make a complete and unique model
available of each potential thermal system, plant optimization has to rely heavily on assumptions. Since
such unique models have a tendency to become biased, the problem remains regardless. We therefore
propose a different approach to comparing thermal systems on a global level. Global in this approach
means that the power cycle or heat pump is treated as a “black box” with global efficiency defined by
the real boundary conditions dictated by the plant in which the “black box” operates.

A sound comparison of energy efficiency of thermal systems performing almost similar duty
benefits not only from a “black box” approach, but also from a non-dimensional scale and an accurate
definition of the reversible energy efficiency of each system. In this article, “thermal systems” means
heat engines and heat pumps.

Black box approaches can be defined as independent of technology used. The importance of the
black box approach is determined by its purpose. When comparing thermal systems using different
cycles, there is no benefit in separating losses internal to the cycle from losses external to the cycle.
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By cycle design typical external losses, such as pinch-effects and impact of limited heat exchanger
inventories, can be mitigated and are therefore linked to internal cycle losses in various ways. If the
purpose instead is to study possible improvement potential of a particular cycle, then conventional
second law analysis is highly effective. In such a case, there is no need for a black box approach.

In most practical cases, heat sources as well as heat sinks are finite. Therefore, exit temperatures
from the thermal system vary depending on its energy efficiency. A small heat engine, relative to the
apparent thermal capacity of source and sink, will operate at a larger temperature difference compared
to a large system. Therefore, a comparison between thermal systems of different magnitude requires
a measure indicating how small or large each system is relative to the boundary conditions of the
heat source and sink. Furthermore, any variation in temperature difference means that an immediate
comparison of energy efficiency becomes ambiguous. Instead comparison of energy efficiencies
should relate to the reversible energy efficiency of each system, implicitly therefore also to the exit
temperatures of the source and sink that would be obtainable using a thermodynamically perfect cycle.

Complexity is added by the fact that many thermal systems operate in environments where
apparent heat capacity of heat source and/or heat sink are functions of temperature. We call them
“complex”, or non-linear. If the apparent heat capacity is constant we call them “linear”. In the latter
case, analytical formulas can be derived by defining reversible exit temperatures of source and sink as
well as reversible energy efficiency. In the complex or non-linear cases, we need a numerical approach.

In the following, we will refer to methods of defining reversible energy efficiency of heat engines
and we will propose the same method for comparison of heat pumps. Obviously, refrigeration systems
can be compared in a similar manner as heat pumps.

Lorenz [1] defined a type of reversible cycles specifying how the temperatures in finite source
and sink changed with transportation of heat through it. With such definition, reversible energy
efficiency can be found analytically if the polytropes of the Lorenz cycle constitute equations suitable
to integration. In many applications, for example, a heat engine using waste heat recovery of a diesel
engine, however the polytropes become difficult to integrate.

Ibrahim & Klein [2] showed a numerical definition of extractable work from a reversible cycle
named the “max power cycle”. They used multiple, small, Carnot cycles in consecutive order relative
to source and sink. In Öhman & Lundqvist [3] the concept of “Integrated Local Carnot Efficiency” ηC,Il
was defined as the reversible thermal efficiency of a max power cycle. Using Figure 1 we can extend
the approach to also comprise heat pumps.
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Equation (1) shows a definition of energy efficiency, or thermal efficiency, of a reversible
heat engine.
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ηth,s =
.

Ws/
.

QH (1)

Consequently, we may define energy efficiency of a reversible heat pump in Equation (2),
operating at the same temperatures.

COPs = 1/ηth,s (2)

As explained in Öhman & Lundqvist [4] we may use the approximation of Curzon–Ahlborn
efficiency as of Curzon & Ahlborn [5] in Equation (3), to define the temperature that a source and
a sink would equalize to by using a reversible heat engine as in Equation (4), the Curzon–Ahlborn
temperature TCA. Note however that, as explained in Öhman [6], using Curzon–Ahlborn efficiency
limits the use of Equation (4) to applications with a linear source and sink. A generalization to
complex sources and sinks requires the numerical solution of the max power cycle to determine
this temperature.

ηCA = 1−
√

TL/TH (3)

We wish to stress that the use of Equation (3) does not imply that the method described
is developed according to the tradition of finite-time thermodynamics, FFT, or endo-reversible
thermodynamics. It is only used as a simplification used to derive Equation (4) and only applicable to
linear boundary conditions. Öhman [6] explains that Equation (3) is incorrect, however the error is
small enough to allow its use in Equation (4) for determining Equation (5).

FTT, influenced by Curzon & Ahlborn [5] is a related field of science often focusing on cycle
optimization and heat transfer in finite environments. Dong et al. [7] explain a general method to
obtain optimal operating points for endo-reversible and irreversible heat engines. Ge et al. [8] explain
the advances in finite-time thermodynamics for internal combustion cycle optimization. Feidt [9]
explains the development in some traditions of thermodynamic analysis and that FTT is based on the
idea of reversible cycle operating with irreversible heat exchange. Feidt [10] explains thermodynamic
analysis of reverse cycles, clearly showing that FTT focuses on studying effects on thermal efficiency
caused by explicit losses emanating from technical limitations. The black box approach focuses on
thermal efficiency as a function of the magnitude of a thermal system relative to the source and sink,
without assumptions on specific losses. From that reason, it is natural to use that approach also to study
effects of complex boundary conditions. The method explained in this article is explicitly designed for
simplified communication of the findings to practitioners.

2. Method

Using Equation (1) and the definition of inverse apparent heat capacity in the source as αH =

1/
( .
mH · CpH

)
and in the sink as αL = 1/

( .
mL · CpL

)
, Öhman & Lundqvist [4] derived Equation (4) as

follows. (Note the printing error in the equation in the reference.)

TCA =
TL + TH · αL/αH ·

√
TL/TH

1 + αL/αH ·
√

TL/TH
(4)

As extensively explained in Öhman [6], we can now define a dimensionless scale, named
“utilization” and defined in Equation (5), on which to project the energy efficiency of a heat engine.

ψ =
.

QH/
.

QH(TCA) =
.

QH/
.

QCA (5)

Note that
.

QCA is only determined by the nature of the source and sink, while
.

QH is the actual
rate of heat entering the heat engine.

Now we can construct a diagram by plotting various characteristic data vs. “utilization” in a
dimensionless way, thereby allowing comparison of heat engines of different magnitude relative to the
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finiteness of heat source and sink. This approach is suggested in Öhman [6] for the comparison of the
global energy efficiency of different real heat engines. For the correlation of global energy efficiency of
a real heat engine, it is possible to define a “Fraction of Carnot” (FoC) as of Equation (6). The FoC can
be explained as measured, or simulated, using thermal efficiency divided by the ideally possible at the
given utilization ψ, where 0 ≤ ψ ≤ 1.

FoC(ψ) = ηth/ηC,Il(ψ) =
.

Wreal/
.

Ws(ψ) (6)

Note that, by referring to boundary conditions of the reversible thermal system, FoC is not
equivalent to common definitions of exergy efficiency. Note also that ηC,Il(ψ), determined by the
numerical max power cycle approach, can be easily validated for linear boundary conditions using
equations available in standard literature. Appendix A in Öhman [6] provides explicit expressions for
such validation.

3. Results

3.1. Global Efficiency of Heat Pumps

Thermodynamic entities of a reversible heat pump can be viewed as a symmetric mirror of a heat
engine operating at the same conditions.

Figure 2 shows temperatures of source and sink for two different thermal systems. On the right
side, temperatures of a reversible heat engine are indicated, cooling a hot flow from TH to TH,exit

while heating a cold flow from TL to TL,exit, If
.

QH =
.

QCA exit temperatures coincide. On the left side,
temperatures of a reversible heat pump are indicated, heating a hot flow from TH,exit to TH while
cooling a cold flow from TL,exit to TL. If TH,exit 6= TL,exit a fictitious heat pump equilibrium temperature
can be constructed in the same way as at TCA in Equation (4) for linear boundary conditions and from
the numerical model for complex boundary conditions. We can therefore use Equations (5) and (7) to
determine utilization.
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We can understand that the temperatures in Figure 2 will be symmetric around
.

QH = 0 by the
analogy of the max power cycle and its use of multiple subsequent very small Carnot Cycles. Carnot
Cycles are reversely applicable to heat engines and heat pumps.

Öhman [6] proposed Equation (8) as the expected correlated global energy efficiency of real low
temperature difference heat engines.

FoC(ψ) = 0.672 · e−0.874·ψ (8)

Equation (8) is based on measured global energy efficiency for heat engines in a very large range
of capacities, temperatures, and technical solutions. Yet, it is remarkably consistent. It allows us very
expediently to predict thermal efficiency as well as output power of an undefined real heat engine
by using Equation (6), only knowing the characteristics of a particular set of sources and sinks if the
utilization is known. The correlation describes an average of historic data and could be seen as normal
to industrial capability as of today.

Evaluating heat pump systems can be made in a similar manner as of the above by defining
Equation (9) as a Fraction of Carnot for real heat pumps.

FoCCOP(ψ) = COPreal/COPs(ψ) = ηC,Il(ψ) · COPreal (9)

A correlation of FoCCOP(ψ) has not yet been attempted, but is intended to be performed once
enough data has been gathered. It is clear however that global energy efficiency of heat pumps
operating in non-identical applications can be systematically compared using the above approach.

3.2. Effects of Complex Boundary Conditions

As explained the simple approximation of Equation (3), and therefore also Equation (4) cannot
be applicable if source flow and/or sink flow are complex/non-linear. Utilization can however still
be defined by using the local temperatures calculated in the max power cycle. Figure 2 will look
significantly different in such a case. Therefore, it is not to be expected that the correlation in Equation
(8) is valid for complex boundary conditions.

In reality, complex boundary conditions are common and do require more detailed studies.
The approach of the max power cycle, Integrated Local Carnot efficiency and Fraction of Carnot are
useful in such studies. The following simplified example can be used to remind us that complex
conditions cannot easily be regarded as approximately linear.

3.3. A Demonstrational Example

A demonstrational example can be constructed by applying a heat pump to heat a flow of air by
cooling another flow of saturated humid air. A technical application could be a blast drying process or
similar and thermally defined as of Table 1.

The specific heat of the cold air is here modeled in two ways; (i) linear, meaning that Cp is constant
and that αcooledair is consequently also constant; (ii) complex, meaning that Cp is constant above 34 ◦C
and a function of temperature as of Equation (10) below 34 ◦C. The reason for the complexity is the
condensation of water as the cold air is further cooled below 34 ◦C. Equation (10) is a polynomial
approximation of dh/dT for condensing humid air per mass unit of dry air calculated in the commercial
software EES (Engineering Equations Solver) with data on air from Lemmon et al. [11] and data on
H2O from Hyland & Wexler [12].

C(T) = 0.0026 · T3 − 0.0934 · T2 + 3.5776 · T + 2.6929 (10)

Using the set of data from Table 1 we can apply the numerical approach of the max power cycle
to obtain the fictitious TCA, output temperature of the cold stream, Utilization, Integrated Local Carnot



Entropy 2017, 19, 394 6 of 8

efficiency and COP for a reversible heat pump for the linear cold stream as well as for the complex
cold stream. Net calculated data can be found in Table 2.

Table 1. Input information for a demonstrational example.

Entity Value Unit

Hot air flow 3.33 kg/s
Hot air exit temp 80 (dry) ◦C

Hot air entry temp 60 ◦C
Cp (hot air) 1 kJ/kg·K
αheatedair f low 0.3 K/kW

Cold air flow 1.67 kg/s
Cold air entry temp 34 (saturated) ◦C
Cp (cold air >34 ◦C) 1 kJ/kg·K
C (cold air <34 ◦C) Equation (10) kJ/kg·K
αcooledair Complex C(Tcooledair) Equation (10) K/kW

αcooledair Linear 0.6 K/kW

Table 2. Calculated data for a reversible blast heater.

Entity Value Unit

Hot flow heating 66.7 kW
Reversible COP, complex 8.7 -

Reversible COP, linear 6.5 -
Cold flow exit temp, complex 27 ◦C

Cold flow exit temp, linear 0.3 ◦C
Utilization 0.69 -

By comparing the two alternative cold stream characteristics, it becomes obvious that a non-linear,
or complex cold stream leads to a difference in reversibly obtainable COP by roughly 30% as compared
to assuming a linear cold stream. Figure 3 shows the local temperatures during the two processes.
Note that this difference in COP is at reversible conditions. Any measured COP of a real system should
be compared to the correct COP, taking the complex nature of the heat sink into account.
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Figure 3. Local temperatures, in ◦C, of the hot and two alternative cold streams during the two
alternative processes as a function of utilization. The calculated processes both start at utilization −0.69
since the heat capacity of the two alternative cold streams are equal when temperature would be above
34 ◦C. Note that negative utilization indicates a heat pump.

The temperature diagrams in Figure 3 clearly shows why Integrated Local Carnot efficiency must
differ between the two processes. Due to the large difference in apparent heat capacity in the cold
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stream when condensation occurs the necessary temperature lift in the heat pump becomes smaller.
This leads to a lower Integrated Local Carnot efficiency and a larger COP for the reversible heat pump.

This example indicates why a correlation similar to Equation (8), but for heat pumps, is not likely
to be valid in applications with complex boundary conditions.

4. Discussion

The explained method uses conventional thermodynamic entities to create a dimensionless
comparative method for black box energy efficiency. It comprises first as well as second law effects.
Other methods can be used but are likely to become more complicated. The numerical approach of the
max power cycle provides the benefit of detailed information about local temperatures in source and
sink and thereby greatly simplifies the understanding of pinch points and similar effects.

The use of detailed exergy destruction analysis is constructive in identifying and evaluating
irreversibility. However, when determining reversible thermal efficiency exergy efficiency becomes
meaningless. The approach of Integrated Local Carnot efficiency is a direct implementation of multiple
Carnot cycles hence it can be directly derived by assuming zero increase of entropy.

With a similar, systematic black box approach, for heat engines and heat pumps, experiences from
one type of thermal system may be useful to understand effects of another.

A particularly interesting question arises when using the concept of utilization for heat engines
and heat pumps in a symmetric manner, such as in Figure 2. A research question arising from
this discussion is if a correlation, similar to Equation (8) could be found for heat pumps or cooling
systems. We suggest researching real heat pump thermal efficiency for further studies using the
method described in this article.

5. Conclusions

We have shown that a black box method for investigating efficiency of low temperature heat
engines explained in Öhman [6] can be extended to apply also to heat pumps.

The dimensionless scale of utilization can be used for systematic comparison of thermal efficiency
of heat engines as well as heat pumps with different magnitudes relative to the source and sink.

The max power cycle approach of Ibrahim & Klein [2] is suitable to determine reversible thermal
efficiency of a thermal system with complex boundary conditions.

There may be significant impact of complex boundary conditions on reversible thermal efficiency
of a thermal system.
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Nomenclature

TH Hot flow: entry temp of heat engine/exit temp of heat pump K
TC Cold flow: entry temp of heat engine/exit temp of heat pump K
TH,exit Hot flow: exit temp of heat engine/entry temp of heat pump K
TL,exit Cold flow: exit temp of heat engine/entry temp of heat pump K
.

W Rate of work W
.

QH Rate of heat transferred out from the hot flow W
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.
QL Rate of heat transferred into the cold flow W
ηth,s Thermal efficiency of a reversible heat engine -
COPS Coefficient Of Performance for a reversible heat pump -
ηCA Curzon–Ahlborn efficiency -
TCA Curzon–Ahlborn temperature K
.

QCA Curzon–Ahlborn rate of heat transferred out from the hot flow W
αH , αL Inverse apparent heat capacity of hot and cold flow K/W
.

mH ,
.

mL Mass flow of hot and cold flow kg/s
CpH , CpL Constant, linear specific heat capacity of hot and cold flow J/kg·K
C(T) Non-constant, complex specific heat capacity J/kg·K
h Specific enthalpy kJ/kg
ψ Utilization -
FoC Fraction of Carnot for a heat engine -
FoCCOP Fraction of Carnot for a heat pump -

.
Wreal Measured, or simulated rate of work of a thermal system
W

.
Ws Reversible rate of work of a thermal system W
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