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Abstract: This study considers the goodness of fit test for a class of conditionally heteroscedastic
location-scale time series models. For this task, we develop an entropy-type goodness of fit test based
on residuals. To examine the asymptotic behavior of the test, we first investigate the asymptotic
property of the residual empirical process and then derive the limiting null distribution of the
entropy test.
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1. Introduction

In this study, we consider the goodness of fit (GOF) test on the innovations of location-scale time
series models with heteroscedasticity. These models accommodate a broad class of financial time
series models (see Noh and Lee [1] and Kim and Lee [2]). Correct information on the innovation
distribution is considerably important in analyzing time series. For example, in the parameter
estimation, one conventionally uses the Gaussian quasi-maximum likelihood estimator (QMLE), which
undermines the accuracy of estimation when their innovation distributions are deviated far from the
normal distribution. To overcome this difficulty, a different likelihood function has been considered
as an alternative—see Lee and Lee [3] who use a family of normal mixtures, and Lee and Kim [4]
who use asymmetric skew t distribution (ASTD) and asymmetric exponential power distribution
(AEPD) families. The family of normal and Student’s t distributions has been widely used in the
literature—see Hansen [5], who uses a skew Student’s t distribution in generalized autoregressive
conditionally heteroscedastic (GARCH)-type models (Bollerslev [6]), and also the papers cited in Kim
and Lee [2,7].

The GOF test has a long history, and has been playing a central role in matching given data
sets with the best-fitted distribution families (see D’Agostino and Stephens [8] for a review).
Among the GOF tests, the empirical process-based GOF test has long been popular because the classical
Kolmogorov–Smirnov and Cramér–von Mises tests can be generated from the empirical process.
Recently, Lee, Vonta and Karagrigoriou [9] proposed an entropy-based GOF test and demonstrated
that it outperforms the classical tests in various situations. Lee, Lee and Park [10] and Lee and Oh [11]
later applied the entropy test to GARCH-type models, and all confirmed its validity empirically.
Further, Lee and Kim [4] used the entropy test for iid random variables following ASTD and AEPD
families to demonstrate that ASTD accommodates AEPD to a greater degree than the other way around.
Although the asymptotic theorems for the entropy test are established for GARCH models (Lee, Lee
and Park [10]), those are not yet attempted in general location-scale time series models. Motivated
by this, we are led to investigate the asymptotic behavior of the residual empirical process from the
location-scale model and then verify the limiting null distribution of the entropy test—see Durbin [12],
Lee and Wei [13], and Lee and Taniguchi [14] for relevant references.
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The remainder of this paper is organized as follows. Section 2 investigates the asymptotic behavior
of the residual empirical process and derives the limiting null distribution of the entropy test. Section 3
proves the theorem in Section 2. Section 4 provides concluding remarks.

2. Entropy Test for Location-Scale Models

2.1. Main Result

Let us consider the conditional location-scale model:

Yt = gt(β1,0) + ht(β0)ηt, t ∈ Z, (1)

where g : R∞×Θ1 → R and h : R∞×Θm → R+ are measurable functions, Θm = Θ1×Θ2 with compact
subsets Θ1 ⊂ Rd1 and Θ2 ⊂ Rd2 , gt(β1,0) = g(Yt−1, Yt−2, · · · ; β1,0) and ht(β0) = h(Yt−1, Yt−2, · · · ; β0),
where β0 = (βT

1,0, βT
2,0)

T denotes the true model parameter belonging to Θm; {ηt} is a sequence of iid
random variables with zero mean and unit variance. In what follows, we assume that {Yt : t ∈ Z}
is strictly stationary and ergodic and that ηt is independent of past observations Ωs for s < t. In this
section, we consider the entropy-based GOF test proposed by Lee, Vonta and Karagrigoriou [9] for the
location-scale models in (1). To this end, we set up the hypotheses:

H0 : Fη ∈ {Fϑ : ϑ ∈ Θd} vs. H1 : not H0, (2)

where Fη denotes the innovation distribution of the model and Fϑ can be any family of distributions.
To carry out the test, inspired by Rosenblatt [15], we check whether the transformed

random variables Ut = Fϑ0

(
Yt−gt(β1,0)

ht(β0)

)
follow a uniform distribution on [0, 1], say, U[0, 1],

where ϑ0 and β0 are the true parameters. Since the parameters are unknown, by replacing
those with their estimates, we check the departure from U[0, 1] based on Ût := Fϑ̂n

(η̂t) with

η̂t =
Yt−g̃t(β̂1,n)

h̃t(β̂n)
, where g̃t(β1) = g(Yt, Yt−1, . . . , Y1, 0, . . . ; β1) and h̃t(β) = h(Yt, Yt−1, . . . , Y1, 0, . . . ; β)

with β = (βT
1 , βT

2 )
T ∈ Θm: see Francq and Zakoian [16], who take this approach of using initial values

for GARCH models.
The entropy-based GOF test is constructed based on the Boltzmann–Shannon entropy defined by

H( f ) = −
∫ ∞

−∞
f (x) log( f (x))dx (3)

for any density function f . It is noteworthy that the H( f ) actually measures the distance between
a distribution with density f and the uniform distribution. Lee, Vonta and Karagrigoriou [9] construct
a GOF test using an approximation form of the integral in (3). For any distribution F, we introduce

Sw(F) = −
m

∑
i=1

wi(F(si)− F(si−1)) log
( F(si)− F(si−1)

si − si−1

)
, (4)

where the wi’s are weights with 0 ≤ wi ≤ 1 and ∑m
i=1 wi = 1, m is the number of disjoint intervals

for partitioning the data range, and −∞ < a ≤ s0 ≤ · · · ≤ sm ≤ b < ∞ are preassigned partition
points. Note that the argument in (4) is a good approximation of that in (3) when wi are all equal
to 1—see Section 2.1 of Lee, Vonta and Karagrigoriou [9], and also their Remark 1 concerning the role
of weights w.

Further, we define the residual empirical process:

V̂n(r) =
√

n(F̂n(r)− r), 0 ≤ r ≤ 1 (5)
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with F̂n(r) = 1
n ∑n

t=1 I(Fϑ̂n
(η̂t) ≤ r), where ϑ̂n is any consistent estimator of ϑ0 under the

null; for example, the maximum likelihood estimator (MLE). We then define the entropy test by
T̂n :=

√
n supw∈W |Sw(F̂n)|.

To derive the null limiting distribution of the entropy test, we impose the regularity conditions
as follows:

(C1) (i) For some random variable V and constant κ ∈ (0, 1), supβ1∈Θ1

∣∣gt(β1)− g̃t(β1)
∣∣ ≤ Vκt for all

t ≥ 1;
(ii) For some random variable V and constant κ ∈ (0, 1), supβ∈Θm

∣∣ht(β)− h̃t(β)
∣∣ ≤ Vκt for all

t ≥ 1.
(C2) (i) For all t ≥ 1, g̃t(β1) and h̃t(β) are differentiable in β1 and β on some neighborhoods N1 of β1,0

and N2 of β0;
(ii) There exists a random variable V and constant κ ∈ (0, 1) such that for all t ≥ 1,
supβ1∈N1

‖∂gt(β1)/∂β1 − ∂g̃t(β1)/∂β1‖ ≤ Vκt and supβ∈N2
‖∂ht(β)/∂β− ∂h̃t(β)/∂β‖ ≤ Vκt.

(C3) (i) For all t ∈ Z, gt(β1) and ht(β) are twice differentiable in β1 ∈ Nδ1 and β ∈ N2, where N1 and
N2 are the ones in (C2)(i);
(ii) E[supβ1∈N1

‖∂g1(β1)/∂β1‖2] < ∞ and E[supβ∈N2
‖∂h1(β)/∂β‖2] < ∞;

(iii) E[supβ1∈N1
‖∂2g1(β1)/∂β1∂βT

1 ‖] < ∞ and E[supβ∈N2
‖∂2h1(β)/∂β∂βT‖] < ∞.

(C4) (i) Fϑ0 is continuous and has a positive density fϑ0 ;
(ii) fϑ0 and x → x fϑ0(x) are uniformly continuous on (−∞, ∞);
(iii) For some L > 0, supx | fϑ0(x)| ≤ L, supx |x fϑ0(x)| ≤ L, and supx |x2 f ′ϑ0

(x)| ≤ L.
(C5) Fϑ is twice continuously differentiable with respect to ϑ and there exists L > 0 such that

supx
∥∥ ∂2Fϑ(x)

∂ϑ∂ϑ

∥∥ ≤ L and x →
∥∥ ∂Fϑ(x)

∂ϑ

∥∥ is uniformly continuous on (−∞, ∞).
(C6) Under the null,

√
n(β̂n − β0) = Op(1) and

√
n(ϑ̂n − ϑ0) = Op(1).

Remark 1. The above conditions can be found in Kim and Lee [2]. They show that a class of GARCH
and TGARCH models with ASTD and AEPD innovations satisfy the regularity conditions and the MLE is
asymptotically normal.

Below is the main result of this section: see the proof in Section 2.2.

Theorem 1. Under (C1)∼(C6), we have

V̂n(r) = Vn(r) + Rn(r), 0 ≤ r ≤ 1 (6)

where Vn(r) =
√

n(Fn(r)− r) with Fn(r) = 1
n ∑n

t=1 I(Fϑ0(ηt) ≤ r) and

Rn(r) =
√

n(β̂1n − β1,0)
TE
[ 1

h1(β0)

∂g1(β1,0)

∂β1

]
fϑ0(F−1

ϑ0
(r))

+
√

n(β̂n − β0)
TE
[ 1

h1(β0)

∂h1(β0)

∂β

]
F−1

ϑ0
(r) fϑ0(F−1

ϑ0
(r))

+
√

n(ϑ̂n − ϑ0)
T

∂Fϑ0(F−1
ϑ0

(r))

∂θ
+ op(1) uni f ormly in r.

Moreover, we are led to the following result, the detailed proof of which is omitted for brevity
because it is essentially the same as that of Lee, Vonta and Karagrigoriou [9] and Lee, Lee and Park [10].
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Theorem 2. Suppose that the assumptions in Theorem 1 hold. Then, underH0, if max1≤i≤m |si − si−1| → 0
as m→ ∞, we have that for all large m, as n→ ∞,

T̂n
d≈ sup

w∈W ′

∣∣∣ m

∑
i=1

wi(B(si)−B(si−1))
∣∣∣, (7)

where W
′

is any finite subset of the class of all weights and B is the Brownian bridge on [0, 1].

Here, the symbol An := An,m
d≈ A := Am as n → ∞ indicates that the limiting distribution of

An is approximately the same as the distribution of A as n tends to ∞. More precisely, we can write

An = A1,n,m + A2,n,m, where A1,n,m
d→ A as n → ∞ and limm→∞ limn→∞ P(|A2,n,m| > δ) = 0 for all

δ > 0.

Remark 2. As seen in the proof of Theorem 2 of Lee, Lee and Park [10], one can easily check that owing to
Theorem 1, under the null,

sup
w∈W ′

∣∣∣√nSw(F̂n) +
m

∑
i=1

wi

(
Vn(si)−Vn(si−1)

)
+

m

∑
i=1

wi

(
Rn(si)− Rn(si−1)

)∣∣∣ = op(1),

wherein the term: ∑m
i=1 wi

(
Rn(si) − Rn(si−1)

)
becomes negligible as n tends to infinity when m is large.

This yields Theorem 2.

2.2. Proof of Theorem 1

We reexpress V̂n(r) as follows:

1√
n

n

∑
t=1

[I[η̂t ≤ x]− Fϑ̂n
(x)] =

1√
n

n

∑
t=1

[I[ηt ≤ x]− Fϑ0(x)] + An(x) + Bn(x) + Cn(x),

where

An(x) =
1√
n

n

∑
t=1

{
I
[
ηt ≤

g̃t(β̂1,n)− gt(β1,0)

ht(β0)
+

h̃t(β̂n)

ht(β0)
x
]
− Fϑ0

( g̃t(β̂1,n)− gt(β1,0)

ht(β0)
+

h̃t(β̂n)

ht(β0)
x
)

+Fϑ0(x)− I[ηt ≤ x]
}

,

Bn(x) =
1√
n

n

∑
t=1

[
Fϑ0

( g̃t(β̂1,n)− gt(β1,0)

ht(β0)
+

h̃t(β̂n)

ht(β0)
x
)
− Fϑ0(x)

]
,

Cn(x) =
1√
n

n

∑
t=1

[Fϑ0(x)− Fϑ̂n
(x)].

Since supx∈R |An(x)| = op(1) owing to Lemma 1 below, we handle the two terms Bn(x) and
Cn(x). Let

atn(β1) =
g̃t(β̂1)− gt(β1,0)

ht(β0)
and btn(β) =

h̃t(β1)− ht(β0)

ht(β0)
,

and let ζn be a sequence of positive integer numbers with ζn = o(
√

n) and ζn → ∞ as n → ∞.
We express Bn(x) = B1,n(x) + B2,n(x) + op(1), where
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B1,n(x) =
1√
n

n

∑
t=1

fϑ0(x)(atn(β̂1,n) + btn(β̂n)x), (8)

B2,n(x) =
1

2
√

n

n

∑
t=ζn+1

f ′ϑ0
(x∗t )(atn(β̂1,n) + btn(β̂n)x)2

for some x∗t between x and atn(β̂1,n) + btn(β̂n)x + x. By Taylor’s theorem, we can express

1√
n

n

∑
t=1

fϑ0(x)atn(β̂1,n) =
√

n(β̂1,n − β1,0)
T fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂gt(β1,0)

∂β1
+ R1,n(x) + R2,n(x) (9)

with

R1,n(x) =
1√
n

n

∑
t=1

fϑ0(x)
( g̃t(β̂1,n)− gt(β̂1,n)

ht(β0)

)
,

R2,n(x) =
√

n(β̂1,n − β1,0)
T fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂2gt(β∗1,n)

∂β1∂βT
1

(β̂1,n − β1,0)

for some β∗1,n between β1,0 and β̂1,n. Then, owing to (C1)(i) and (C4)(iii),

sup
x∈R
|R1,n(x)| ≤ 1√

n

n

∑
t=1

Vκt sup
x∈R
| fϑ0(x)| = op(1),

and due to the ergodic theorem, Lemma 4 of Amemiya [17], (C3)(iii), (C4)(iii), and (C6), we get
supx∈R |R2,n(x)| = op(1), so that

1√
n

n

∑
t=1

fϑ0(x)atn(β̂1,n) =
√

n(β̂1,n − β1,0)
T fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂gt(β1,0)

∂β1
+ op(1). (10)

Similarly, it can be easily seen that

1√
n

n

∑
t=1

x fϑ0(x)btn(β̂n) =
√

n(β̂n − β0)
Tx fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂ht(β0)

∂β
+ op(1). (11)

Next, we analyze B2,n(x). Owing to the ergodic theorem, Lemma 4 of Amemiya [17], (C1)(i),
(C3)(ii), (C4)(iii), and (C6), we have

sup
x∈R

1√
n

n

∑
t=1

f ′ϑ0
(x)a2

tn(β̂1,n)

≤ K√
n

n

∑
t=1

sup
x∈R
| f ′ϑ0

(x)|
( g̃t(β̂1,n)− gt(β̂1,n)

ht(β0)

)2
+

K√
n

n

∑
t=1

sup
x∈R
| f ′ϑ0

(x)|
( gt(β̂1,n)− gt(β1,0)

ht(β0)

)2

for some K > 0, which is no more than

K√
n

n

∑
t=1

sup
x∈R
| f ′ϑ0

(x)|V2κt + K
√

n(β̂1,n − β1,0)
T sup

x∈R
| f ′ϑ0

(x)| 1
n

n

∑
t=1

1
h2

t (β0)

∂gt(β∗1,n)

∂β1

∂gt(β∗1,n)

∂βT
1

(β̂1,n − β1,0)

= op(1), where β∗1,n is an intermediate point between β̂1,n and β1,0.
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Meanwhile, since maxζn≤t≤n |atn(β̂1,n)| = op(1) and maxζn≤t≤n |btn(β̂n)| = op(1), we can find
(large) M > 0, such that on the event E := (maxζn≤t≤n |atn(β̂1,n)| ≤ δ1, maxζn≤t≤n |btn(β̂n)| ≤ δ2),
δ1 > 0, 1 < δ2 < 1, with probability tending to 1,

sup
|x|≥M

( x
x∗t

)2
:= D < ∞. (12)

Hence, owing to the ergodic theorem, Lemma 4 of Amemiya [17], (C1)(ii), (C3)(ii), (C4)(iii),
and (C6), we can have that on E and for |x| ≥ M,

∣∣∣ 1√
n

n

∑
t=ζn+1

x2 f ′ϑ0
(x∗t )b

2
tn(β̂n)

∣∣∣
≤ K√

n

n

∑
t=ζn+1

x2| f ′ϑ0
(x∗t )|

( h̃t(β̂n)− ht(β̂n)

ht(β0)

)2
+

K√
n

n

∑
t=ζn+1

x2| f ′ϑ0
(x∗t )|

(ht(β̂n)− ht(β0)

ht(β0)

)2

≤ K√
n

n

∑
t=ζn+1

x∗2t | f ′ϑ0
(x∗t )|

( x
x∗t

)2
V2κt

+
√

n(β̂n − β0)
T K

n

n

∑
t=ζn+1

x∗2t | f ′ϑ0
(x∗t )|

( x
x∗t

)2( 1
h2

t (β0)

∂ht(β∗n)

∂β

∂ht(β∗n)

∂βT

)
(β̂n − β0),

for some K > 0 and intermediate vector β∗n between β̂n and β0, which is negligible. Because for
|x| < M, 1√

n ∑n
t=ζn+1 x2 f ′ϑ0

(x∗t )b
2
tn(β̂n) = op(1), it holds that supx∈R |B2,n(x)| = op(1), which together

with (10) and (11) indicates

Bn(x) =
√

n(β̂1,n − β1,0)
T fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂gt(β1,0)

∂β1
(13)

+
√

n(β̂n − β0)
Tx fϑ0(x)

1
n

n

∑
t=1

1
ht(β0)

∂ht(β0)

∂β
+ op(1).

Since Cn(x) =
√

n(ϑ̂n − ϑ0)
T ∂Fϑ0

(x)
∂ϑ + op(1), owing to (C5) and (C6), we establish the theorem.

Lemma 1. Under the assumptions in Theorem 1, we have supx∈R |An(x)| = op(1).

Proof of Lemma 1. Due to (C6), for any ε > 0, there exists L > 0 such that P(β̂n ∈ NL/
√

n) ≥ 1− ε,
where NL/

√
n = N 1

L/
√

n ×N
2
L/
√

n is a compact neighborhood of β0 with ||β − β0|| ≤ L/
√

n for all
β ∈ NL/

√
n. For a positive real number ι, we partition NL/

√
n into a finite number, say, q(ι) of subsets

I1
n = I1

1,n × I1
2,n, . . . , Iq(ι)

n = Iq(ι)
1,n × Iq(ι)

2,n with diameter less than ι√
n . Set

d1tn =
ι√
n

sup
β1∈N1

L/
√

n

∥∥∥∂g̃t(β1)

∂β1

∥∥∥h−1
t (β0) and d2tn =

ι√
n

sup
β∈NL/

√
n

∥∥∥∂h̃t(β)

∂β

∥∥∥h−1
t (β0).

Let N(n) be an integer such that N(n) = [n1/2+d] + 1, where d ∈ (0, 1/2) and [x] is the
largest integer that does not exceed x. We divide the interval [0, ∞) into N(n) parts by the points
0 = x0 < x1 < · · · < xN(n) = ∞ with Fϑ0(xi) = iN(n)−1.
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Then, for any points β
j
n = (β

jT

1,n, β
jT

2,n)
T in I j

n, we have

An(x) ≤ 1√
n

n

∑
t=1

{
I
[
ηt ≤ atn(β

j
1,n) + btn(β

j
n)xr+1 + d1tn + d2tnxr+1 + xr+1

]
(14)

− Fϑ0

(
atn(β̂1,n) + btn(β̂n)x + x

)
+ Fϑ0(x)− I[ηt ≤ x]

}
;

An(x) ≥ 1√
n

n

∑
t=1

{
I
[
ηt ≤ atn(β

j
1,n) + btn(β

j
n)x− d1tn − d2tnxr + xr

]
(15)

− Fϑ0

(
atn(β̂1,n) + btn(β̂n)x + x

)
+ Fϑ0(x)− I[ηt ≤ x]

}
.

Putting A
′
n = supx A

′
n(x), for β̂n ∈ NL/

√
n, we can express

A
′
n ≤ max

1≤j≤q(ι)
sup

r
sup

x∈[xr ,xr+1)

(A
′
1,n(x) + A

′
2,n(x) + A

′
3,n(x) + A

′
4,n(x) + A

′
5,n(x))

with

A
′
1,n(x) =

∣∣∣ 1√
n ∑n

t=1

{
I
[
ηt ≤ atn(β

j
1,n) + btn(β

j
n)xr+1 + d1tn + d2tnxr+1 + xr+1

]
−Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr+1 + d1tn + d2tnxr+1 + xr+1

)
+ Fϑ0(xr+1)− I[ηt ≤ xr+1]

}∣∣∣,
A
′
2,n(x) =

∣∣∣ 1√
n ∑n

t=1

{
Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr+1 + d1tn + d2tnxr+1 + xr+1

)
−Fϑ0(atn(β̂1,n) + btn(β̂n)x + x)

}∣∣∣,
A
′
5,n(x) =

∣∣∣ 1√
n ∑n

t=1

{
I[ηt ≤ xr]− Fϑ0(xr) + Fϑ0(x)− I[ηt ≤ x]

}∣∣∣,
and A

′
3,n(x) and A4,n(x) are the same as A1,n(x) and A3,n(x), with xr+1 and ditn replaced by xr and

−ditn, i = 1, 2, respectively.
To show A

′
n = op(1), we verify that max1≤j≤q(λ) supr supxr<x≤xr+1

A
′
i,n(x) = op(1), i = 1, . . . , 5.

Below, we only provide the proof for the cases of i = 1, 2, 5, since the cases of i = 3, 4 can be
handled similarly.

We first deal with A
′
2,n(x). By the mean value theorem, we can see that

max1≤j≤q(ι) supr supx∈[xr ,xr+1)
A
′
2,n(x) is no more than

max1≤j≤q(ι) supr supx∈[xr ,xr+1)

∣∣∣ 1√
n ∑n

t=ζn+1

{
Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr+1 + d1tn + d2tnxr+1 + xr+1

)
−Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr + xr

)∣∣∣+ ∆n

(16)

with

∆n = max
1≤j≤q(ι)

sup
r

sup
x∈[xr ,xr+1)

∣∣∣ 1√
n

n

∑
t=ζn+1

{
Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr + xr

)
− Fϑ0(atn(β̂1,n) + btn(β̂n)xr + xr)

}∣∣∣.
Note that the term in (16) is op(1) due to Lemma 1, and

∆n ≤ max1≤j≤q(ι) sup
r

sup
x∈[xr ,xr+1)

n

∑
t=ζn+1

fϑ0(x∗t ) sup
x
(1 + |x|)( fθ0(x) f

{∣∣∣ x
x∗t

∣∣∣d2tn + d1tn

}
,
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where x∗t is a real number between atn(β
j
1,n)+ btn(β

j
n)xr + d1tn + d2tnxr + xr and atn(β̂1,n)+ btn(β̂n)xr + xr.

Using an argument similar to that in (12), we can see that I In = ιOp(1), which can be made arbitrarily
small by taking sufficiently small ι. Hence, we get max1≤j≤q(ι) supr supxr<x≤xr+1

A
′
2,n(x) = op(1).

Next, because |Fϑ̂n
(xr+1)− Fϑ̂n

(xr)| ≤ n−1/2−d, we can write

supr supxr<x≤xr+1
A
′
5,n(x)

≤ supr
1√
n

∣∣∑n
t=1{I(ηt ≤ xr+1)− Fϑ0(xr+1)− Fϑ0(xr) + I(ηt ≤ xr)}

∣∣+ o(1) = op(1).
(17)

Hence, it remains to show that

max
1≤j≤q(ι)

sup
r

sup
xr<x≤xr+1

A
′
1,n(x) = op(1). (18)

Put

etn = I
[
ηt ≤ atn(β

j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr + xr

]
− Fϑ0

(
atn(β

j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr + xr

)
+ Fϑ0(xr)− I[ηt ≤ xr]

}
, 1 ≤ t ≤ n;

and Skn = ∑k
t=1 etn. Note that {Skn; k = 1, . . . , n}, n ≥ 1, forms an array of martingale differences.

Then, we get

P
(

max
1≤j≤q(ι)

sup
x

A
′
1,n(x) ≥ ε

)
= P

(
max

1≤j≤q(ι)
max

r
n−1/2|Snn| ≥ ε

)
, (19)

and further, applying Rosenthal’s inequality (Hall and Heyde [18], p. 23),

E[S4
nn] ≤ C

(
E
[ n

∑
t=1

E(e2
tn|Ωt)

]2
+

n

∑
t=1

E(e4
tn)
)

, C > 0. (20)

By the mean value theorem, we can have E(e2
tn|Ωt) ≤ K fϑ0(x

∗
t )||atn(β

j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr|

for some K > 0 and x∗t between xr and atn(β
j
1,n) + btn(β

j
n)xr + d1tn + d2tnxr + xr, so that

E
[

∑n
t=1 E(e2

tn|Ωt)
]2

= O(n), by using an argument such as that in (12). Therefore, since ∑n
t=1 E(e4

tn) ≤ 16n,

we have E[S4
nn] = O(n) by (20). This, together with (19), validates the lemma.

Lemma 2. Under the assumptions in Theorem 1, for every d ∈ (0, 1/2), we have

Λn := sup
β∈NL/

√
n

sup
(x,y)∈Bd,n

∣∣∣ 1√
n

n

∑
t=1

[Fϑ0(atn(β1) + btn(β)x + d1tn + d2tnx + x)

−Fϑ0(atn(β1) + btn(β)y + d1tn + d2tny + y)]
∣∣∣ = op(1)

where Bd,n = {(x, y) ∈ R2 : |Fϑ0(x)− Fϑ0(y)| ≤ n−1/2−d}.

Proof of Lemma 2. The lemma can be proven by using (C2)∼(C4) and the second-order Taylor’s
expansion theorem centered at x and y. We omit the details for brevity.

3. Discussion

In implementation, following the idea of Lee, Vonta and Karagrigoriou [9] and Lee, Lee and Park [10],
we generate independent and identically distributed (i.i.d.) r.v.s wij, j = 1, · · · , J, from U[0, 1], where J
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is a large integer (e.g., 1000), and then use w̃ij =
wij

w1j+···+wmj
and si = i/m, i = 1, · · · , m to apply

the test:

T̂n =
√

n max1≤j≤J

∣∣∣∑m
i=1 w̃ij

(
F̂n

(
i
m

)
− F̂n

(
i−1
m

))
log m

(
F̂n

(
i
m

)
− F̂n

(
i−1
m

))∣∣∣
d≈ supw∈W

∣∣∣∑m
i=1 wi

(
B
(

i
m

)
−B

(
i−1
m

))∣∣∣. (21)

The choice of m could be an important issue because the test performance might be sensitive to m.
Here, we use m = [n1/3] because this has produced reasonably good results in our previous studies.
The critical values could be obtained through Monte Carlo simulations as follows:

(i) From the data X1, . . . , Xn, estimate β and ϑ by suitable estimators β̂n and ϑ̂n; for example,
MLE (Kim and Lee [2]).

(ii) Generate η∗1 , . . . , η∗n from Fϑ̂n
(·) and Y∗1 , . . . , Y∗n using the equation: Y∗t = g̃t(β̂1,n) + h̃t(β̂n)η∗t .

Then, obtain T̂n, denoted by T̂∗n , with the preassigned m in (21) based on these random variables.
(iii) Repeat the above procedure B times and calculate the 100(1− p)% percentile of the obtained B

number of T̂∗n values.
(iv) Reject H0 if the value of T̂n obtained from the original observations is larger than the obtained

100(1− p)% percentile in (iii).

The good performance of the entropy test for GARCH-type models can be seen in our previous
works: Lee, Lee and Park [10], Lee and Oh [11], and Lee and Kim [4]. However, more refined empirical
studies are required to see the performance of the above procedure in various location-scale models.
Meanwhile, verifying the weak consistency of the T̂∗n can be an important issue. The proof would be
similar to that in Lee and Kim [4], which, however, needs much more careful analysis. All these issues
are worth further investigation and are left as our future project.

4. Conclusions

In this study, we considered the entropy-based test for location-scale time series models and
showed that it converges weakly to a functional of a Brownian bridge. As mentioned earlier,
the bootstrap test in this setting deserves special attention owing to its importance in implementation.
Furthermore, a modification of the entropy test based on integrated distributions is worth further
investigation. We leave these issues to our future project.
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