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Abstract: In a recent paper (Chliamovitch, et al., 2015), we suggested using the principle of maximum
entropy to generalize Boltzmann’s Stosszahlansatz to higher-order distribution functions. This
conceptual shift of focus allowed us to derive an analog of the Boltzmann equation for the two-particle
distribution function. While we only briefly mentioned there the possibility of a hydrodynamical
treatment, we complete here a crucial step towards this program. We discuss bilocal collisional
invariants, from which we deduce the two-particle stationary distribution. This allows for the
existence of equilibrium states in which the momenta of particles are correlated, as well as for the
existence of a fourth conserved quantity besides mass, momentum and kinetic energy.

Keywords: kinetic theory; non-equilibrium statistical mechanics; maximum entropy principle

1. Introduction

From the very beginnings and at the very heart of the kinetic theory of gases lies a restrictive
technical assumption (known as Stosszahlansatz or assumption of molecular chaos) about the state of
particles entering a binary collision, namely that the momenta of such colliding particles are statistically
independent. Of course this assumption did not prevent kinetic theory from achieving remarkable
successes in diversified areas of statistical mechanics, fluid dynamics and others, and even from a
purely conceptual standpoint, the controversies raised by the time irreversibility resulting from the
Stosszahlansatz have been settled to a large extent, so that the molecular chaos can no longer be
considered a central issue of theoretical physics [1].

Still, however, although exact results have been obtained regarding its range of validity [2,3],
from a purist’s perspective, the Stosszahlansatz is little more than an ad hoc assumption. Unfortunately,
the way it could be complemented or generalized is anything but obvious, so it might seem that the
ansatz is here to stay. Nonetheless, our point in this paper, first raised in [4], is to suggest that
such a generalization can be achieved at the cost of a conceptual shift as to the actual meaning
of the Stosszahlansatz itself. At first glance, the scope of this assumption seems unambiguous,
for the factorization hypothesis should be no more than the mathematical translation of a physical
(though statistical) property of the system.

Readers familiar with the maximum entropy approach to statistical inference [5–8] will remember,
however, that a factorized joint distribution is the maximum entropy estimate based on the knowledge
of univariate marginal distributions. In other words, the factorization of the two-particle function
describing the particles entering a collision can be envisaged as a heuristic hypothesis rather than a
purely physical statement.

So far, this may appear to be a rhetoric move, since from a mathematical standpoint the move
is harmless; however, from a conceptual perspective, it makes quite a difference, for while the
factorization hypothesis is hard to amend on physical grounds, on the other side, the maximum
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entropy factorization lends itself nicely to generalization. This maximum entropy ansatz on the
three-particle distribution then allows closing the BBGKY hierarchy at the second order and deriving a
kinetic equation describing the evolution of the two-particle distribution.

Once the kinetic equation is set up, it becomes possible to follow the usual steps leading to the
equilibrium distribution and macroscopic balance equations. There is however on the road a subtlety
related to the definition of collisional invariants appropriate to the bilocal events under consideration
here, and it happens that, besides conservation of (bilocal) mass, momentum and kinetic energy,
it is necessary to consider a fourth invariant that eventually accounts for the momentum correlation
of particles.

The aim of this paper is to discuss these conceptual points in detail. In Sections 2 and 3, we derive
the BBGKY equation at the second order. In Section 4, we introduce the maximum entropy ansatz for
the three-particle distribution and the resulting closure of the hierarchy. Bilocal collisional invariants
are discussed in Section 5, equilibrium distributions in Section 6, and balance equations in Section 7.
We conclude with some remarks of a more philosophical flavour, emphasizing among others that what
appears to be intuitive when working in the one-particle description does not necessarily hold any
longer in the two-particle description.

2. Liouville Equation and BBGKY Hierarchy

Let us consider N particles of mass m, whose coordinates in phase space are their positions xi and
momenta pi. It will be convenient to define a condensed notation ξi = (xi, pi). We let fN(ξ1, ..., ξN , t)
denote the joint distribution function characterizing the system; fN obeys Liouville’s equation [9]

d fN
dt

=
∂ fN
∂t

+
N

∑
i=1

pi
m

∂ fN
∂xi

+
N

∑
i=1

Fi
∂ fN
∂pi

= 0 (1)

where Fi denotes the force exerted on particle i. We shall restrict ourselves to the case without an
external force and where particles interact pairwise through some radial potential V(|xi − xj|) = Vij,

so that Fi = −∑j 6=i
∂Vij
∂xi

. Considering that fN itself is normalized to N!, we can introduce the reduced

s-particle distribution fs(ξ1, ..., ξs, t) = N!
(N−s)!

∫
dξs+1, ..., dξN fN(ξ1, ..., ξN , t).

Liouville’s equation is a direct consequence of Newtonian dynamics, and as such is reversible.
In particular, it should be recalled [10–12] that, in contradistinction with the entropy of the one-particle
distribution, the entropy of the N-particle density, namely

H( fN) = −
∫

dξ1...dξN fN(ξ1, ..., ξN) ln fN(ξ1, ..., ξN) (2)

is conserved by Equation (1). The emergence of irreversibility in the reduced one-particle description
has been discussed more than extensively (for an interesting elementary presentation, see [13]), but it is
clear nowadays that it results unavoidably from integrating out degrees of freedom that are irrelevant
to the description [14].

By integrating Liouville’s equation (N− s) times, one obtains a dynamical equation for fs, which,
however, lets intervene f(s+1); we actually obtain a hierarchy of implicit kinetic equations, the so-called
BBGKY hierarchy (from the non-chronological list of its co-discoverers’ names: Bogoliubov, Born, Green,
Kirkwood, Yvon). The typical term of the hierarchy for fs is

∂ fs

∂t
+

s

∑
i=1

pi
m

∂ fs

∂xi
−

s

∑
i=1

s

∑
j 6=i

∂Vij

∂xi

∂ fs

∂pi
−
∫

dξs+1

s

∑
i=1

∂Vi,s+1

∂xi

∂ fs+1

∂pi
= 0 (3)

Certainly, each equation can be deduced from its higher-order precursor by integration, at the
cost of an information loss. The first two members, BBGKY1 and BBGKY2, in which we are primarily
interested here, read
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∂ f1

∂t
+

p1

m
∂ f1

∂x1
=
∫

dξ2
∂V12

∂x1

∂ f2

∂p1
(4)

and
∂ f2

∂t
+

p1

m
∂ f2

∂x1
+

p2

m
∂ f2

∂x2
− ∂V12

∂x1

(
∂

∂p1
− ∂

∂p2

)
f2 =

∫
dξ3

(
∂V13

∂x1

∂ f3

∂p1
+

∂V23

∂x2

∂ f3

∂p2

)
(5)

where we have put for convenience, f1 = f1(p1, x1, t), f2 = f2(p1, x1, p2, x2, t) and
f3 = f3(p1, x1, p2, x2, p3, x3, t). Our purpose is to investigate the second of these equations by
truncating it in order to obtain a single self-standing equation for f2.

3. From BBGKY2 to the Kinetic Equation

We now proceed to write down the kinetic equation for f2. Throughout, we shall retain the usual
assumptions of kinetic theory [9,12,15], leading us to neglect triple collisions: the streaming term for
the two-particle distribution characterizing particles 1 and 2 will thus be altered by: (1) binary collisions
between particle 1 and another particle, 2 being a spectator; and (2) binary collisions between particle 2
and another particle, 1 being a spectator. Sticking tightly to the assumptions made in the one-particle
theory is important in order to guarantee that any new prediction arising in the present two-particle
description can be ascribed to the statistical description considered and not to the introduction of new
physical assumptions.

The binary interaction is defined as the occurrence of two particles meeting in a ball B of radius R.
Defining ternary interactions is more subtle since, inasmuch as the interaction potential is the same
whatever the order of the interaction, it seems artificial to introduce a specific cutoff. We shall therefore
define the range of triple collisions as the lenticular overlap of balls B(1)

R and B(2)
R characterizing the

domain of interaction with particles 1 and 2, respectively. Neglecting triple collisions thus amounts us
to assume that |x1 − x2| > 2R.

We first compute the contribution of collisions of particle 1 with particle 3, particle 2 being left
aside. Let us recall that the collision term is given by(

∂ f2

∂t

)
coll

=
∫

dξ3

(
∂V13

∂x1

∂ f3

∂p1
+

∂V23

∂x2

∂ f3

∂p2

)
(6)

In the usual derivation of the Boltzmann equation from the BBGKY hierarchy, the right-hand
side of BBGKY1 is transformed using BBGKY2. Similarly, we can transform (∂t f2)coll using BBGKY3,
which reads

∂ f3

∂t
+

p1

m
∂ f3

∂x1
+

p2

m
∂ f3

∂x2
+

p3

m
∂ f3

∂x3
− ∂V12

∂x1

(
∂

∂p1
− ∂

∂p2

)
f3

− ∂V13

∂x1

(
∂

∂p1
− ∂

∂p3

)
f3 −

∂V23

∂x2

(
∂

∂p2
− ∂

∂p3

)
f3 =

(
∂ f3

∂t

)
coll

(7)

(we do not make explicit the collision term (∂t f3)coll , as we shall cancel it soon anyway). Under usual
dimensional assumptions, we can write ∂t f3 ≈ 0 and (∂t f3)coll ≈ 0, so that, substituting in the collision
term, (∂t f2)coll is rewritten as(

∂ f2

∂t

)
coll

=
∫

dξ3

(
p1

m
∂ f3

∂x1
+

p2

m
∂ f3

∂x2
+

p3

m
∂ f3

∂x3
− ∂V12

∂x1

(
∂

∂p1
− ∂

∂p2

)
f3 +

(
∂V13

∂x1
+

∂V23

∂x2

)
∂ f3

∂p3

)
=
∫

dξ3

(
p1

m
∂ f3

∂x1
+

p3

m
∂ f3

∂x3

)
(8)

(the last term vanishes due to the boundary condition f3(|p3| → ∞) = 0, the penultimate because
particles 1 and 2 are supposed far apart from each other (i.e., they do not interact directly) and the
second because f3 depends weakly on x2). More precisely,
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(
∂ f2

∂t

)
coll

=
∫

x3∈B(1)
R

dx3dp3

(
p1

m
∂ f3

∂x1
+

p3

m
∂ f3

∂x3

)
(9)

The following is standard [9]. We introduce the relative coordinate r13 = x3 − x1 and use Gauss’s
theorem in order to rewrite (∂t f2)coll as a surface integral, so that(

∂ f2

∂t

)
coll

=
∫

r13∈BR

dr13dp3
p3 − p1

m
∂ f3

∂r13

=
∫

SR

dp3dΣ · p3 − p1

m
f3

=
∫

S−R∪S+R
dp3dΣ · p3 − p1

m
f3 (10)

where dΣ denotes the surface element of the sphere SR such that |r13| = R. The southern hemisphere
is interpreted as the contribution of oncoming collisions, since (p3 − p1) · dΣ < 0, while the northern
hemisphere is the contribution of ending collisions, since (p3 − p1) · dΣ > 0.

Orienting the polar axis along p3 − p1, we have dΣ · (p3 − p1) = |p3 − p1|R2 sin θ cos θdθdφ.
This can be re-expressed in terms of the surface element of the azimuthal plane, such that θ = π/2.
Letting r denote the radial component on the plane, we have r = R sin θ, whence dr = ±R cos θdθ

(depending on θ being lesser or larger than π/2) and dΣ · (p3 − p1) = ±|p3 − p1|dω. The collision
term can thus be rewritten as (approximating x3 ≈ x1, as |x3 − x1| � |x2 − x1|):(

∂ f2

∂t

)
coll

=
∫

a f ter
dp3dω

|p3 − p1|
m

f3(x1, p1, x2, p2, x1, p3, t)

−
∫

be f ore
dp3dω

|p3 − p1|
m

f3(x1, p1, x2, p2, x1, p3, t) (11)

4. The Ansatz for BBGKY2

The procedure leading from the BBGKY1 equation to a consistent kinetic equation for f1 is standard:
the Stosszahlansatz asserts that, before colliding, two particles are uncorrelated, i.e., f2 factorizes as
f2(ξ1, ξ2) = f1(ξ1) f1(ξ2). This allows us to express the collision integral in terms of f1, so that BBGKY1
becomes a closed equation for f1. Because this factorization hypothesis may be supported from a
physical standpoint, it is tempting to also use this ansatz in the collision term for BBGKY2. However,
this raises an issue: if BBGKY2 can be cast into an equation relating a streaming term expressed in terms
of f2 to a collision term expressed in terms of f1, then this equation is clearly not consistent by itself,
and has to be supplemented, so as to obtain a system of coupled equations.

Our point is that this issue vanishes if the molecular chaos is reconsidered as a heuristic ansatz
instead of a physically-grounded assumption. This ansatz should then be formulated as follows:
because the exact codependence of particles entering the collision range is unknown, one must make
a reasonable guess on it, and the maximum entropy distribution steps out at this point because the
maximum entropy guess for f2, compatible with the univariate distribution appearing in the streaming
term, is the factorized one.

The maximization problem is most usually formulated for constraints over averages rather
than marginals, but the latter can be recovered from the former after some δ-functions gymnastics.
For constraints over averages, we are looking for a distribution p(r) such that H(r) = −

∫
drp(r) ln p(r)

is maximal, while the constraint
∫

dr fk(r)p(r) = µk is enforced (k takes its value in {1, ..., K}where K is
the total number of constraints imposed to the distribution). Using Lagrange’s multipliers, the problem
reduces to solving
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0 =
∂

∂p(r)

(
−
∫

dsp(s) ln p(s) + λ0

(∫
dsp(s)− 1

)
+

K

∑
k=1

λk

(∫
ds fk(s)p(s)− µk

))

= −
∫

dsδr,s ln p(s)−
∫

dsδr,s + λ0

∫
dsδr,s +

K

∑
k=1

λk

∫
ds fk(s)δr,s

= − ln p(r)− 1 + λ0 +
K

∑
k=1

λk fk(r) (12)

Denoting the partition function by Z =
∫

dr exp
(

∑K
k=1 λk fk(r)

)
, the sought-after distribution

may therefore be written as

p(r) =
1
Z

exp

(
K

∑
k=1

λk fk(r)

)
(13)

The standard result for averages, Equation (13), may be generalized to the case of constrained
marginals [7]. Taking for illustration, the case of three variables (i.e., r = (w, y, z)) and assuming the
bivariate marginal p12(a, b) is fixed, let us set f (r) = δw,aδy,b. Then,∫

dr f (r)p(r) =
∫

dwdyδw,aδy,b

∫
dzp(r)

=
∫

dwdyδw,aδy,b p12(w, y)

= p12(a, b) (14)

Applying Equation (13) to all possible values of the arguments then yields

p(r) =
1
Z

exp
(∫

dadbλ(a, b) f (r)
)

=
1
Z

exp
(∫

dadbλ(a, b)δw,aδy,b

)
=

1
Z

exp (λ(w, y)) (15)

where λ now denotes a well-chosen multiplying function. The extension to any number of marginals
is straightforward; for instance, if, besides p12, the marginals p13 and p23 are fixed, we obtain

p(r) =
1
Z

exp (λ12(w, y) + λ13(w, z) + λ23(y, z)) (16)

We leave it to the reader to show that, as mentioned above, the maximum entropy distribution
compatible with univariate marginals is the factorized distribution.

Coming back to our reduced distribution functions, it is now obvious that the maximum entropy
guess for f3, compatible with the f2 appearing in the left-hand side, is more involved than a direct
factorization. Indeed, defining Λ = exp λ, it follows from Equation (16) that, given bivariate
marginals, the maximum entropy estimate for f3(ξ1, ξ2, ξ3) takes the form (note the condensed notation
ξi = (xi, pi) introduced above)

f ME
3 (ξ1, ξ2, ξ3) = Λ1(ξ1, ξ2)Λ2(ξ1, ξ3)Λ3(ξ2, ξ3) (17)

for some functions Λ1, Λ2 and Λ3 that have to be found so as to match the marginals on the first and
second, first and last, and second and last variables. This result is, generally speaking, of limited
practical range, but fortunately, particle distribution functions have the crucial peculiarity of being
symmetric under exchange of the particles. This implies that these marginals are the same for each
pair, and accordingly all three Λ’s are actually the same. One is therefore allowed to write that
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f ME
3 (ξ1, ξ2, ξ3) = G(ξ1, ξ2)G(ξ1, ξ3)G(ξ2, ξ3) (18)

for a function G that is nevertheless still unknown, except for the fact that it has to satisfy the
marginal constraint:

G(ξ1, ξ2)
∫

dξ3G(ξ1, ξ3)G(ξ2, ξ3) = f2(ξ1, ξ2) (19)

It results from the previous consideration that, before the collision, the maximum entropy
estimation of the three-particle distribution function can be written as

f3(x1, p1, x2, p2, x1, p3, t) = Gx1,x2
p1,p2 Gx1,x1

p1,p3 Gx2,x1
p2,p3 (20)

where, for the sake of readability, we have used the shortcut Gx1,x2
p1,p2 = G(x1, p1; x2, p2; t). The ansatz may

be extended after the collision using the fact that, by the Liouville equation, f3(x1, p1, x2, p2, x1, p3, t) =
f3(x−τ

1 , p′1, x−τ
2 , p′2, x−τ

1 , p′3, t− τ), where τ is the retardation such that, at t− τ, the particles are entering
the collision range with momenta p′1 and p′3. Because x−τ

i ≈ xi and t ≈ t− τ, and because p′1 and p′3
are pre-collisional momenta, the ansatz may also be introduced in the first integral with the arguments
p′1 and p′3. We are therefore eventually led to the following Boltzmann-like form for the second-order
BBGKY equation (note that p′2 = p2 in the first integral as particle 2 does not take part in the event,
and similarly p′1 = p1 in the second integral):

∂ f2

∂t
+

p1

m
∂ f2

∂x1
+

p2

m
∂ f2

∂x2
=
∫

dp3dω
|p3 − p1|

m
(Gx1,x2

p′1,p2
Gx1,x1

p′1,p′3
Gx2,x1

p2,p′3
− Gx1,x2

p1,p2 Gx1,x1
p1,p3 Gx2,x1

p2,p3)

+
∫

dp4dω
|p4 − p2|

m
(Gx1,x2

p1,p′2
Gx1,x2

p1,p′4
Gx2,x2

p′2,p′4
− Gx1,x2

p1,p2 Gx1,x2
p1,p4 Gx2,x2

p2,p4) (21)

The first term corresponds to the contribution of collisions undergone by particle 1 (detailed
above), while the second accounts for the contribution of collisions undergone by particle 2.

Equation (21) is coherent for f2, as G can, in principle, be solved in terms of f2. This implicit
form of the collision term bears a close ressemblance with that appearing in the standard Boltzmann
equation. This resemblance might however turn deceptive, as G is likely to be a complicated functional
of f2, but it happens that in spite of this mathematical complication we can push the analysis further.

5. Collisional Invariants

Our immediate purpose is to deduce the equilibrium distribution resulting from Equation (21).
To this end, we need to define collisional invariants that are appropriate to the scheme developed
here. The form assumed by the collision term in Equation (21) makes it necessary (see Section 7) to
introduce bilocal invariants χ that are quantities conserved in a bilocal collision of particle pairs (1,2)
and (3,4), which occur in x1 and x2 for the (1,3) and (2,4) collisions, respectively. A collisional invariant
has to be defined in this case such that (in this context, spatial arguments are not relevant and can be
dropped out).

χ(p′1, p′2) + χ(p′3, p′4) = χ(p1, p2) + χ(p3, p4) (22)

However, although collisions of external particles with both particle 1 and particle 2 have to be
taken into consideration, these events do not, with overwhelming probability, occur simultaneously,
and either particle 1 or particle 2 will not undergo a collision and will thus be left unaltered. In other
words, the description of the events is expressed in bilocal terms, but the events that alter the particle
pair (1,2) still consist of local collisions. In such spurious bilocal collisions, we argue that Equation (22)
should therefore instead read

χ(p′1, p′2) + χ(p′3, p′2) = χ(p1, p2) + χ(p3, p2) (23)
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or
χ(p′1, p′2) + χ(p′1, p′4) = χ(p1, p2) + χ(p1, p4) (24)

for the first and second term on the rhs of Equation (21), respectively. This interpretation amounts
to introducing a free fictitious extra particle so as to treat these two simple collisions as pair–pair
collisions. For instance, in Equation (28), the role of particle 4 is taken on by a particle that mimics
particle 2 (which does not take part in the local collision involving particles 1 and 3) exactly. The crucial
point is that the extra particles so introduced are free; hence, the operation is harmless as far as the
collision term is concerned.

Taking in consideration the above, we are now in a position to discuss invariants themselves.
Beside mass invariance, obvious invariants are χ(p1, p2) = (p1 + p2) describing the conservation of
momentum, hence

(p′1 + p′2) + (p′3 + p′4) = (p1 + p2) + (p3 + p4) (25)

and χ(p1, p2) = (p2
1 + p2

2) describing the conservation of kinetic energy, hence

(p′21 + p′22 ) + (p′23 + p′24 ) = (p2
1 + p2

2) + (p2
3 + p2

4) (26)

We assert that, in our case, these invariants should be complemented by χ(p1, p2) = (p1 · p2),
whose conservation equation reads

(p′1 · p′2) + (p′3 · p′4) = (p1 · p2) + (p3 · p4) (27)

The rationale for introducing this exotic invariant is not obvious at first, but at the light of the
discussion above, Equation (27), should actually be understood as

(p′1 · p′2) + (p′3 · p′2) = (p1 · p2) + (p3 · p2) (28)

or
(p′1 · p′2) + (p′1 · p′4) = (p1 · p2) + (p1 · p4) (29)

for the first and second terms of the rhs of Equation (21), respectively. Because p′2 = p2 in the former
and p′1 = p1 in the latter, we finally obtain

p2 · (p′1 + p′3) = p2 · (p1 + p3)

and
p1 · (p′2 + p′4) = p1 · (p2 + p4)

whose validity is obvious. As we shall see below, this exotic collisional invariant is necessary to enforce
momentum correlation between particles at equilibrium.

6. Equilibrium State

To proceed towards the two-particle distribution at equilibrium, let us first note that
Gx1,x1

p′1,p′3
= Gx1,x1

p1,p3 and Gx2,x2
p′2,p′4

= Gx2,x2
p2,p4 . This property is certainly true of f2 itself by Liouville’s theorem,

so we can reasonably suppose it passes to G; this can also be verified directly from Equation (31), as, for
a binary collision, we have that p′1 · p′3 = p1 · p3 (this relation follows from expressing post-collisional
velocities in terms of the apsidal vector characterizing the event [11]). This property is helpful, as it
allows us to proceed even though we do not have at hand aH theorem for f2, which seems to raise
substantial mathematical issues.
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Then, the condition for the collision integrals to vanish is
Gx1,x2

p′1,p2
Gx2,x1

p2,p′3
= Gx1,x2

p1,p2 Gx2,x1
p2,p3

Gx1,x2
p1,p′2

Gx1,x2
p1,p′4

= Gx1,x2
p1,p2 Gx1,x2

p1,p4

(30)

Taking the logarithm of both sides, we recognize in ln Geq a collisional invariant as defined by
Equations (28) and (29), so that this quantity is necessarily a linear combination of the invariants
introduced above, that is,

Geq(p1; p2) = eA+B·(p1+p2)+C(p2
1+p2

2)+Dp1·p2 (31)

This form is actually not the most general, since the coefficients could possibly depend on the
space variables. While letting A, B and C depend on x1, x2 might seem an unnecessary subtlety,
this dependence would be relevant for the coefficient in front of p1 · p2, allowing for correlations
depending on the inter-particle distance. This, however, introduces additional complications when
connecting coefficients to observable quantities. Because both cases are equivalent for illustrating
the points of interest here, we shall focus on the case of constant coefficients, although for practical
applications it will be necessary to deal with the general case D = D(x1, x2).

From this expression for Geq, we can now deduce the expression for the three-particle distribution
f eq
3 that makes the collision term vanish. Substituting p3 → k in order to single out the integration

variable, we obtain

f eq
3 (p1, p2, k) = Geq(p1, p2)Geq(p1, k)Geq(p2, k)

= e3A+2B(p1+p2+k)+2C(p2
1+p2

2+k2)+D(p1p2+p2k+p1k) (32)

It remains to integrate on k in order to obtain f eq
2 as

f eq
2 (p1, p2) = e3A+B(p1+p2)+2C(p2

1+p2
2)+Dp1p2

∫
dke(2B+Dp1+Dp2)k+2Ck2

=
(
− π

2C

)3/2
e3A− B2

2C e(2− D
2C )B(p1+p2)+

(
2C− D2

8C

)
(p2

1+p2
2)+

(
D− D2

4C

)
p1p2 (33)

The coefficients have now to be determined so as to match observational constraints on the
average momentum, average kinetic energy ε, and momentum correlation ϕ. Because the average
momentum is proportional to B, we can restrict ourselves, for simplicity, to the case of a gas without
global translational motion and set B = 0, so that

f eq
2 (p1, p2) =

(
− π

2C

)3/2
e3Ae

(
2C− D2

8C

)
(p2

1+p2
2)+

(
D− D2

4C

)
p1p2 (34)

Regarding the average energy (keeping in mind that f2 is normalized, by convention, to N(N− 1) ≈ N2),
we should have

ε =

∫
dp1dp2

(
p2

i
2m

)
f eq
2∫

dp1dp2 f eq
2

=
V2

2mN2 〈p
2
i 〉 (35)

Regarding the correlation coefficient of momenta, it follows from our assumption of a gas without
global translational motion that

ϕ =
〈p1 · p2〉 − 〈p1〉 · 〈p2〉√
〈p2

1〉 − 〈p1〉2
√
〈p2

2〉 − 〈p2〉2
=
〈p1 · p2〉
〈p2〉 (36)
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where
〈O〉 =

∫
dp1dp2O f eq

2 (37)

Performing integrations on p1, p2 therefore allows relating ϕ to C and D as

ϕ =
D2 − 4CD
16C2 −D2 (38)

so that D = −4Cϕ/(1+ ϕ). Using the expression for ε, the coefficient C can then be related to ϕ as

C =
3(ϕ + 1)

8mε(2ϕ + 1)(ϕ− 1)
(39)

Normalizing, we finally arrive at the conclusion that

f eq
2 (p1; p2) =

(
N
V

)2 ( 3
4πmε

)3
(1− ϕ2)−3/2 exp

(
− 3

4mε(1−ϕ2)

(
p2

1 + p2
2
)
+ 3ϕ

2mε(1−ϕ2)
p1 · p2

)
(40)

It therefore appears that equilibrium distributions, such as Equation (40), can, at least in principle
(the existence of correlations eventually being an experimental issue), be found for which particles stay
correlated with each other over time. This correlation is nonetheless hidden as long as one-particle
distributions only are examined, since by integrating on p2 we recover Maxwell’s usual distribution
of velocities:

f eq
1 (p1) =

N
V

(
3

4πmε

)3/2
exp

(
− 3

4mε
p2

1

)
(41)

7. Balance Equations

Allowing for momentum correlation between particles has a two-fold consequence as to the
macroscopic description of the fluid. First, it makes it necessary to take account of this correlation in
the usual balance equations for mass, momentum and energy; second, these have to be complemented
by a fourth balance equation corresponding to the collisional invariant of Equation (27).

The macroscopic conservation equations are derived from Equation (21) by multiplying both
sides by χ(p1, p2) and integrating on momenta, so as to obtain

∫
dp1dp2χ(p1, p2)

(
∂

∂t
+

p1

m
∂

∂x1
+

p2

m
∂

∂x2

)
f2(x1, p1; x2, p2; t)

=
∫

dp1dp2dp3dωχ(p1, p2)
|p3 − p1|

m
(Gx1,x2

p′1,p2
Gx1,x1

p′1,p′3
Gx2,x1

p2,p′3
−Gx1,x2

p1,p2 Gx1,x1
p1,p3 Gx2,x1

p2,p3)

+
∫

dp1dp2dp4dωχ(p1, p2)
|p4 − p2|

m
(Gx1,x2

p1,p′2
Gx1,x2

p1,p′4
Gx2,x2

p′2,p′4
−Gx1,x2

p1,p2 Gx1,x2
p1,p4 Gx2,x2

p2,p4) (42)

We now have to go through the usual sequence of relabeling and permutations [9,15]. We first
substitute p1 ↔ p3 in the first integral of the collision term and p2 ↔ p4 in the second (which is
allowed as both are dummy variables) so as to have two equivalent forms of the collision term, of which
we take the average. In this averaged collision term, we now relabel p1 ↔ p′1, p2 ↔ p′2, p3 ↔ p′3
and p4 ↔ p′4. Using the fact that dp′1dp′2dp′3 = dp1dp2dp3 and dp′1dp′2dp′4 = dp1dp2dp4, and that
|p′3 − p′1| = |p3 − p1| and |p′4 − p′2| = |p4 − p2|, both terms can be averaged again and we finally
obtain the collision term as



Entropy 2017, 19, 381 10 of 12

1
4

∫
dp1dp2dp3dω

[
χ(p1, p2) + χ(p3, p2)− χ(p′1, p′2)− χ(p′3, p′2)

] |p3 − p1|
m

· (Gx1,x2
p′1,p2

Gx1,x1
p′1,p′3

Gx2,x1
p2,p′3
−Gx1,x2

p1,p2 Gx1,x1
p1,p3 Gx2,x1

p2,p3)

+
1
4

∫
dp1dp2dp4dω

[
χ(p1, p2) + χ(p1, p4)− χ(p′1, p′2)− χ(p′1, p′4)

] |p4 − p2|
m

· (Gx1,x2
p1,p′2

Gx1,x2
p1,p′4

Gx2,x2
p′2,p′4
−Gx1,x2

p1,p2 Gx1,x2
p1,p4 Gx2,x2

p2,p4) (43)

which vanishes by the definition of collisional invariants from Equations (28) and (29).
Therefore, Equation (42) reduces to

∫
dp1,2χ(p1, p2)

(
∂

∂t
+

p1

m
∂

∂x1
+

p2

m
∂

∂x2

)
f2 = 0 (44)

From this generic balance equation, we can deduce particular expressions for the invariants considered
above. For χ = 1, Equation (44) becomes

∂

∂t

∫
dp1,2 f2 +

1
m

∂

∂x1

∫
dp1,2p1 f2 +

1
m

∂

∂x2

∫
dp1,2p2 f2 = 0 (45)

For χ = pj
1 + pj

2 it becomes

∂

∂t

∫
dp1,2(pj

1 + pj
2) f2 +

1
m

∂

∂x1

∫
dp1,2(pj

1 + pj
2)p1 f2 +

1
m

∂

∂x2

∫
dp1,2(pj

1 + pj
2)p2 f2 = 0 (46)

For χ = p2
1 + p2

2 we have

∂

∂t

∫
dp1,2(p2

1 + p2
2) f2 +

1
m

∂

∂x1

∫
dp1,2(p2

1 + p2
2)p1 f2 +

1
m

∂

∂x2

∫
dp1,2(p2

1 + p2
2)p2 f2 = 0 (47)

and χ = p1 · p2 yields

∂

∂t

∫
dp1,2(p1 · p2) f2 +

1
m

∂

∂x1

∫
dp1,2(p1 · p2)p1 f2 +

1
m

∂

∂x2

∫
dp1,2(p1 · p2)p2 f2 = 0 (48)

When re-expressed in terms of macroscopic quantities, Equation (45) takes the form of two
independent copies of the usual local conservation equation for mass density (which is expected,
as only momenta are correlated), while Equations (46) and (47) each represent two coupled copies
of the corresponding local equations. Integrating out Equations (45)–(47), one would recover the
corresponding local conservation equations. Equation (48) alone contains the physics brought in by
switching from the one-particle to the two-particle description.

8. Remarks

It appears from our analysis that applying the criterion of maximum entropy as a heuristic tool
to infer the three-particle distribution based on a requirement of compatibility with two-particle
marginals allows us to set up a self-standing equation for the dynamics of pairs of particles, with the
consequences that equilibrium states potentially exhibit correlation, and that a conservation equation
exists besides the conservation of mass, momentum and energy. Two remarks are in order here:

1. Because the criterion of maximum entropy relies on a subjective ingredient (namely the physicist’s
uncertainty about the exact three-particle distribution), the reader might feel uncomfortable using
this approach here. In fact, it often comes as a surprise to physicists foreign to the maximum
entropy community that the maximum entropy approach to statistical mechanics, relying on
a subjective ingredient, allows re-deriving the supposedly exact and objective Maxwellian
distribution [5]. It should be pointed out that there exists an objective rationale supporting
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the principle of maximum entropy, namely that the distribution having the largest entropy is
also the most probable (but is not necessarily overwhelmingly probable) in the absence of an a
priori, as discussed at length in [16,17]. Postulating the maximum entropy estimate of f3 therefore
amounts to replacing the actual f3 by the most probable distribution compatible with f2. In this
respect, the maximum entropy approach is not subjective, properly phrased. Moreover, our result
(Equation (40)) makes it particularly clear that Maxwell’s distribution is but the result of our
relative lack of interest in dealing with more than one particle at a time, and provides only a
first-order approximation. In this respect, it is not particularly objective.

2. The equilibrium two-particle distribution might be expected to follow the standard canonical
distribution, in which case the correlating term in Equation (40) would appear to come into
contradiction with standard results of statistical mechanics; however this is not the case for
two reasons. If the canonical distribution is supposed to apply to the system as a whole, it
should be recalled that the canonical ensemble is concerned with systems immersed in a heat
bath; hence, it would be a pointless assumption to regard the isolated N-particle system as
canonically distributed. More importantly, it must be underlined that the conservation of the
N-particle entropy comes in contradiction with the microcanonical postulate, i.e., the assumption
that systems are distributed equiprobably on the shell of constant energy. Because this
postulated equiprobable distribution f ∗N is the (only) distribution maximizing H( fN), then a
kinetic description is essentially pointless, as then fN(t) = f ∗N . On the other side, if the canonical
distribution is justified using the combinatorial argument of the most probable distribution, it
should be recalled that the derivation relies on the assumption that individual particles can be
distributed independently over the µ-space. This is no longer the case when dealing with pairs of
particles, since assigning a pair (a,b) to a point of the (bilocal) µ-space puts constraints on all pairs
that involve either particle a or b (in other words, pairs do not obey Boltzmann’s statistics).
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