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Abstract: By using a linear feedback control technique, we propose a chaos synchronization scheme
for nonlinear fractional discrete dynamical systems. Then, we construct a novel 1-D fractional
discrete income change system and a kind of novel 3-D fractional discrete system. By means of the
stability principles of Caputo-like fractional discrete systems, we lastly design a controller to achieve
chaos synchronization, and present some numerical simulations to illustrate and validate the
synchronization scheme.
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1. Introduction

Over the last decades, increasing interest has been shown in fractional differential calculus, which
has been successfully applied to various fields, such as biology [1], fluid mechanics [2], materials
science [3], physics [4], and economics [5]. Recently, fractional discrete calculus has gained more and
more attention and a lot of interesting results have emerged in mathematics [6–13], medical science [14],
physics [15,16], and so on.

Chaos synchronization has been a hot topic [17–19]. There are many synchronization schemes
for fractional differential systems, such as synchronization via the linear control technique [20],
synchronization via the adaptive sliding mode [21], projective synchronization via single sinusoidal
coupling [22], hybrid chaos synchronization with a robust method [23], synchronization with activation
feedback control [24], synchronization via a scalar transmitted signal [25], adaptive synchronization
via a single driving variables [26], synchronization via novel active pinning controls [27]. In fact,
most mentioned synchronization schemes of fractional differential systems can be used in the
synchronization of fractional discrete dynamical systems.

To date, only four synchronization schemes have been proposed for fractional discrete dynamical
systems, as follows: chaos synchronization based on the stability condition [8], chaos synchronization
with a nonlinear coupling method [28], and chaos synchronization with linear coupling strength [29];
exact synchronization is established by designing a step-by-step delayed observer [30]. Just as the
linear feedback control technique can be employed to achieve the synchronization of fractional
differential systems, one may spontaneously want to know whether or not it can be used to obtain the
synchronization of fractional discrete dynamical systems.

Linear feedback control is an economic, robust and easily implemented control technique available
for chaos synchronization [31]. Odibat et al. [20] designed a kind of synchronization scheme for
three-dimensional chaotic fractional-order systems. Xin et al. employed the linear feedback control
technique to design projective synchronization schemes for chaotic discrete dynamical systems [32] and
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fractional differential dynamical systems [33–35], respectively. In this paper, the linear feedback control
technique will be applied to achieve the synchronization of fractional discrete dynamical systems.
Comparing the aforementioned four synchronization schemes for fractional discrete dynamical
systems [8,28–30], the linear feedback control technique is not only easier to design and implement but
is also more intuitive for the simplest linear stability theory of fractional discrete dynamical systems.

The remainder of this paper is organized as follows: in Section 2, preliminaries are presented.
In Section 3, a synchronization scheme for n-dimensional nonlinear fractional discrete dynamical
systems is proposed. The proposed synchronization scheme is applied to novel 1-D income change
systems in Section 4, and novel 3-D fractional discrete dynamical systems in Section 5. Finally, the paper
is concluded in Section 6.

2. Preliminaries

Some definitions of fractional discrete time calculus are introduced as follows.

Definition 1. (Atici and Eloe [6]). Let x : Na → R and 0 < ν be given. Then the fractional sum of ν order
is defined by

∆−ν
a x(t) :=

1
Γ(ν)

t−ν

∑
s=a

(t− σ(s))(ν−1) x(s), t ∈ Na+ν (1)

where a is the start point, Na = {a, a + 1, a + 2, . . .} denotes the isolated time scale, σ(s) = s + 1, and t(ν)

is the falling function defined as

t(ν) =
Γ(t + 1)

Γ(t + 1− ν)
(2)

Definition 2. (Abdeljawad [36]). For 0 < ν, ν /∈ N and x(t) defined on Na, the Caputo-like delta difference
is defined by

C∆ν
a x(t) := ∆−(m−ν)

a ∆mx(t) =
1

Γ(m− ν)

t−(m−ν)

∑
s=a

(t− σ(s))(m−ν−1) ∆m
s x(s), (3)

where t ∈ Na+m−ν and m = [ν] + 1.

Theorem 1. (Chen et al. [37]). For the delta fractional difference equation{ C∆ν
a x(t) = f (t + ν− 1, x (t + ν− 1)) ,

∆kx(a) = xk, k = 0, . . . , m− 1,
(4)

the equivalent discrete integral equation can be obtained as

x(t) = x0(t) +
1

Γ(ν)

t−ν

∑
s=a+m−ν

(t− σ(s))(ν−1) f (s + ν− 1, x (s + ν− 1)) , t ∈ Na+m (5)

where the initial iteration x0(t) reads

x0(t) =
m−1

∑
k=0

(t− a)(k)

Γ(k + 1)
∆kx(a). (6)

Remark 1. If 0 < ν < 1 and a = 0, then Equation (5) can be rewritten as

x(t) = x(0) +
1

Γ(ν)

t−ν

∑
s=1−ν

(t− σ(s))(ν−1) f (s + ν− 1, x (s + ν− 1)) , t ∈ N1 (7)
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Theorem 2. (Baleanu et al. [38]). Equation (4) is asymptotically stable if x = 0 is an equilibrium point
of Equation (4) and x (t + ν− 1) f (t + ν− 1, x (t + ν− 1)) < 0 holds for all t ∈ Na+1−ν.

3. A Synchronization Scheme of Nonlinear Fractional Discrete Dynamical Systems

Consider the following nonlinear fractional discrete dynamical system:

C∆ν
a x(t) = L (x(t + ν− 1)) + N (x(t + ν− 1)) , 0 < ν ≤ 1, x(a) = c, t ∈ (N)a+1−ν, (8)

where C∆ν
a is the left Caputo-like delta difference, x = (x1, x2, · · · , xn)T ∈ Rn is an n-dimensional state

vector of system (8), and L, N : Rn → Rn are linear and nonlinear functions of states, respectively.
Correspondingly, one may construct the following nonlinear fractional discrete dynamical system:

C∆ν
ay(t) = L (y(t + ν− 1)) + N (x(t + ν− 1)) + u(t + ν− 1), 0 < ν ≤ 1, t ∈ (N)a+(1−ν), (9)

where y = (y1, y2, · · · , yn)T ∈ Rn is an n-dimensional state vector of system (9),
and u = (u1, u2, · · · , un)T ∈ Rn is an n-dimensional linear state error feedback controller.

Defining the following synchronization error between the master system (8) and the slave
system (9):

e(t) = y(t)− x(t). (10)

The linear state error feedback controller u(t) can be defined as follows:

u(t) = Âe(t) (11)

where Â is an n× n linear constant matrix. Subtracting (8) from (9), the following error system can
be obtained:

C∆ν
ae(t) =C ∆ν

ay(t)−C ∆ν
a x(t) = Ae(t + ν− 1), 0 < ν ≤ 1, t ∈ (hN)a+(1−ν−1) (12)

where A = L + Â is an n× n linear constant matrix. Obviously, the original point is the fixed point
of system (12), so one can directly obtain the following theorem by means of Theorem 2.

Theorem 3. If eT (t + ν− 1) Ae(t + ν− 1) < 0 holds for all t ∈ Na+1−ν, then the synchronization error e(t)
is asymptotically stable and limt→∞ e(t) = 0, i.e., systems (8) and (9) achieve projective synchronization.

4. Application to the Fractional Discrete Dynamical Income Change System

4.1. A Fractional Discrete Dynamical Income Change System

Puu and Sushko [39] presented the following chaotic discrete dynamical income system with
cubic nonlinearity:

x(t + 1) = ϕx(t)− (ϕ + 1) (x(t))3 (13)

with x denoting the change of income between the two previous periods, and ϕ ≥ 0.
One can introduce the discrete fractional calculus into system (13) as follows:

C∆ν
a x(t) = ϕx(t + ν− 1)− (ϕ + 1) (x(t + ν− 1))3 . (14)

Figure 1a shows solutions of system (14), which are chaotic. Figure 1b is a superposed diagram
of bifurcation and the largest Lyapunov exponents with ϕ ∈ [0.6, 1.4] and ν = 0.7. When ϕ = 1.4,
the largest Lyapunov exponent λ = 0.386 which means that chaos occurs in system (14).
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Figure 1. The chaos in system (14) with ν = 0.7 and x(0) = 0.1. (a) The chaotic solutions with ϕ = 1.4;
(b) Bifurcation (blue) and the largest Lyapunov exponents (red) with ϕ varying from 0.6 to 1.4.

4.2. A Synchronization Scheme of Fractional Discrete Dynamical Income Change Systems

One can regard system (14) as the master system and construct the following slave system (denoted
by the subscript s):

C∆ν
a xs(t) = ϕxs(t + ν− 1)− (ϕ + 1) (x(t + ν− 1))3 + u(t + ν− 1). (15)

where u(t + ν− 1) is the linear state error feedback controller.

Proposition 1. If the following control laws hold, the master–slave systems (14) and (15) will finally achieve
global projective synchronization for any initial condition:

u(t) = κ (xs(t + ν− 1)− x(t + ν− 1)) , κ + ϕ < 0. (16)

Proof. One can define the synchronization errors between the master–slave systems (14) and (15)
as follows:

e(t) = xs(t)− x(t). (17)

Subtracting system (14) from (15), one may get the following error system:

C∆ν
ae(t) = ϕe(t + ν− 1) + u(t + ν− 1). (18)

Substituting Equation (16) into the error system (18), the following error system can be obtained:

C∆ν
ae(t) = (κ + ϕ)e(t + ν− 1), (19)

which has a trivial solution e(t) = 0, and the following equation holds:

eT (t + ν− 1) Ae(t + ν− 1) = (κ + ϕ) (e(t + ν− 1))2 < 0. (20)

With Theorem 2, one can find that system (19) is asymptotically stable, i.e., the master system (14)
and the slave system (15) finally achieve synchronization, as shown in Figure 2.

The Proposition 1 is thus proved.
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Figure 2. Chaos synchronization of systems (14) and (15) with ν = 0.7, ϕ = 1.4, κ = −2.4, x(0) = 0.1
and y(0) = 0.4. (a) Chaos synchronization of the master system (14) and the slave system (15);
(b) Error evolution.

5. Application to the Novel Three-Dimensional Fractional Discrete Dynamical System

5.1. A Novel Three-Dimensional Fractional Discrete Dynamical System

In this section, we present a novel three-dimensional fractional chaotic discrete dynamical system
as follows: 

xn+1 = −xn + θtan (yn) ,

yn+1 = xn − θzn,

zn+1 = −θxn + yn,

(21)

where θ ≥ 0. By introducing the discrete fractional calculus into system (21), one may get:
C∆ν

a x(t) = −x(t + ν− 1) + θtan (y(t + ν− 1)) ,
C∆ν

ay(t) = x(t + ν− 1)− θz(t + ν− 1),
C∆ν

az(t) = −θx(t + ν− 1) + y(t + ν− 1),

(22)

Figure 3a shows a chaotic attractor of system (22) , and Figure 3b shows a superposed diagram
of bifurcation and the largest Lyapunov exponents with θ ∈ [0, 0.1] and ν = 0.9. When θ = 0.1,
the largest Lyapunov exponent λ = 0.066 which also implies that chaos exists in system (22).
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Figure 3. The chaos in system (14) with ν = 0.9, x(0) = 0.3, y(0) = 0.4 and z(0) = 0.2. (a) The chaotic
solutions with θ = 0.1; (b) Bifurcation (blue) and the largest Lyapunov exponents (red) with θ varying
from 0 to 0.1.
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5.2. A Synchronization Scheme of the Novel Three-Dimensional Fractional Discrete Dynamical Systems

System (14) can be regarded as the master system, and the slave system (denoted by the subscript s)
can be constructed as follows:

C∆ν
axs(t) = −xs(t + ν− 1) + θtan (y(t + ν− 1)) + ux(t + ν− 1),

C∆ν
ays(t) = xs(t + ν− 1)− θzs(t + ν− 1) + uy(t + ν− 1),

C∆ν
azs(t) = −θxs(t + ν− 1) + ys(t + ν− 1) + uz(t + ν− 1),

(23)

where ux(t + ν− 1), uy(t + ν− 1) and uz(t + ν− 1) are linear state error feedback controllers.

Proposition 2. If the following control laws hold, the master–slave systems (22) and (23) will finally achieve
global projective synchronization for any initial condition:

ux(t + ν− 1) = zs(t + ν− 1)− z(t + ν− 1),

uy(t + ν− 1) = x(t + ν− 1)− xs(t + ν− 1),

uz(t + ν− 1) = (θ− 1) (ys(t + ν− 1)− y(t + ν− 1)) .

(24)

Proof. One can define the following synchronization errors between the master–slave systems (22)
and (23): 

ex(t) = xs(t)− x(t),

ey(t) = ys(t)− y(t),

ez(t) = zs(t)− z(t),

(25)

Subtracting system (22) from (23), one may get the following error system:
C∆ν

aex(t) = −ex(t + ν− 1) + ux(t + ν− 1),
C∆ν

aey(t) = ex(t + ν− 1)− θez(t + ν− 1) + uy(t + ν− 1),
C∆ν

aez(t) = −θex(t + ν− 1) + ey(t + ν− 1) + uz(t + ν− 1).

(26)

Substituting Equation (24) into the error system (26), the following error system can be obtained:
C∆ν

aex(t) = −ex(t + ν− 1) + ez(t + ν− 1),
C∆ν

aey(t) = −θez(t + ν− 1),
C∆ν

aez(t) = −θ
(
ex(t + ν− 1)− ey(t + ν− 1)

)
,

(27)

which has a trivial solution e(t) = 0, and the following equation holds.

eT (t + ν− 1) Ae(t + ν− 1) =

 ex(t + ν− 1)
ey(t + ν− 1)
ez(t + ν− 1)


T −ex(t + ν− 1) + ez(t + ν− 1)

−θez(t + ν− 1)
−θ
(
ex(t + ν− 1)− ey(t + ν− 1)

)


= − (ex(t + ν− 1))2 < 0.

(28)

With Theorem 2, one can find that the system (27) is asymptotically stable, i.e., the master
system (22) and the slave system (23) finally achieve synchronization, as shown in Figure 4.

This concludes the proof.
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Figure 4. Chaos synchronization of systems (22) and (23) with ν = 0.9, θ = 0.1, x(0) = 0.3, y(0) = 0.4,
z(0) = 0.2 and xs(0) = ys(0) = zs(0) = 0.1. (a) Chaos synchronization of the master system (22) (blue
circles) and the slave system (23) (red dots); (b) Evolution of error ex; (c) Evolution of error ey;
(d) Evolution of error ez.

6. Conclusions

• The proposed 1-D fractional discrete income change system and a kind of novel 3-D fractional
chaotic discrete system are employed to implement some interesting numerical simulations,
which coincide well with the mentioned results.

• The proposed chaos synchronization scheme via the linear feedback control technique is very
robust and easy to implement efficiently, and should have additional interesting applications in the
future, such as secure communications, information storage, message identification, encryption
and decryption.

• It is necessary for us to employ other control techniques, such as active control, sliding mode
control, and pinning control, to achieve chaos synchronization of nonlinear fractional discrete
dynamical systems.

• It will be challenging and interesting to expand the mentioned results to study the
anti-synchronization or finite-time synchronization of the fractional discrete dynamic systems via
the linear feedback control technique or others.
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