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Abstract: Based on the Markov model and the basic theory of information entropy, this paper puts
forward a new method for optimizing the location of observation points in order to obtain more
information from limited geological investigation. According to the existing data from observation
points data, classification of tunnel geological lithology was performed, and various lithology
distribution were determined along the tunnel using the Markov model and theory. On the basis
of the information entropy theory, the distribution of information entropy was obtained along the
axis of the tunnel. Therefore, different information entropy could be acquired by calculating different
classification of rocks. Furthermore, uncertainty increases when information entropy increased.
The maximum entropy indicates maximum uncertainty and thus, this value determines the position
of the new drilling hole. A new geology situation will be decided by the maximum entropy for the
lowest accuracy. Optimal distribution will be obtained after recalculating, using the new location of
the geology situation. Taking the engineering for the Bashiyi Daban water diversion tunneling in
Xinjiang as a case, the maximum information entropy of the geological conditions was analyzed by
the method proposed in the present study, with 25 newly added geology observation points along
the axis of the 30-km tunnel. The results proved the validity of the present method. The method
and results in this paper may be used not only to predict the geological conditions of underground
engineering based on the investigated geological information, but also to optimize the distribution of
the geology observation points.

Keywords: Markov model; information entropy; optimization; uncertainty; Bashiyi Daban tunnel

1. Introduction

Engineering geological investigation provides the basic information through the process of
conducting a feasibility study, in addition to design and construction, when building a long tunnel.
In fact, the number of investigation points could significantly contribute to determining the cost of
a tunnel project [1]. As shown in Figure 1 [1], as the number of investigation points increases, there
will be a richer amount of geological data obtained, a lower total project cost and lower construction
cost. However, there is a plateau with this increase, as the details of the geological data do not increase
to a significant extent after the number of investigation points reaches a certain value. At the same
time, the construction cost remains unchanged, and the investigation cost is directly proportional to
the number of investigation points, so the total project cost will increase rather than decrease.
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Figure 1. Relationship between the engineering project costs and the number of exploration points. 
(With permission from Editorial Department of Journal of Wuhan University). 

The value of the minimum total cost of a project corresponds to the optimal number of 
observation points. Due to many influence factors affecting the cost, this present study did not set the 
total project cost as the optimization goal, but focused on optimizing the locations of new geological 
investigation sites. In order to obtain more geological information under the condition of less 
investigation points, this paper puts forward a new optimization method for geological investigation 
points based on the Markov model and the basic theory of information entropy. 

Each single geological parameter is regarded as a discrete-state continuous-space Markov 
process in the Markov model [2–5]. Based on the current status of the system, the Markov approach 
can predict the future development trend and state of the system by establishing a transfer matrix [6,7]. 
It is widely used in the field of science and technology [8–11]. The Markov model has been used in 
simulations of stochastic reservoir lithofacies [12]. In addition, this approach has played an important 
role in simulation analysis of TBM construction [13,14]. 

Based on the second law of thermodynamics, the concept of entropy is a function of the state 
that describes an irreversible process. Shannon [15] first cited the entropy concept in information 
theory and defined it as information entropy, which indicates the average information content that 
occurs without redundancy. The information entropy is equal to the expected number of bits needed 
to identify which micro-state it is in, given the macro-state [16]. The information entropy has been 
used in the canonical genetic code [17]. Furthermore, the information entropy is regarded as the 
measurement of the relationship between nodes including direct and indirect neighbors [18]. 

In order to optimize the location of observation points, the information entropy based on the 
Markov model is introduced to calculate the geological uncertainty when predicting geological 
conditions along the tunnel. This method was selected for its rigorous mathematical logic, as well as 
the convenience for engineering practice. Section 2 presents the methodology of the geologic 
prediction based on Markov model and the information entropy approach comprehensively. The 
study in Section 3 aims to examine its application for the Bashiyi Daban water diversion tunnel 
project carefully. Furthermore, Section 4 offers some improvements and conclusions. 

2. Methodology  

2.1. Probabilistic Estimation of Geologic Parameters along the Tunnel 

The characteristics of the Markov model stipulate that the future state of the system is not 
connected with the previous state, but is determined by the current state [19]. The formation of the 
geological stratum will obey the basic physical and chemical laws, despite numerous other random 
influences. For instance, many geological processes are related to the Markov properties, such as 
occurrence stratum, stratigraphic accumulation, sedimentary diffusion and magnetic activity [20]. 
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The value of the minimum total cost of a project corresponds to the optimal number of observation
points. Due to many influence factors affecting the cost, this present study did not set the total project
cost as the optimization goal, but focused on optimizing the locations of new geological investigation
sites. In order to obtain more geological information under the condition of less investigation points,
this paper puts forward a new optimization method for geological investigation points based on the
Markov model and the basic theory of information entropy.

Each single geological parameter is regarded as a discrete-state continuous-space Markov process
in the Markov model [2–5]. Based on the current status of the system, the Markov approach can
predict the future development trend and state of the system by establishing a transfer matrix [6,7].
It is widely used in the field of science and technology [8–11]. The Markov model has been used in
simulations of stochastic reservoir lithofacies [12]. In addition, this approach has played an important
role in simulation analysis of TBM construction [13,14].

Based on the second law of thermodynamics, the concept of entropy is a function of the state
that describes an irreversible process. Shannon [15] first cited the entropy concept in information
theory and defined it as information entropy, which indicates the average information content that
occurs without redundancy. The information entropy is equal to the expected number of bits needed to
identify which micro-state it is in, given the macro-state [16]. The information entropy has been used in
the canonical genetic code [17]. Furthermore, the information entropy is regarded as the measurement
of the relationship between nodes including direct and indirect neighbors [18].

In order to optimize the location of observation points, the information entropy based on the
Markov model is introduced to calculate the geological uncertainty when predicting geological
conditions along the tunnel. This method was selected for its rigorous mathematical logic, as well
as the convenience for engineering practice. Section 2 presents the methodology of the geologic
prediction based on Markov model and the information entropy approach comprehensively. The study
in Section 3 aims to examine its application for the Bashiyi Daban water diversion tunnel project
carefully. Furthermore, Section 4 offers some improvements and conclusions.

2. Methodology

2.1. Probabilistic Estimation of Geologic Parameters along the Tunnel

The characteristics of the Markov model stipulate that the future state of the system is not
connected with the previous state, but is determined by the current state [19]. The formation of the
geological stratum will obey the basic physical and chemical laws, despite numerous other random
influences. For instance, many geological processes are related to the Markov properties, such as
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occurrence stratum, stratigraphic accumulation, sedimentary diffusion and magnetic activity [20].
Therefore, the Markov model can be applied to changes in lithology. This paper adopts the geologic
prediction model created by Ioannou [3]. The Markov model implementation process is as follows:

Step 1: Estimate the transition probability (Pij) from the state i to the state j, in addition
to the transition intensity coefficient (ξi) of the state i, using statistical procedures through the
following equation:

Pij =
number of transitions from the state i to the state j

total number of transitions out of state i
(1)

ξi =
1

E(Hi)
(2)

where Hi represents the length for which geologic parameter remains within a particular state i; and
E(Hi) is the expected length that is occupied by the state i of the geologic parameter.

Step 2: Calculate the transition intensity matrix A through the transition intensity coefficient and
probability according to the following equation:

A = [aij], where aij =

{
−ξi, i = j
ξiPij, i 6= j

(3)

Step 3: Calculate the interval transition probability matrix W (S0, S) according to the following
equation:

W(S0, S) = [wij(S0, S)] (4)

wij(S0, S) = w(S− S0) = P[Y(S) = j
∣∣Y(S0) = i] (5)

where wij (S0, S) is the probability of the geological parameter that the state will be j at the location S,
given the state is i at the reference location S0. The interval transition probability is solved based on
the expansion of the general solution of the Kolmogorov's differential equation [21,22].

α = S− S0

W(α) = eαA = I + αA + (1/2!)α2 A2 + . . . .+(1/n!)αn An + . . . . .
(6)

Step 4: Calculate the state probability X(S) at the location S using the state probability X(S0) of the
geologic parameter at the certain location S0.

X(S) = [Xj(S)] = X(S0)W(S0, S) (7)

Step 5: Calculate the posterior probabilities X•l (S) at the observation location according to the
data from the observation points.

X• l(Sm) = P[Y(Sk) = l|
d
∩

m=1
Y(Sm)], k = 1, 2..., t; m = 1, 2, ..., d

where l denotes the rock type; t denotes the rock types that are classified by the geological investigation
code [23]; Sm denotes the observational location along the tunnel; m represents the mth observation site;
and Y(Sm) denotes the rock type at the mth observation site. X• l(Sm) denotes the posterior probability
matrix at the mth observation site.
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Step 6: Update the posterior interval transition probabilities w•ij according to the data from the
investigation points and the Bayesian technique as shown in Equation (8):

w•ij =



t
∑

l=1
X• l(S1)

wij(S−S0)wjl(S1−S)
wil(S1,S0)

, S0 < S ≤ S1

t
∑

n=1
X•n(Sm−1)

t
∑

l=1
X• l(Sm)

wnj(S−Sm−1)wjl(Sm−S)
wil(S1,S0)

, Sm−1 < S ≤ Sm

t
∑

l=1
X•n(Sd)wjl(S− Sd), Sd ≤ S

(8)

where Sd denotes the last observational location along the tunnel; and d represents the last
observation site.

Step 7: Determine the final updated probability of the geologic parameters at location S through
Equation (9):

Xj(S) =


t

∑
i=1

Xi(S0)w•ij(S0, S), S0 < S ≤ S1

w•ij(S0, S), Sm−1 < S ≤ Sm

w•ij(S0, S), Sd ≤ S

(9)

where Xi(S0) denotes the probability of the geologic parameter being i at the location of a tunnel
entrance; and Xj(S) denotes the probability being j at the location S.

As presented above, using the posterior probabilities at the observation location and all the desired
parameter states, it is possible to obtain the rock types along the tunnel alignment. The purpose of the
Markov model for geologic predictions is the formation of a ground class profile so that it would be
used to calculate the geological uncertainty along the tunnel alignment.

2.2. Location Optimization of Geological Investigation Points

The priority aim of optimizing the locations of observation points is to acquire more information
with fewer tunnel geological investigation points. The interval information entropy can be used
to measure the information uncertainty of various locations along the tunnel alignment, while the
location of the maximum information entropy corresponds to the optimal location of new geological
investigation points. The different stages of locational optimization can be expressed as follows:

Stage 1: Calculation of the probability Xj(S) of the geologic parameters at various locations along
the tunnel alignment based on the above Markov geologic prediction approach:

t

∑
j=1

Xj(S) = 1 (10)

where Xj(S) denotes the probability being j at the location S; and t denotes rock types that are classified
by the geological investigation code [23].

Stage 2: Calculation of the length interval information entropy at various locations according to
the following equation [15]:

H(S) = −
t

∑
j=1

Xj(S) ln Xj(S) (11)

Furthermore, H(Sm) = 0, which means the interval information entropy at the observational
location is 0.

Stage 3: Calculation of the total information entropy ES for the tunnel. The total information
entropy is used to measure the information uncertainty of the tunnel:

ES =
∫ Send

Sstart
H(S)dS (12)
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where Sstart denotes the starting point; and Send denotes the end point of the tunnel. As there is no
definite mathematical expression related to H(S) in practical applications, we were unable to obtain
the total information entropy through mathematical integration. In this present study, the trapezoidal
method was used to calculate the total information entropy ES.

ES =
∫ Send

Sstart
H(S)dS =

n−1

∑
i=1

(H(Si) + H(Si+1))

2
Si (13)

Stage 4: Construction of the optimization model for adding exploration points:

Add Sbi ⇒ minES = min
n−1

∑
i=1

(H(Si) + H(Si+1))

2
Si (14)

s.t.


H(Sbi) = 0
H(Sm) = 0
Sbi ∈ [S0, Send]

(15)

where Sbi denotes the new exploration point. According to the equation H(Sm) = 0, the following
equations can be obtained:

ES =
∫ Send

Sstart H(S)dS =
d
∑

m=1
ESm

ESm =
∫ Sm

Sm−1
H(S)dS

(16)

Stage 5: Solution of the optimization model. The function of H(S) is a convex function, while
the interval probabilities at the locations between Sm and Sm+1 are only determined by the geologic
parameters at Sm and Sm+1. Therefore, the optimization model can be updated as the following:

Add Sbi ⇒ minES = min
d

∑
m=1

ESm (17)

f ind Sbi ⇒ maxESm &maxH(Sbi) (18)

s.t.

{
Sbi ∈ [Sm, Sm+1]

m ∈ [1, d]
(19)

where d denotes the total number of observation sites.
Stage 6: Determination of the other optimal locations. Based on the above processes, the probability

Y(Sb1) would be complemented at the new investigation location Sb1. Therefore, the probability X•1(S) of
the geologic parameters at various locations along the tunnel alignment would be updated. Following
this, the next optimal location Sb2 can be determined using the same method. In the range of the
permitted numbers, the other optimal locations of geological investigation would be determined in the
same manner.

3. Case Study

The newly proposed method for optimizing the locations of the geological investigation points
was applied to the engineering of the Bashiyi Daban water diversion tunneling in Xinjiang province to
demonstrate its validity. The length of the water diversion tunnel is 30,691 m, while the rock properties
are categorized into II, III1, III2, IV and V types, according to the geological investigation code in
China [23].

There are 25 boring observation points, including the starting point and the end point along the
tunnel alignment. The distribution of various observation sites is illustrated in Figure 2. The locations
and rock types of 25 observations are presented in Table 1.
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Table 1. Observation points along the Bashiyi Daban water diversion tunnel.

Location
(along the Tunnel; m) Surrounding Rock Location

(along the Tunnel; m) Surrounding Rock

0 (starting point) V type 18,416 III2 type
1570 V type 20,144 III2 type
3080 V type 22,242 III2 type
4380 V type 24,187 IV type
4841 IV type 25,234 IV type
5880 III1 type 26,126 II type
8185 III1 type 26,239 III1 type

10,836 III1 type 26,974 IV type
11,264 III1 type 27,165 IV type
13,815 III1 type 27,274 IV type
15,832 III1 type 28,847 V type
17,230 III2 type 30,691 (end point) V type
17,284 III2 type - -

Regardless of measurement error, it is considered that the probability of the boring observation
points is 1. For example, the fifth observation point is located 4841 m away from the tunnel
entrance, with the surrounding rock being the fourth (IV) type through geological examination.
Thus, the following equation is satisfied:

Xl
•(S5) =

{
1.0; t = 4
0; t = 1, 2, 3, 5

(20)

where 1–5 represent the II, III1, III2, IV and V types of surrounding rock, respectively.
The explored geologic information would be used to update the posterior interval transition

probabilities according to the Bayesian technique. The transition probability matrix P for all types of
surrounding rock was determined by Equation (1) to be as follows:

1 2 3 4 5

P =


0 0.9 0.033 0.033 0.033

0.45 0 0.45 0.05 0.05
0.05 0.3 0 0.6 0.05
0.05 0.05 0.7 0 0.2
0.33 0.033 0.9 0.033 0


1
2
3
4
5

(21)

According to Equation (2), mentioned previously, the transition intensity coefficients of all
the types of surrounding rocks were calculated to be: ξ1 = 0.00218, ξ2 = 0.000349, ξ3 = 0.000791,
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ξ4 = 0.000788 and ξ5 = 0.000351. The transition intensity matrix A was calculated through Equation (3)
to be as follows:

A = 10−5


220 198 7 7 7
16 35 16 1.7 1.7
4 237 79 47.4 4
4 4 55 79 15.8
1 1 31.5 1 35

 (22)

Based on the 25 observation points, the probabilistic rock type along the tunnel alignment was
determined using Equation (9), as shown in Figure 3.
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Three points are selected for the prediction of positions of other points to calculate the information
entropy. These points were the starting point Sstart, the end point Send and the mid-point of Bashiyi
Daban tunnel. Following this, the information entropy was calculated by real observation points.
Therefore, the advantage of the optimal method would be illustrated by comparing the two information
entropies obtained.

Step 1: Calculating the length interval information entropy at various locations. The information
entropy distribution according to the original 25 observation points is shown in Figure 4. As the total
information entropy ES is a definite integration, we used numerical integration to calculate it, setting
the integration step to 1 for simplicity. The total information entropy Es can be calculated based on
Equation (13), which was found to be 12,773, according to this method.
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Step 2: Calculating the probabilistic rock type along the tunnel alignment and the interval
information entropy at various locations (1 m as a unit) based on the three existing observations.



Entropy 2017, 19, 332 8 of 12

Figure 5 shows the probability distribution of rock types. The information entropy distribution is also
shown in Figure 6, while the total information entropy Es is 37,129 according to Equation (15) (on the
condition of Si = 1, for simplicity) at that time.
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where the arrow position Sb1 is the optimal location and it is also the new geological
investigation location.

Step 3: Calculating the probabilistic rock type and the interval information entropy based on the
new optimal location. As the engineering for the Bashiyi Daban water diversion tunneling has been
completed, the rock types along the tunnel alignment have been revealed. Therefore, the rock type of
the new observation points is type IV.

Figure 7 shows the updated distribution of probability based on the 4 observations. The updated
information entropy distribution and the next optimal location are shown in Figure 8, with the total
information entropy Es being 35,172 at that time.
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Step 4: Determine the other optimal locations according to the same process. Table 2 includes
the quantities, locations, the calculated rock types and the information entropy of the new additional
observation sites.

Table 2. New additional observations along the Bashiyi Daban water diversion tunnel.

Additional
Quantities Total Quantities Optimal Location

(along the Tunnel; m) Surrounding Rock Total Information
Entropy

1 3 - - 37,129
2 4 25,566 IV type 35,172
3 5 5398 III1 type 31,665
4 6 21,837 III2 type 30,123
5 7 10,353 III1 type 26,647
6 8 19,732 III2 type 25,284
7 9 2580 V type 22,825
8 10 27,601 IV type 21,283
9 11 18,173 III2 type 20,137

10 12 23,540 IV type 18,943
11 13 12,836 III1 type 17,641
12 14 7862 III1 type 16,356
13 15 3999 V type 14,597
14 16 28,843 V type 13,357
15 17 17,070 III2 type 12,501
16 18 4711 IV type 12,381
17 19 16,339 III1 type 11,647
18 20 20,806 III2 type 10,906
19 21 22,661 III2 type 10,490
20 22 26,543 IV type 9928.6
21 23 24,513 IV type 9371.9
22 24 28,148 V type 8879.9
23 25 14,085 III1 type 8489

Table 2 shows that the total information entropy is 8489, based on the optimal method of
investigation site location, which is far lower than the value obtained in the original method.
Furthermore, using only 16 geological observations in accordance with the optimal method achieves the
same level of certainty as using 25 observation sites with the original method. Therefore, the proposed
method for positioning of exploration points can achieve the goal of reducing the number of
observation points. The updated distribution of probability and information entropy are shown
in Figures 9 and 10.
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4. Discussion

The Markov model for geologic predictions is a good complement for geophysical prospecting,
because it can predict the surrounding rock type in a probabilistic way. Based on the provided
probabilities of the surrounding rock types, information entropy can be used to evaluate the uncertainty
along the tunnel alignment.

In order to compare the results of the actual geology, the encountered geological profile is
illustrated in Figure 9. It shows that the predicted rock type is fairly consistent with the actual rock
type. Therefore, the Markov model was able to be used to predict the rock type, and the optimized
method of the geological investigation points is validated.

Figure 11 shows the relationship between the number of investigation points and total information
entropy. As shown in Figure 11, there will be less information entropy with an increase in the number
of investigation points. Furthermore, using only 16 geological investigation observations for the
optimal method can achieve the same requirement as the original 25 observation sites. In essence,
using the optimized 16 geological observation points can obtain the same information obtained by the
25 observation points without optimization. In order to highlight the improvement in the proposed
method for positioning of the exploration points, we compared the total information entropy of
equidistant distributions. We calculated the total information entropy of 14–25 observation points,
which have an equidistant distribution along the tunnel. As shown in Figure 11, for the equidistant
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distribution method, the values of the total information entropy do not all decrease with an increase
in the number of investigation points. Furthermore, the total information entropy of the equidistant
distribution method is higher than our proposed method with the same number of observation points.

Apart from the merits presented above, this new optimization method has some flaws and
shortcomings. Essentially, in the probabilistic assessment of Markovian geophysical prospecting,
more empirical data are needed to ensure the accuracy of the estimation. Expert judgments are reliable
for the evaluation of mean values, but not for assessing the variances [24].
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5. Conclusions

In this study, a new optimization method for the positioning of geological investigation points
based on the Markov model and the basic theory of information entropy was proposed. The additional
locations based on the new optimization method are able to obtain more information than the original
method, so total information entropy would decrease.

The case study of the engineering for the Bashiyi Daban water diversion tunneling in Xinjiang
demonstrates the proposed optimal method. Based on the information from the original 3 investigation
points, the other optimal locations for geological investigation were determined with the subsequent
total information entropy being smaller than the original method. In this case, the total information
entropy was reduced by 33.5% using the optimal method, while only using 16 observation points
achieved the same requirements as the original 25 observations.

In this paper, we did not consider the fault zones and unexpected interlayers. This is a shortcoming
of this study, but it is also the focus for our future investigations. In future research, we plan to set up
a new Markov model based on different parameters, which include RQD, ground water, rock type
and other geological parameters. Following this, the fault zones and unexpected interlayers would
be predicted.

The position of exploration points could be determined based on the Markov model and the basic
theory of information entropy. Furthermore, this optimization method can be easily implemented in
other similar engineering practices.
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