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Abstract: Path summation offers a flexible general approach to quantum theory, including quantum
gravity. In the latter setting, summation is performed over a space of evolutionary pathways in a
history configuration space. Discrete causal histories called acyclic directed sets offer certain advantages
over similar models appearing in the literature, such as causal sets. Path summation defined in terms
of these histories enables derivation of discrete Schrödinger-type equations describing quantum
spacetime dynamics for any suitable choice of algebraic quantities associated with each evolutionary
pathway. These quantities, called phases, collectively define a phase map from the space of evolutionary
pathways to a target object, such as the unit circle S1 ⊂ C, or an analogue such as S3 or S7. This paper
explores the problem of identifying suitable phase maps for discrete quantum gravity, focusing on a
class of S1-valued maps defined in terms of “structural increments” of histories, called terminal states.
Invariants such as state automorphism groups determine multiplicities of states, and induce families
of natural entropy functions. A phase map defined in terms of such a function is called an entropic
phase map. The associated dynamical law may be viewed as an abstract combination of Schrödinger’s
equation and the second law of thermodynamics.
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1. Introduction

1.1. Path Summation in Quantum Gravity

Feynman’s path summation approach to quantum theory [1], originally developed in the
non-relativistic context of four-dimensional Euclidean spacetime R4, has since been abstracted and
generalized to apply to a wide variety of situations in which quantum effects play a significant role,
including the study of fundamental spacetime structure and quantum gravity. In the latter setting,
the objects over which summation is performed are no longer spaces of paths in low-dimensional real
manifolds whose elements represent events, but spaces of evolutionary pathways in configuration
spaces whose elements represent histories, i.e., entire spacetimes. The distinction between summing
over evolutionary pathways for histories and summing over histories themselves becomes significant
in the background independent context, where each pathway represents a history together with a
generalized frame of reference, and where different pathways may encode identical physics. For both
conceptual and computational reasons, histories incorporating a version of discreteness and a notion
of causal structure are especially attractive for studying quantum gravity. Such histories include
“purely causal” objects such as causal sets [2] and causal networks [3–5], “mostly causal” objects such as
causal dynamical triangulations [6] and quantum causal histories [7], and objects incorporating a significant
degree of additional structure, such as spin foams [8,9], quantum cellular automata [10], causal fermion
systems [11,12], and tensor networks [13]. The histories studied in this paper, called acyclic directed sets,
resemble causal sets and causal networks, but with a few important distinctions [14–16].
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1.2. Path Summation Rudiments

I recall here a few basic notions regarding conventional path summation. In ordinary quantum
mechanics and quantum field theory, one considers directed paths γ representing possible particle
trajectories in a fixed spacetime manifold, such as Euclidean spacetime R4 or Minkowski spacetime R3+1.
Such paths are illustrated in the left-hand diagram in Figure 1, adapted from Figure 6.2.2 of [14].
One begins with a classical theory, whose dynamics is determined by a Lagrangian L encoding
information about motion-related or metric quantities. L may be regarded as an infinitesimal path
functional, i.e., a function of the particle motion whose value depends only on instantaneous information
along γ. This viewpoint generalizes naturally to more abstract settings. The classical action S(γ) is
given by integrating L along γ with respect to time. Hamilton’s principle states that the classical path
γCL renders the classical action stationary. Heuristically, this means that L “chooses” γCL from among
other alternatives by how S varies with γ. The classical equations of motion are the Euler–Lagrange
equations for L, derived via Hamilton’s principle.

Classical path γCL;
action stationary

“Nearby" paths;
action deviates

Figure 1. In a fixed spacetime background, the Lagrangian L “chooses” the classical path γCL via
Hamilton’s principle; in a background independent theory, different paths imply different spacetimes.

In the corresponding quantum theory, the behavior of the particle depends on contributions
from every possible path. To quantify this dependence, one defines a phase map Θ on a space of paths
in spacetime, given by Feynman’s formula

Θ(γ) = e
i
h̄S(γ), (1)

where i =
√
−1 and h̄ is Planck’s reduced constant. For convenience, I use the term “phase” for the

value e
i
h̄S(γ) itself, rather than for the “angle” 1

h̄S(γ) in the complex exponential. One then performs a
path integral to “sum together” these phases. Feynman’s path integral for paths in a subset R of R4 is
the prototypical example. Its value is interpreted as a complex quantum amplitude for R, encoding the
probability that the particle follows a path through R. Due to Hamilton’s principle, phases for paths
near the classical path γCL combine via constructive interference to yield relatively large amplitudes for
neighborhoods of γCL, while phases for faraway paths destructively interfere. Schrödinger’s equation
for ordinary nonrelativistic quantum theory

ih̄
∂ψ

∂t
= Hψ, (2)

may be derived from Feynman’s path integral [1]. Here, ψ is the state function for the particle, and H
is the Hamiltonian operator.
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1.3. Effects of Gravity

Gravitation alters this picture by introducing interaction between spacetime and its material content.
It no longer suffices to consider particle paths in a fixed spacetime manifold, because different paths induce
different local responses in spacetime geometry. The right-hand diagram in Figure 1 illustrates this
complication, showing a region of spacetime “warping” around a path. Absence of a fixed spacetime
background in this context is called background independence. Einstein’s equation, conventionally
expressed in the form

Rµν −
1
2

Rgµν + Λgµν =
8πG

c4 Tµν, (3)

quantifies this coupling between geometry and matter under the framework of general relativity.
Here, Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric tensor, Λ is the
cosmological constant, G is Newton’s gravitational constant, c is the speed of light, and Tµν is the
stress-energy tensor. Ultimately, one expects both geometry and matter to emerge from some deeper
structural substratum, and this has been a consistent theme of fundamental physics since the early
unification efforts of Einstein, Kaluza and Klein, Weyl, and a few others. Unification would offer a
perfect version of background independence by eliminating all distinction between a background
“arena” and foreground “objects”. Discrete causal theory [14] represents one specific effort toward
the goal of unification. More generally, any background independent adaptation of path summation
associates a different copy of spacetime with each possible distribution of matter and energy, and this
leads to sums involving entire configuration spaces of spacetimes. Each such spacetime is classically
self-contained, in the sense that it describes its own complete version of events, and has no ordinary
causal interaction with other possible spacetimes. In this context, a spacetime is often called a history,
and a configuration space S of spacetimes is called a history configuration space.

A subset of a history configuration space S equipped with a total order, such as the image of a
non-self-intersecting directed path γ in S, does not represent “classical dynamics”, since each history
contains its own complete description of events. However, certain special totally ordered subsets of S
may be interpreted as representing “growth” or “development” of one history into another, and such
subsets are called evolutionary pathways in S. Technical requirements for evolutionary pathways are
discussed below. Such pathways may or may not possess initial or terminal histories, depending on the
structure of S. However, any pair of pathways in S sharing a common terminal history, or a common
“limit” in more general settings, describe identical physics from different points of view. A familiar
example is given by partitioning Minkowski spacetime R3+1 via two different integer-indexed families
{σk} and {σ′k} of spacelike sections, as illustrated in the left-hand diagram in Figure 2. This diagram
follows the usual convention of suppressing two spacelike dimensions, with time running vertically
up the page. Edges do not represent physical boundaries, but merely delimit the finite region shown.
Discrete evolutionary pathways for R3+1 may be defined via these partitions, as shown in the middle
and right-hand diagrams. One may completely foliate R3+1 by similar families, thereby defining
continuous pathways in a configuration space of Lorentzian manifolds. However, the simpler discrete
picture shown here, in which R3+1 is partitioned into increments of nontrivial causal extent, is more
illustrative of the discrete processes studied in this paper.

Both evolutionary pathways illustrated in Figure 2 describe the same empty, flat spacetime
represented by R3+1. However, they offer different perspectives regarding the evolution of this
spacetime. These may be identified with different inertial frames of reference on R3+1, since {σk} and
{σ′k} are families of parallel spacelike hyperplanes. In more abstract settings, histories may not encode
recognizable geometry, so the relativistic idea of frames of reference must be generalized. However,
the conceptual content remains unchanged: each evolutionary pathway in a history configuration
space S describes a history together with a generalized frame of reference for this history. To qualify as
an evolutionary pathway, a totally ordered subset γ of S must satisfy the property that “later histories
in γ are evolutionary descendants of earlier histories”. Mathematically, this means that the total order
on γ must be derived naturally from the structure of S. The most convenient case is when S itself



Entropy 2017, 19, 322 4 of 47

possesses natural order-theoretic structure from which evolutionary relationships may be deduced in
a self-evident way. This is the case for discrete causal theory.

σ−1

σ0

σ1

σ2

σ′−1

σ′0

σ′1

time

Figure 2. R3+1 partitioned via sequences of spatial sections {σk} and {σ′k}; evolutionary pathways
defined by {σk} and {σ′k}. Both pathways share the same “limit history” R3+1.

1.4. Motivation for Entropic Phase Maps

Histories modeled by objects called countable star finite acyclic directed sets induce discrete causal
history configuration spaces called kinematic schemes, with properties superior in some ways to those
of similar spaces arising in causal set theory, causal dynamical triangulations, and related approaches.
These objects are formally defined in Section 2. Path summation over a kinematic scheme S,
together with other natural machinery, enables derivation of discrete causal Schrödinger-type equations
such as Equation (1.1.2) of [14]. This equation is reproduced here as Equation (4):

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−). (4)

The meaning of this equation is explained in Section 2, and more thoroughly in [14], but I briefly
describe its content here. The function ψ−R;θ is a generalized state function, called the past state function,
while R is a set of relations representing natural relationships between pairs of histories in S,
called co-relative histories. Sequences of co-relative histories fit together to define evolutionary pathways
in S, called co-relative kinematics. The relations r and r− are elements of R representing specific
co-relative histories. The precursor symbol ≺ in the expression r ≺ r− indicates that the evolutionary
relationship represented by r is a possible sequel to the evolutionary relationship represented by r−.

Remaining to be identified in Equation (4) is the relation function θ, which is the entity of principal
interest in this paper. This function assigns to each element r of R a phase θ(r) belonging to some target
object T. The most obvious choice for T is the unit circle S1, viewed as a subobject of the complex
field C, and this is the target object focused on here. However, other choices may be studied in more
general contexts. For reasons explained in [14], the unit spheres S3 and S7, viewed as subobjects of the
quaternions H and octonions O, respectively, are potentially interesting alternatives. At a finer level
of detail, it may be appropriate to consider discrete subobjects of S1, S3, or S7, which possess interesting
algebraic properties. Alternatively, T might be an object at a higher level of algebraic hierarchy, such as
a monoidal category. In any case, T must possess a “multiplicative” operation, enabling the factor θ(r)
to multiply the sum ∑r−≺r ψ−R;θ(r

−) in Equation (4). Extending θ via this operation, as described below,
defines a phase map Θ on the space of co-relative kinematics in S. The form of Equation (4) assumes
that θ generates Θ in this way; otherwise, the equation must be generalized. Under this assumption,
θ provides specific dynamical content to the equation, and thereby defines a quantum dynamical law
governing fundamental spacetime structure.
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The elements of the relation set R in Equation (4) encode information up to first order at the
quantum level, in the sense that they represent individual stages of evolution in S. Hence, θ is
analogous to an infinitesimal path functional on S, i.e., a generalized Lagrangian. Similarly, Θ may
be regarded as a generalized action. However, to simplify the form of Equation (4), the appropriate
analogue of the exponentiation appearing in Feynman’s phase map (1) is “built in” to the definition
of θ. Hence, the quantities I call “phases” throughout the remainder of the paper are analogous
to Feynman’s complex exponentials e

i
h̄S(γ) themselves, not to the corresponding “angles” 1

h̄S(γ).
The phase Θ(γ) of a co-relative kinematics γ is therefore a product of phases θ(r) of individual relations
r along γ, rather than a sum or integral. More precisely, one may define a concatenation product t joining
co-relative kinematics “end-to-end”, under which γ may be factored into a product of individual
relations γ = ... t r0 t r1 t r2 t ... Extending θ multiplicatively then means that Θ(γ) = ∏k θ(rk),
where the product is in the target object T. Questions of convergence are important in general, but are
not examined here, since one may go quite far under finiteness assumptions.

This paper explores the problem of identifying suitable phase maps for discrete quantum gravity,
focusing on a class of S1-valued maps defined in terms of terminal states ∆ of histories D along
evolutionary pathways γ in a history configuration space S. Here, S is a kinematic scheme of star
finite acyclic directed sets D, γ is a co-relative kinematics, and ∆ encodes “recent” causes and effects
in D. Invariants such as state automorphism groups Aut(∆) determine multiplicities of states, and induce
natural families of entropy functions. Resolution entropy is defined via a “coarse-graining” procedure
called causal atomic resolution, analogous to conventional partitioning of state space into families
of states sharing “macroscopic” properties. Superset entropy is defined by counting the number of
ways in which a terminal state ∆ may embed into a larger state ∆′ called a superset of ∆. A large
state automorphism group Aut(∆) corresponds to a small number of such supersets, and therefore
implies low entropy. Labeled entropy is defined by counting the number of ways to label elements
of ∆; again, large Aut(∆) implies low entropy. Symmetry entropy, by contrast, is defined by counting
the elements of Aut(∆) itself, so large Aut(∆) implies high entropy in this context. A primitive
version of symmetry entropy is discussed in Section 8.2 of [14]. A phase map defined in terms of such
entropic quantities, or related quantities such as entropy per unit volume, is called an entropic phase map.
The resulting version of Equation (4) may be viewed as an abstract combination of Schrödinger’s
equation and the second law of thermodynamics, which arises entirely from the structure of S.

Section 2 presents the necessary background from discrete causal theory [14] to support
the development and description of these ideas. Section 2.1 briefly outlines the conceptual and
philosophical foundations of discrete causal theory. Section 2.2 describes the classical version of
the theory, expressed in terms of countable star finite acyclic directed sets. Section 2.3 sketches the
theory of relation space, which addresses certain technical difficulties in earlier versions of the theory
such as causal set theory. Section 2.4 describes the basics of discrete quantum causal theory. Section 3
examines entropy and the second law of thermodynamics in a broad context, introduces discrete causal
analogues of familiar thermodynamic ideas such as state space, and develops the specific notions of
entropy mentioned above. Section 3.1 discusses entropy in general terms under a broad framework
called entropy systems. Section 3.2 describes associated versions of the second law. Section 3.3 introduces
discrete causal state spaces. Section 3.4 defines resolution, superset, labeled, and symmetry entropies.
Section 4 introduces entropic phase maps, and examines some of their properties. Section 4.1 describes
some simple versions of these maps explicitly. Section 4.2 discusses the problem of obtaining suitable
interference effects analogous to those induced for Feynman’s phase map by Hamilton’s principle.
Section 4.3 discusses some possible objections to the idea of entropic phase maps, and briefly
examines an alternative approach involving a more conventional notion of action. Section 4.4 offers
concluding remarks, and mentions some mathematical problems whose solution would enhance the
study of entropic phase maps.
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2. Discrete Causal Theory

2.1. Causal Metric Hypothesis

Discrete causal theory is a general approach to fundamental physics that emphasizes
discrete spacetime models equipped with directed structure encoding cause-and-effect relationships
between pairs of events. Included under this umbrella are causal set theory [2], causal dynamical
triangulations [6], and quantum causal histories [7]. Similar ideas contribute to loop quantum
gravity [8,9], information-related approaches involving causal networks or cellular automata [10,17,18],
causal fermion systems [11], and the theory of tensor networks [13]. The version of discrete causal
theory used in this paper is distinct from all these, but may be regarded as an enhanced version of causal
set theory [14]. Clean and appealing basic structure is an asset of discrete causal theory, but its principal
motivation derives from technical results called metric recovery theorems, discussed in Section 2.2,
which demonstrate that discrete causal models can reproduce relativistic spacetime geometry at
ordinary scales. Such models also avoid generic divergence problems, and offer potential explanatory
advantages by allowing “pre-geometric” notions such as spacetime dimension to emerge dynamically.
The reason why these models cannot yet replace relativistic geometry root and branch is because
relativity explains how geometry evolves via Einstein’s Equation (3), while discrete causal dynamics
remains primitive. This paper offers a modest contribution toward rectifying this deficiency.

A radical interpretation of the aforementioned metric recovery results is the causal metric
hypothesis [14–16], which states that the structural properties of the universe, particularly the metric
structure of spacetime, emerge from causal structure at the fundamental scale. This general idea forms
the philosophical basis for discrete causal theory, but may be accorded different weights in different
versions of the theory. The strong interpretation of the causal metric hypothesis ascribes all of physics,
including “nongravitational matter”, to causal structure. In the context of entropic phase maps,
the strong interpretation extends the thermodynamic hypothesis regarding gravitation [19] to treat
matter and energy in similar terms. Alternatively, one may choose to restrict attention to gravity,
leaving aside unification. In this context, matter and energy may be modeled by attaching auxiliary
algebraic structure to causal structure. In either case, quantum theory arises via generalized path
summation in a manner much simpler and more natural than conventional attempts to quantize
relativistic geometry. The directed structures of individual discrete causal histories combine to induce
higher-level multidirected structures on their history configuration spaces, analogous to higher-level
geometric structures of moduli spaces in algebraic geometry. This iteration of structure enables a natural
version of summation over evolutionary pathways, which leads to quantum dynamics governed by
discrete causal Schrödinger-type equations such as Equation (4).

2.2. Classical Theory

The mathematical objects used to model discrete causal histories in this paper are called
countable star finite acyclic directed sets. Before defining them formally, I make two clarifying remarks.
First, these objects are conventionally called “directed graphs” rather than “directed sets”, because the
latter term has a more specific conventional meaning. However, graph-theoretic terminology is
awkward here, and “directed set” ideally communicates the intended notion of a set D equipped
with directions between distinguished pairs of elements x and y. Such a direction is called a
relation between x and y, with initial element x and terminal element y, and is denoted by x ≺ y.
The precursor symbol ≺ generalizes the familiar less than symbol < on a totally ordered set such as Z.
The relation x ≺ y is represented graphically by a directed edge between nodes representing x and y.
A family of such relations is called a binary relation on D, denoted collectively by the same symbol ≺.
Mathematically, ≺ is a subset of the Cartesian product D× D. Dual usage of the word “relation” and
the symbol ≺ for individual relations x ≺ y and for the set ≺ of all such individual relations is a
standard convenience. Second, the choice to focus on acyclic directed sets rules out discrete causal
analogues of closed causal curves, but this is a simplifying assumption that may be relaxed. It does
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not imply the view that quantum gravity necessarily forbids such structure. Countability and/or star
finiteness may also be relaxed, though in my opinion there is limited motivation for doing so.

The following definitions are adapted from Sections 3.6 and 3.7 of [14]:

Definition 1. A directed set (D,≺) is a set D equipped with a binary relation ≺. A morphism from a
directed set (D,≺) to a directed set (D′,≺′) is a set map f : D → D′ such that f (x) ≺′ f (y) whenever x ≺ y.
The category of directed sets D is the category whose objects are directed sets and whose morphisms are
morphisms of directed sets. A subobject of a directed set (D,≺) is a directed set (D′,≺′), where D′ is a subset
of D, and where ≺′ is a subset of ≺ consisting of relations between pairs of elements of D′. The causal dual of
a directed set (D,≺) is the directed set (D,≺∗), where x ≺∗ y if and only if y ≺ x.

Definition 2. A multidirected set (M, R, i, t) consists of a set of elements M, a set of relations R, and initial
and terminal element maps i : R → M and t : R → M. A morphism from a multidirected set
(M, R, i, t) to a multidirected set (M′, R′, i′, t′) consists of a map of elements fELT : M → M′ and a
map of relations fREL : R → R′, such that fELT(i(r)) = i′( fREL(r)) and fELT(t(r)) = t′( fREL(r)) for
each r in R. The category of multidirected sets M is the category whose objects are multidirected sets and
whose morphisms are morphisms of multidirected sets. A subobject of a multidirected set (M, R, i, t) is a
multidirected set (M′, R′, i′,′ t), where M′ and R′ are subsets of M and R, respectively, and where i′ and t′

are the restrictions of i and t to R′. The causal dual of a multidirected set (M, R, i, t) is the multidirected
set (M, R, t, i).

Definition 3. A chain in a multidirected set (M, R, i, t) is a sequence of relations ..., rk, rk+1, ... such that
t(rk) = i(rk+1). The past of an element x of (M, R, i, t) is the set of all elements w in M such that there exists a
chain r0, ..., rN with i(r0) = w and t(rN) = x. The future of x is the set of all elements y in M such that there
exists a chain r0, ..., rN with i(r0) = x and t(rN) = y. An antichain in (M, R, i, t) is a subset σ of M with no
chain connecting any pair of its elements, distinct or otherwise. The past relation set R−(x) of an element x
in M is the set of all relations r in R such that t(r) = x. The future relation set R+(x) of x is the set of all
relations r in R such that i(r) = x. The relation set R(x) of x is the union R−(x) ∪ R+(x).

For both directed sets and multidirected sets, an isomorphism is an invertible morphism, and an
automorphism is a self-isomorphism. Isomorphic sets are usually considered to be equivalent. It is
often convenient to denote a directed set or multidirected set by just D or M, respectively, or to write
D = (D,≺) or M = (M, R, i, t) to indicate that a set D or M is equipped with such structure. Similarly,
the causal dual of a directed set D may be denoted by D∗, and the causal dual of a multidirected set M
by M∗. A directed set D = (D,≺) may be recognized as a multidirected set whose set of relations is
the binary relation≺, and whose initial and terminal element maps are defined by setting i(x ≺ y) = x
and t(x ≺ y) = y. For multidirected sets, the notation x ≺ y remains useful to indicate the existence of
a relation r such that i(r) = x and t(r) = y, even though no binary relation is involved. The necessity
to study multidirected sets arises at the quantum level, via iteration of structure.

A well-motivated version of discrete classical causal theory is defined by the axioms in Definition 4,
adapted from Definition 4.10.1 of [14]. Symbols and terms are further discussed below.

Definition 4. Five axioms for discrete classical causal theory are the following:

1. Binary axiom: Classical spacetime may be modeled as a directed set D = (D,≺), whose elements
represent events, and whose relations represent causal relationships between pairs of events.

2. Generalized measure axiom: D is equipped with a set function µ from the power set P(D) of D to
the extended real numbers R∪ {∞}, which assigns finite positive values to nonempty finite subsets of D,
and infinite values to infinite subsets of D.

3. Countability: D is countable.
4. Star finiteness: For every element x of D, the star St(x) = {x} ∪ R(x) of x is finite.
5. Acyclicity: D possesses no cycles, i.e., sequences of relations x0 ≺ ... ≺ xN with x0 = xN .
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The binary axiom specifies both a mathematical structure and a physical interpretation of
this structure. The generalized measure axiom imposes no mathematical conditions on the remaining
axioms, so it is allowed a range of possible versions, each specified by a choice of µ. The most attractive
choices are similar to the counting measure used in early versions of causal set theory, which assigns
to each subset of D its number of elements in fundamental units. The function µ is unrelated to the
family of measures µ for an entropy system, introduced in Section 3.1. Since the star St(x) of x is just
{x} ∪ R(x), star finiteness is equivalent to finiteness of relation sets R(x). The physical meaning of
this condition is that every event has only a finite number of direct causes and effects. The reason for
using St(x) rather than R(x) involves topological bookkeeping that plays no direct role in this paper.
The meanings of countability and acyclicity are self-evident. The discreteness of D is encoded in the
generalized measure axiom and the axiom of star finiteness.

Figure 3, adapted from Figure 3.6.5 of [14], illustrates different types of directed sets and
multidirected sets. Elements are represented by nodes, and relations by directed edges. In the
third and fourth diagrams, directions of relations are indicated by arrows, while in the first and
second diagrams, directions are inferred via an “up the page” convention analogous to the convention
for the direction of time in Minkowski spacetime diagrams. This convention applies only to
acyclic directed sets. The first diagram illustrates a causal set, i.e., a countable, irreflexive, transitive,
interval finite directed set (C,≺CS). Irreflexivity means that C contains no “self-relations” x ≺CS x.
Transitivity means that if x ≺CS y and y ≺CS z, then x ≺CS z. Irreflexivity and transitivity together
imply acyclicity. Transitivity leads to trouble in distinguishing between direct and indirect causation
in causal set theory [14,20]. Interval finiteness means that only a finite number of elements y lie
between any two elements x and z of C, in the sense that x ≺CS y ≺CS z. Interval finiteness and
star finiteness are incomparable, i.e., neither condition implies the other. An important class of
causal sets that are generally not star finite are those induced by randomly “sprinkling” elements
into a Lorentzian manifold. These sets are useful to illustrate metric recovery results, but they are
not regarded as physically realistic, even in causal set theory. Star finite objects are preferred as
the actual workhorses for quantum gravity [2,21,22]. The second diagram in Figure 3 illustrates a
nontransitive acyclic directed set; in particular, the two relations x ≺ y and y ≺ z do not imply a
relation x ≺ z. The physical interpretation of this set still recognizes x as a cause of z, but not a direct
cause. This is analogous to the relationship between a grandparent and grandchild. The third diagram
illustrates a directed set D′ with cycles, including the “self-relation” t ≺′ t and the “reciprocal relations”
u ≺′ v ≺′ u. Such sets are not studied in this paper, but remain interesting in more general contexts.
The fourth diagram illustrates a multidirected set M whose relation structure is more complicated than
any binary relation on its set of elements. For example, there are two distinct relations in M from x to
y. In discrete causal theory, multiple relations between pairs of elements arise at the quantum level,
where a given pair of histories may exhibit multiple direct evolutionary relationships.

Absent from Definition 4 is any specification of classical dynamics. This reflects the philosophy that
physics at the fundamental scale should be described in quantum-theoretic terms. Classical equations of
motion should emerge at larger scales from underlying quantum dynamics, according to a generalized
version of the correspondence principle. All histories obeying suitable axioms should contribute to
this dynamics, with contributions of “well-behaved” histories reinforced via constructive interference,
and contributions of “pathological” histories damped out. There should be no artificial distinction
between “on-shell” histories that obey preconceived classical dynamics, and “off-shell” histories that
do not. All permissible histories should begin on an equal footing, just as all permissible paths begin
on equal footing in conventional path integration.
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(C,≺CS) (D,≺) (D′,≺′) (M, R, i, t)

x
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z
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u

v

x
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Figure 3. Causal set; acyclic directed set; directed set; multidirected set.

Structurally attractive models need not be relevant to the actual universe. Genuinely interesting
models exhibit solid connections to established physics. For discrete causal theory, such connections
are provided by the metric recovery theorems of Hawking [23] and Malament [24], and their
generalizations [25–27]. Informally, these theorems state that the causal structure of relativistic spacetime
determines its geometric structure up to scale. The causal metric hypothesis [14–16] strengthens and
generalizes this statement by removing dependence on relativity and the caveat “up to scale”.
If spacetime is precisely smooth and Lorentzian to arbitrary scales, then the causal metric hypothesis
is not quite true, due to this missing scale data. Hence, the hypothesis relies on the assumption that
such data arises in the actual universe from some natural source other than a Lorentzian metric.
What Finkelstein [3,4], Myrheim [28], ‘t Hooft [29], Sorkin [2], and others realized by around
1980 was that discrete causal structure supplies its own natural notion of scale via enumeration
of fundamental elements. Later, it became popular to admit fluctuations in the sizes of elements to
preserve systematic Lorentz invariance [30,31]. The generalized measure axiom in Definition 4 further
relaxes this picture to allow the possible contribution of relation structure in determining volume.
However, the basic lesson of metric recovery is unchanged by these modifications: discrete causal
structure supplies natural scale data absent in continuous causal structure. Hence, Lorentzian geometry
at large scales may be reasonably attributed to discrete causal structure at the fundamental scale.

2.3. Relation Space

A gem of structural philosophy from pure mathematics is Grothendieck’s relative viewpoint,
which emphasizes the study of objects together with their natural relationships. In discrete causal theory,
the relative viewpoint is a conceptual tool of tremendous power and scope. A natural relationship
between a pair of events in this setting is just a causal relationship, represented by a relation x ≺ y
between elements x and y of a directed set D = (D,≺). The collection of all such relations is just the
binary relation ≺. It is surprisingly useful to view ≺ as a directed set in its own right, by recognizing
“relations between pairs of relations”. The resulting object R(D) is called the relation space over D.
Definition 5, adapted from Definition 5.1.1 of [14], generalizes this idea to multidirected sets.

Definition 5. Let M = (M, R, i, t) be a multidirected set, and let r0 and r1 be elements of its relation set R.

1. The induced relation ≺ on R is defined by setting r0 ≺ r1 if and only if t(r0) = i(r1).
2. The directed set R(M) = (R,≺) is called the relation space over M.

The induced relation involves a new use of the precursor symbol ≺. Figure 4, adapted from
Figure 5.1.3 of [14], illustrates the relation space R(D) over an acyclic directed set D. The left-hand
diagram shows the construction of an individual relation r0 ≺ r1, while the right-hand diagram shows
R(D) as a whole. More generally, R(M) may be identified with the line digraph [32] over the directed
multigraph corresponding to M. Theorem 6 gives the essential properties of relation space.
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Theorem 6. Passage to relation space defines a functor R from the category M of multidirected sets to the
category D of directed sets. This functor sends acyclic multidirected sets to irreducible acyclic directed sets,
and preserves star finiteness.

Proof. See [14], Theorem 5.1.4.

x

r0

y

r1

z

r0 ≺ r1

D R(D)

Figure 4. Induced relation between relations r0 and r1 in a directed set D; global view of R(D).

An important application of relation space in discrete causal theory is to eliminate a technical
problem called permeability [33,34], which obstructs formulation and solution of initial value problems.
In such a problem, one begins by specifying information associated with a maximal antichain σ in
a directed set D, which is analogous to a spatial section of relativistic spacetime. One then attempts
to solve for corresponding data throughout the future of σ. In general relativity, a Cauchy surface σ

in a Lorentzian manifold X is an impermeable maximal antichain with respect to the causal structure
of X, meaning that every inextensible causal curve in X intersects σ. Cauchy surfaces are useful for
formulating initial value problems, because information cannot permeate a Cauchy surface σ to affect
its future without being “filtered” by σ. Lorentzian manifolds containing Cauchy surfaces are called
globally hyperbolic. The left-hand diagram in Figure 5, adapted from Figure 5.4.1 of [14], illustrates two
causal curves intersecting a Cauchy surface in a globally hyperbolic manifold.

σ

X

x y

w

z
D

σ

Figure 5. Cauchy surface σ in a globally hyperbolic manifold X, intersected by two causal curves;
maximal antichain σ in a directed set D, permeated by two chains.
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In discrete causal theory, a typical maximal antichain σ in a typical directed set D is permeable,
meaning that chains in D may pass through σ from past to future without intersecting σ. In causal
set theory [33], this phenomenon is referred to as “missing links”; the antichain σ is compared to
a “sieve” [34], which is “by-passed” by a “large amount of geometric information”. “Thickened
antichains”, obtained by adding limited quantities of past and future elements to σ, typically suffer
from the same problem. Hence, maximal antichains are not good analogues of Cauchy surfaces in
causal set theory, and the same statement applies to discrete causal theory in general. The right-hand
diagram in Figure 5 illustrates a pair of chains permeating a maximal antichain σ in an acyclic
directed set. The dashed lines connecting the elements of σ are a visual aid, not part of the structure.
Permeability means that information can leak through σ, for example, from w to z. Besides posing a
general obstacle to discrete causal dynamics, this problem also has as a specific bearing on the definition
and analysis of entropic quantities, again typified in the causal set context [35,36]. Fortunately, however,
this problem disappears upon passage to relation space.

Theorem 7. Maximal antichains in relation space are impermeable. That is, if σ is a maximal antichain in
the relation space R(M) over a multidirected set M, and if γ is a chain of relations in R(M) beginning at an
element in the past of σ and terminating at an element in the future of σ, then γ intersects σ.

Proof. See [14], Theorem 5.4.3.

Path summation in discrete causal theory is described in terms of impermeable antichains,
and therefore depends on the theory of relation space in an essential way.

2.4. Quantum Theory

Just as relations between pairs of events are central to discrete classical causal theory,
so directed relationships between pairs of histories are central to discrete quantum causal theory.
These relationships are called co-relative histories. The word “relative” refers to the relative viewpoint,
while the prefix “co” derives from covariant constructions in category theory. The physical
interpretation of a co-relative history is that it encodes the evolution of one history into another.
The left-hand diagram in Figure 6, adapted from Figure 6.4.6 of [14], illustrates a family of four
co-relative histories sharing a common initial history, called a cobase. The right-hand diagram illustrates
how these co-relative histories are represented by morphisms of directed sets.

h1

h2

h3
h4

x

y

x

y
τ1

τ1(x)

τ1(y)

τ2

τ2(x)

τ2(y)

τ3 τ′3

τ3(x) τ′3(x)

τ3(y) τ′3(y)

τ4

τ4(x)

τ4(y)

Figure 6. Four co-relative histories sharing a common cobase with two elements x and y and one
relation x ≺ y; morphisms (transitions) representing these co-relative histories.

Individual morphisms in the category D of directed sets do not always uniquely represent
evolutionary relationships, due to symmetries. For example, the co-relative history h3 in Figure 6 is
represented by two different morphisms τ3 and τ′3, due to the symmetry interchanging the two
maximal elements of its target history. Hence, co-relative histories are defined as equivalence
classes of morphisms. It is convenient to restrict attention to special morphisms called transitions,
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which represent “growth” of directed sets. This idea is made precise in Definition 8, adapted from
Definition 6.3.4 of [14]. Co-relative histories are then introduced in Definition 9, adapted from
Definition 6.4.3 of [14].

Definition 8. A transition in the category D of directed sets is a monomorphism τ : D → D′, embedding its
source D into its target, D′, as a proper, full, originary subobject. Here, “proper" means that τ(D) has
nontrivial complement in D′, “full" means that τ(x) ≺ τ(y) in D′ if and only if x ≺ y in D, and “originary"
means that the isomorphic image τ(D) of D in D′ contains its own past.

At a less-formal level, the condition that τ is a monomorphism means that τ does not “erase”
details of the source D. The “proper” condition means that τ encodes nontrivial change. The “full”
condition means that τ does not “edit” details of D. The “originary” condition means that τ does not
add “prehistory” to D. These conditions support the desired evolutionary interpretation.

Definition 9. A proper, full, originary co-relative history h : Di ⇒ Dt is an equivalence class of
transitions τ : Di → Dt, where two transitions τ and τ′ are equivalent if and only if there exists an
automorphism β of Dt mapping τ(Di) onto τ′(Di). The common source Di of the transitions representing h is
called the cobase of h, and the common target Dt of these transitions is called the target of h.

The subscripts i and t in the expression h : Di ⇒ Dt stand for “initial” and “terminal”.
This notation is different from the notation for arbitrary transitions in Definition 8, since Sections 3 and 4
feature auxiliary transitions related to h that do not belong to the equivalence class defining h.
The proper, full, and originary conditions in Definition 9 allow the unadorned term “co-relative history”
to mean something more general, but co-relative histories in this paper always satisfy these conditions,
except in the context of superset microstates in Definition 15, where they need not be full.
Each transition in the equivalence class defining h is said to represent h. The “double arrow” notation⇒
emphasizes that h may be represented by more than one transition, but often h is uniquely represented
due to the rigidity of typical “large” directed sets [37], which plays an important role in Sections 3 and 4.
It is useful to think of h as “adding elements and relations to Di to produce Dt”, but one cannot
always identify specific elements and relations as “the ones added” since h is an equivalence class.
Multiple inequivalent transitions, and hence multiple co-relative histories, may exist between a given
pair of directed sets, even a pair differing by a single element. This implies multidirected structure at
the quantum level.

Choosing a suitable family K of directed sets, together with a suitable familyH of co-relative histories
between pairs of members ofK, one obtains a structure S called a kinematic scheme, which serves as a history
configuration space. The word “kinematic” means that S encodes possible behavior, without identifying
what specific behavior is determined or favored under specific conditions. The latter question involves
dynamics. As an analogy, relativistic kinematics describes possible particle paths, e.g., ruling out
spacelike motion, but the paths of specific particles depend on dynamical information. S possesses
natural multidirected structure induced byH, elaborated below. Sequences of co-relative histories in
S define evolutionary pathways called co-relative kinematics, abstractly analogous to particle paths in
conventional path summation. The conditions that S must satisfy to qualify as a kinematic scheme are
that H must include enough co-relative histories to describe the evolution of any history in K, and
K must contain all “ancestors” of its members. These conditions are made precise in Definition 10,
adapted from Definitions 7.4.1 and 7.4.7 of [14]. An additional desirable property, called the generational
property, allows each co-relative history inH to be “factored into generations”. However, this property
is not studied in this paper, and it is preferable to omit it from the definition.

Definition 10. A kinematic scheme is a pair S = (K,H), where K is a class of directed sets, and H is a
class of co-relative histories between pairs of members of K satisfying the following properties:
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1. Accessibility: If D is in K, then there exists a sequence of co-relative histories inH terminating at D.
2. Hereditary property: K is closed under the formation of proper, full, originary subobjects.

Figure 7, adapted from Figure 7.5.2 of [14], illustrates a portion of a kinematic scheme SPS called
the positive sequential kinematic scheme, which serves as a source of examples throughout the remainder
of the paper. SPS is modeled after a kinematic scheme of finite causal sets appearing implicitly in
Sorkin and Rideout’s theory of sequential growth dynamics [38]. Similar structures appear elsewhere in
the work of Sorkin [39], Isham [40–43], Markopoulou [7], and others. The objects illustrated inside
each large open node in the figure are members of the class K of directed sets of SPS, which is the
class of finite acyclic directed sets. This class is more restrictive than the class specified by Definition 4,
which requires only countability. The edges connecting the large open nodes represent members of the
classH of co-relative histories of SPS, which are those that “add a single new element to their targets”.
This means that if h : Di ⇒ Dt belongs to H, and if τ : Di → Dt is a transition representing h,
then the complement of τ(Di) in Dt is a singleton. The gray-colored nodes illustrate how the set of four
co-relative histories appearing in Figure 6 embeds into SPS. The thickened edges illustrate a co-relative
kinematics in SPS, whereby the empty set � evolves into a directed set D with four elements and
three relations. The specific transition or transitions representing each co-relative history illustrated
in the figure may be inferred in a straightforward manner from the directed structures of its cobase
and target; for example, there is a unique transition τ representing the final co-relative history in the
co-relative kinematics terminating at D. The “new element added by τ”, i.e., the complement of the
image of τ, is the top-right element indicated by the arrow.

D

Figure 7. Positive sequential kinematic scheme SPS (first four generations); gray nodes show the four
co-relative histories from Figure 6; thickened edges illustrate a co-relative kinematics.

Given a kinematic scheme S = (K,H), it is useful to associate an abstract multidirected set
M(S) with S, where each member D of K is represented by an element x(D) of M(S), and where
each member h : Di ⇒ Dt of H is represented by a relation r(h) from x(Di) to x(Dt) in M(S).
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M(S) is called the underlying multidirected set of S. Chains in M(S) represent co-relative kinematics
in S. The left-hand diagram in Figure 8, adapted from Figure 7.5.4 of [14], illustrates a portion of the
underlying multidirected set M(SPS) of the positive sequential kinematic scheme SPS. The chain from
x(�) to x(D) represents the co-relative kinematics from � to D illustrated in Figure 7. This diagram
illustrates the permeability problem in the context of kinematic schemes; the three nodes connected by
the auxiliary dashed lines represent a maximal antichain in M(SPS), which is permeated by the chain
from x(�) to x(D). It is therefore necessary to work in relation space to properly formulate the theory
of path summation. The right-hand diagram in Figure 8 illustrates part of the relation space R(M(SPS)).
The dark square nodes represent a maximal antichain, which is impermeable by Theorem 7.

x(�)

x(D)

Figure 8. Portion of M(SPS) illustrating the permeability problem; corresponding portion of R(M(SPS))

showing an impermeable maximal antichain.

While one could choose to perform path summation over a particular acyclic directed set,
the resulting theory would be background dependent, and hence unsuitable for quantum gravity.
Path summation in the background independent context involves summing phases Θ(γ) associated
with co-relative kinematics γ in a kinematic scheme S. As explained in Section 1.4, these phases are
analogous to Feynman’s phases e

i
h̄S(γ). Under modest assumptions, Θ(γ) is a product of phases θ(r)

of individual relations representing individual co-relative histories. The relation function θ determines
a specific form for Equation (4)

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−),

reproduced here for convenience. The setup for deriving this equation is illustrated in Figure 9,
adapted from Figure 6.9.2 of [14], where the derivation is carried out in detail. The auxiliary shading
represents a finite subobject R of the relation space R(M(S)). A choice of maximal antichain σ

partitions R into a disjoint union R = R− ∪ σ ∪ R+, where σ represents a choice of “present”, and R±

are the corresponding past and future regions. The function ψ−R;θ is called the past state function,
because it depends on all chains in R−, which terminate at elements of σ. Here, one such chain
γ is shown, terminating at an element r ∈ σ, with penultimate element r−. This chain may be
factored into a concatenation product γ− t r, where γ− is the subchain of γ terminating at r−,
and this factorization induces a factorization Θ(γ) = Θ(γ−)θ(r) of phases. The value ψ−R;θ(r)
is defined to be the sum ∑γ Θ(γ) of the phases of all maximal chains γ in R− terminating at r.
Mathematically, Equation (4) merely organizes the factorizations Θ(γ) = Θ(γ−)θ(r) for all such γ.
These chains represent co-relative kinematics in the corresponding region of S that lead to the target
history of the co-relative history represented by r. Generalizing to the case of infinite R raises
questions of convergence. From an abstract perspective, the function ψ−R;θ plays a role similar to
that of Feynman’s “wave function” ([1], Section 5), except that no limiting process is necessary to
define it, and no normalization constant is required. However, the structural context in which ψ−R;θ
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arises is much different than in Feynman’s original non-relativistic background dependent setup,
where evolutionary pathways are represented by paths in a fixed copy of R4. In the present discrete
background independent context, each step along a chain represents a co-relative history, interpreted as
the evolution of one spacetime into another. Equation (4) describes how the value of ψ−R;θ changes when
the evolutionary pathways involved are extended by one additional relation r, which corresponds
to multiplying the associated phases by θ(r). Abstractly, it arises in almost the same manner as the
ordinary Schrödinger equation under Feynman’s derivation ([1], Section 6), in which segmented
paths approximating continuous evolutionary processes are extended via a time-stepping method.
For Equation (4), however, no approximation is involved, so no limiting process is necessary.

R(M(S))

r

r−
γ

γ−

R
(all nodes in

shaded region)
R+

(future region)

R−
(past region)

σ
(“present")

Figure 9. Setup for deriving Equation (4): γ = γ− t r and Θ(γ) = Θ(γ−)θ(r).

A few further remarks regarding Equation (4) may be helpful. First, it is illuminating to
spell out how the equation can describe quantum-theoretic behavior specifically. This depends partly
on the general properties of path summation, and partly on the choice of relation function θ that
determines the phase associated with each evolutionary pathway. Like virtually any formula involving
path summation over a history configuration space, Equation (4) combines contributions from many
distinct processes involving many distinct histories. This is a familiar feature of quantum-theoretic
superposition, but is not unique to the quantum realm. For example, classical stochastic models such
as Sorkin and Rideout’s theory of sequential growth dynamics [38] organize information in a similar
manner at an abstract level, but are decidedly non-quantum. The classical nature of the latter theory
arises from the assignment of real probabilities, rather than quantum amplitudes, to evolutionary
pathways. Similarly, Feynman’s derivation [1] could just as easily be used to produce a continuous
classical stochastic model, with real probabilities assigned to subspaces of a path space. What leads
to Schrödinger’s equation specifically under Feynman’s setup is Feynman’s choice of phase map, which
produces the type of interference effects necessary to describe quantum-theoretic behavior. Similar
considerations apply in the discrete causal context. For different choices of θ, Equation (4) could be
used to describe a classical stochastic model, or a quantum-theoretic model, or neither. This highlights
why the choice of phase map is so crucial to the theory. As described in Section 1.4, the most
obvious choice of target object for a quantum-theoretic phase map is the choice made by Feynman,
namely, S1. Alternative choices can be interesting, but this paper focuses on S1-valued phase maps
almost exclusively. Second, due to the quantum-gravity-related focus of this paper, it is worth
noting that Equation (4) shares certain similarities with the Wheeler-Dewitt equation, but these are not
explored here. Third, allowing cycles complicates the picture, and this generalization is not considered
here. Fourth, many different kinematic schemes typically share a given class K of directed sets, and
different schemes offer different perspectives regarding the evolution of families of histories. Physical
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predictions must be independent of these choices, and this is expressed by saying that the theory must
be covariant. In practical terms, this means that if one changes S, then one generally must change θ to
compensate. This paper mostly ignores covariance issues.

Figure 10 illustrates a sequential growth process in SPS, in which a history D7 with seven elements
evolves into a history D11 with eleven elements via a sequence of co-relative histories labeled h7 to h10.
These co-relative histories are represented by relations r(h7) to r(h10) in R(M(SPS)), abbreviated by r7

to r10. This growth process serves as a source of examples in Sections 3 and 4. Each pair of consecutive
histories in Figure 10 encodes the same type of information associated with a single square node
in Figure 9, since these nodes represent co-relative histories. Given such a process, the goal is to
define phases measuring the “favorabilities” of each co-relative history. The black nodes and edges
represent the first-degree terminal states T1(D7) to T1(D11) of the histories D7 to D11, which encode the
first-order information in each history, i.e., the “physically new” information, consisting of only the
most recent causes and effects. First-degree terminal states are featured repeatedly in Chapters 7 and 8
of [14], where they are described via terminology such as “structural increments” or “generations”.
By definition, only one element in each history is “new” from the perspective of the sequential growth
process itself; these new elements are indicated by arrows. However, this process is merely one way of
describing the evolution of D11, and therefore involves arbitrary extraphysical choices regarding the
order of appearance of elements. Terminal states Tn(D) of degree n are introduced in Definition 13.
For n > 1, there is a distinction between degree and order; for example, second-degree terminal states
may encode information of arbitrarily high order. It is convenient to use the abbreviation ∆k for T1(Dk),
which highlights the fact that ∆k is a “structural increment” of Dk. To avoid clutter, only ∆8 is labeled
in the figure. The symbol ∆ is used in later sections to denote states of arbitrary degree.

h7

h8

h9

h10

D11

D10

D9

D8

D7

∆8 (black)
first-degree

terminal state
of D8

each such pair
represented by
a square node

in Figure 9

“new" element
in D8

Figure 10. Sequence of co-relative histories in SPS; terminal states indicated by dark nodes and edges;
“new elements” added by each co-relative history indicated by arrows.

First-degree terminal states are analogous to “present states” in conventional physics, involving data
up to first order, such as position and velocity. Familiar notions of entropy are associated with such
“present states”, not with entire histories. In particular, the second law of thermodynamics compares
the entropy of a “present state” to that of “previous states”; it does not involve a “higher-dimensional
entropy” associated with the entire history leading up to the present state. The evolution of physical
systems does not seem to be sensitive to details of the distant past; otherwise, one could not perform
reliable experiments without knowing the exact history of each piece of experimental equipment.
More formally, Lagrangians are typically assumed to depend on information only up to first order.
The form of Equation (4) imposes an analogous assumption at the level of kinematic schemes, since
the relation function θ is analogous to a Lagrangian on S. As discussed in Section 3.3, higher-order
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information at the level of individual histories is not a priori irrelevant in discrete causal theory, but
contributions from the distant past likely play a negligible dynamical role. Hence, the simplest “serious"
entropic phase maps are defined in terms of first-degree terminal states, and more-sophisticated phase
maps may be regarded as refinements of such maps.

3. Entropy and the Second Law of Thermodynamics

3.1. Entropy

Entropy, in the statistical sense pioneered by Boltzmann, may be understood very generally in
terms of the distinguishability of objects described at two different levels of detail, one regarded
as fine, and the other regarded as coarse. The prototypical application of this idea occurs in
statistical thermodynamics, in which the fine level of detail for a system, such as a fixed quantity of ideal
gas, is described in terms of microscopic data, such as the positions and momenta of individual molecules,
while the coarse level of detail is described in terms of macroscopic data, such as pressure, volume,
and temperature. Each possible choice of macroscopic data defines a coarse description of the system,
called a macrostate, while each possible choice of microscopic data defines a fine description, called a
microstate. Each macrostate generally corresponds to many different microstates, since many different
choices of microscopic data may be approximated by identical macroscopic data. The entropy of
a macrostate measures the quantity of corresponding microstates in a manner that is additive for
composite systems. In more general terms, objects distinguishable at some fine level of detail may be
indistinguishable at some coarser level, and a notion of entropy may be associated with the two levels
to quantify this difference in distinguishability. In particular, generalizations of Boltzmann entropy
such as Gibbs, Shannon, and Rényi entropies fall under the same conceptual umbrella. Measures of
entropy familiar in ordinary quantum theory, such as von Neumann entropy, are less relevant, since
they depend on specific algebraic apparatus less general than the path summation approach.

In statistical thermodynamics, the state space for a system is an abstract space parameterizing the set
of possible microstates of the system for some choice of fine detail. A choice of coarse detail partitions
state space into a family of subsets representing the possible macrostates of the system, where the points
of each subset parameterize the microstates associated with the corresponding macrostate. Such a
partition is called a coarse-graining of the state space. The left-hand diagram in Figure 11 illustrates such
a coarse-graining, where the cells representing macrostates are separated by solid lines. Dotted lines and
labels are explained below. Such a planar diagram could be interpreted literally as encoding the possible
position and momentum of a single particle moving in one real dimension, but all such diagrams in
this paper are schematic. Conventional state spaces are real manifolds, and therefore exhibit notions
of proximity, volume, and other topological and metric structure. However, their dimensions are
typically quite large, and this implies properties that are not well-represented by planar diagrams;
for example, each region typically has very many neighbors. Even in 24-dimensional Euclidean
space, each sphere in the regular packing induced by the Leech lattice is tangent to 196, 560 neighbors;
one may imagine the situation in 1024-dimensional space. Abstract metric-related ideas remain useful
for describing the properties of discrete causal state spaces, but planar diagrams only roughly represent
these notions.
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V
Wk

Figure 11. Partitions of state space; conventional state spaces exhibit regions of very different sizes;
state space inducing an “inverse second law of thermodynamics”.

Generalizing the thermodynamic picture, any set S of objects may be partitioned into a family
of subsets P, where the objects belonging to each subset are regarded as equivalent at a coarse level
of detail. More generally still, one may consider a strictly partially ordered family Π := {Pα}α∈A of
partitions Pα of S for some index set A, where by definition Pα ≺ Pβ if Pα 6= Pβ and if every member
of Pα is a union of members of Pβ. In this case, Pβ is called a refinement of Pα. Here, ≺ does not
represent causal structure, and superscript indices are used to distinguish information filtering from
mere enumeration. One may define equivalence relations ∼α on S for each α in A, where s ∼α s′ if s
and s′ belong to the same subset under Pα. If Pα ≺ Pβ, then Pα induces a quotient partition Pαβ of the
quotient set Sβ := S/ ∼β in an obvious way. Any such choice of Pα and Pβ may be used to define
notions of coarse and fine detail. Returning to Figure 11 in this more abstract setting, the large regions
bordered by solid lines in the left-hand diagram represent a choice Pα of coarse detail for a set S,
while the small regions bordered by dotted lines represent a choice Pβ of fine detail. Here, Pα and
Pβ each partition S into subsets of roughly equal size, but a typical coarse-graining in conventional
thermodynamics exhibits vast differences in the sizes of regions, and correlations exist involving
proximity and size. The middle diagram in Figure 11 illustrates such a coarse-graining. As emphasized
by Penrose [44], such details are crucial for understanding whether a typical system can be expected to
exhibit a systematic increase in entropy. For example, the right-hand diagram in Figure 11 illustrates a
state space that induces an “inverse second law of thermodynamics”, in the sense that a typical path in
this space moves from larger to smaller cells. If Pα ≺ Pβ, and if each member of Pα is a finite union of
members of Pβ, then one may define multiplicities and entropies via counting: if V ⊂ S is a member
of Pα, and if V = ∪K

k=1Wk for members Wk of Pβ, then the multiplicity µαβ(V) of V is K, and the
entropy eαβ(V) of V is log K. The choice of notation for µαβ and eαβ is intended to emphasize the
relative viewpoint: multiplicities and entropies are properly understood in terms of natural relationships
between levels of detail, not in terms of any specific level of detail. For the set V shown in the left-hand
diagram in Figure 11, the entropy is eαβ(V) = log 7, since Pβ subdivides V into seven regions. In more
general settings, it may be necessary to measure the sizes of members of Pαβ via some measure µαβ

other than the counting measure.

Definition 11. An entropy system (S, Π, µ) consists of a set S, a set Π := {Pα}α∈A of partitions Pα of S for
some index set A, strictly partially ordered by refinement, and a family µ of measures µαβ on the quotient sets Sβ,
one for each relation Pα ≺ Pβ in Π. Each such relation induces an entropy quadruple (S, Pα, Pβ, µαβ).
The entropy of a member V of Pα is eαβ(V) := log µαβ(Vβ), where Vβ ⊂ Sβ is the image of V under the
quotient map S→ Sβ, and where log ∞ is understood to mean ∞.

It is often convenient to denote an entropy quadruple by just S, or to write S = (S, Pα, Pβ, µαβ)

to indicate that a set S is equipped with such a structure. The functions µαβ are taken to be measures
here for simplicity, but the situation could be generalized further. In particular, the target object of
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µαβ need only be a totally ordered set. One may also abstain from using logarithms to “rescale” µαβ.
However, it suffices here to consider only the counting measure on a finite set or the Lebesgue measure
on a finite-dimensional real manifold, and logarithms are useful for producing quantities that are
additive for composite systems. The reason for using “e” instead of the familiar “h” for entropy is
because “h” is used here to represent co-relative histories. Figure 12 illustrates a simple entropy system
(S, Π, µ) whose underlying set S is the unit interval [0, 1] in R. The set Π of partitions of S has members
P0, P1, P2, and P3, which subdivide S into segments of equal lengths 1, 1/2, 1/3, and 1/6, respectively.
P0 is the trivial partition, under which S represents a single macrostate. The strict partial order ≺
on Π consists of five individual relations P0 ≺ P1, P0 ≺ P2, P0 ≺ P3, P1 ≺ P3, and P2 ≺ P3,
each of which induces an entropy quadruple. The quotient sets S0, S1, S2, and S3 have 1, 2, 3 and
6 elements, respectively. There are two nontrivial quotient partitions, P13 and P23, which subdivide
the quotient set S3 into equal-sized subsets with 3 and 2 elements, respectively. Multiplicities and
entropies of some representative subsets of S with respect to different entropy quadruples are also listed.
For example, the subset U = ( 1

2 , 1] of S has measure µ13(U) = 3 and entropy e13(U) = log 3 with
respect to the entropy quadruple (S, P1, P3, µ13).

Partitions:

S:

P0:

P1:
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P2:
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P3:

Quotient Sets:

S0:

S1:

S2:

S3:

Quotient Partitions:
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Partial
order:
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P1 P2

P3

Measures and Entropies:

µ01(S) = 2, e01(S) = log 2
µ02(S) = 3, e02(S) = log 3
µ03(S) = 6, e03(S) = log 6
µ13(U) = 3, e13(U) = log 3
µ23(V) = 2, e23(V) = log 2
µ12, e12 undefined

Quadruples:

(S, P0, P1, µ01)

(S, P0, P2, µ02)

(S, P0, P3, µ03)

(S, P1, P3, µ13)

(S, P2, P3, µ23)

Figure 12. A simple entropy system on the unit interval S = [0, 1] ⊂ R.

The motivation for adopting such a general viewpoint is that multiple “levels” of entropy are
evident in discrete causal theory. An important example involves the nth-degree terminal states
Tn(D) mentioned in Section 2.4 and formally introduced in Definition 13. Given two directed sets D
and D′, it may be the case that Tn(D) and Tn(D′) are isomorphic, while Tn+1(D) and Tn+1(D′) differ.
In this case, D and D′ are indistinguishable at the level of detail specified by the index value n,
but become distinguishable at the finer level of detail specified by the index value n + 1. On the level
of individual elements, two elements x and y belonging to a subobject ∆ of a directed set D may be
“locally indistinguishable”, in the sense that they are interchanged by an automorphism of ∆, but may
be “globally distinguishable”, in the sense that no such automorphism extends to an automorphism
of D. More generally, one may consider chains of subobjects ∆ = ∆1 ⊂ ∆2 ⊂ ... ⊂ ∆n ⊂ D containing x
and y, some of which possess automorphism groups interchanging x and y, and some of which do not.
Of obvious interest is the case in which ∆1 is a low-order terminal state of a history, and ∆n for n > 1
are progressive “thickenings” of ∆.

While entropy is defined by associating entire families of “fine” states with individual
“coarse” states, it is sometimes interesting to compare the amount of detail encoded by specific pairs
of states. It is then natural to relate such “local comparisons” to the “global comparisons” leading to
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entropy systems. In this context, one need not distinguish a priori between macrostates and microstates;
states are defined individually by specifying varying degrees and types information about an object
or system, and are then compared and categorized. Given two such states ∆ and ∆′, it is sometimes
possible to unambiguously identify ∆′ as more detailed than ∆, or vice versa. In other cases, ∆ and
∆′ are incomparable, in the sense that ∆ contains more of one type of information, while ∆′ contains
more of another. In this setting, one may recognize a natural partial order ≺ on the family of states
under consideration, where ∆ ≺ ∆′ if and only if ∆′ is unambiguously more detailed than ∆. This type
of partial order is different from the partial orders on sets of partitions in Definition 11, but the two
types of structure are related. For example, given an entropy quadruple (S, Pα, Pβ, µαβ), the set Pα ∪ Pβ

is a subset of the power set P(S) of all subsets of S. The relation Pα ≺ Pβ means that every member V
of Pα is a union of members W of Pβ. One may define an induced relation on Pα ∪ Pβ, also denoted
by ≺, where V ≺ W if and only if V is a proper superset of W. Hence, a single relation between
two partitions induces a partial order on a corresponding family of subsets. This partial order is of a
special type, with maximal chain length 1, because its only relations are those of the form V ≺ W for
V ∈ Pα and W ∈ Pβ such that W ⊂ V. However, one may easily define partially ordered sets with
longer chains by considering sequences of partitions ... ≺ Pn ≺ Pn+1 ≺ ...

Working in the opposite direction, one may begin with a partial order ≺ on an arbitrary set Σ.
Here, Σ is viewed as an abstract analogue of a family of states encoding various types and quantities
of detail, while ≺ is viewed as an abstract analogue of the partial order relating pairs of states ∆ and ∆′

whenever ∆′ is unambiguously more detailed than ∆. One may partition Σ into a family of antichains
σ with respect to ≺. There are generally many different choices of partition, each analogous to a frame
of reference in relativity. In the entropic setting, elements of a given antichain σ are viewed as abstract
analogues of states sharing an equal level of detail. In the simplest case, the antichains σ “foliate” Σ,
in the sense that each nonextremal antichain σk has an unambiguous maximal predecessor σk−1 and
minimal successor σk+1. More generally, the antichains σ form a partially ordered family. In either case,
the partition defines an atomic decomposition of Σ with respect to ≺, an idea revisited in a different
context in Section 3.3. In many cases, detail may be quantified in a variety of different ways, and this
leads to the consideration of families {≺α}α∈A of partial orders on Σ. Such families are themselves
partially ordered via the order-theoretic version of refinement, under which≺α precedes≺β if and only
if ∆ ≺β ∆′ whenever ∆ ≺α ∆′. An antichain with respect to ≺β is then automatically an antichain with
respect to ≺α, so any partition of Σ induced by ≺β refines at least one such partition induced by ≺α.
In this manner, the partial ordering by refinement of the family of partitions induced by {≺α}α∈A
respects the partial ordering on {≺α}α∈A itself. Hence, entropy systems defined in terms of such
partitions automatically respect the order-theoretic structure of Σ.

3.2. The Second Law

The familiar intuition regarding the second law of thermodynamics is that “entropy increases
with time”. Generalizing this idea to apply to the broad framework of entropy systems introduced
in Section 3.1 requires suitable analogues of “time” and “increase”. Time evolution is conventionally
represented by a directed curve in state space, and in this context the second law says that motion along
such a curve tends to pass from smaller to larger cells in a specified coarse-graining. The left-hand
diagram in Figure 13 illustrates such a curve γ. A typical curve originating in one of the two shaded
areas is likely to exhibit a systematic increase in entropy, at least for early times, since such curves begin
in small cells whose borders are dominated by larger cells. A typical curve originating elsewhere in the
state space does not exhibit such an increase in entropy. This illustrates the fact that both the structure
of state space and the region of origin of the curve describing the system of interest are relevant
to the existence of a recognizable second law. In the cosmology of the early universe, for example,
the question of why specific measures of entropy were initially relatively low is just as important as
the question of why entropy increased thereafter [44].
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Figure 13. Curve in state space along which entropy increases; map from a linearly ordered set into an
entropy quadruple, showing no discernible second law.

The abstract analogue of a directed curve in state space is a map γ from a linearly ordered set L
into an entropy quadruple S = (S, Pα, Pβ, µαβ). Such a map is illustrated in the right-hand diagram
in Figure 13. Here, L is drawn to suggest an interval in R, but in more general settings L may be
a non-continuous object such as an interval in Q, a discrete object such as an interval in Z, a finite
object such as the set {0, ..., N}, or even a transfinite object, such as the long line. The notion of an
increasing function requires similar generalization beyond the familiar setting of real analysis. Even in
conventional thermodynamics, strict definition of an increasing function must be relaxed, since the
second law is understood not as a prescription that entropy must increase over any time interval, but as
a description of the fact that entropy does increase with overwhelming likelihood over sufficiently
long time intervals. The map γ in the figure passes through cells of multiplicities 5, 2, 3, 7, 6, 6,
7 (again), 4, 2, 4, and 6 (again). Hence, the associated system does not obey a discernible version of the
second law. In the general case, it seems preferable to describe a variety of ways to define a version of
the second law for such a system than to isolate a particular choice via formal definition. An individual
map γ from a totally ordered set L into an entropy quadruple S = (S, Pα, Pβ, µαβ), obeys a strict
version of the second law if for every pair of subsets V and V′ of S belonging to Pα, and for every
pair of elements ` and `′ in L such that γ(`) ∈ V and γ(`′) ∈ V′, it is true that µαβ(V) ≤ µαβ(V′).
Intuitively, this means that γ never passes from a large cell into a smaller cell. There are various
ways to relax this strict description. If L possesses a metric, then one may specify a rule relating the
size of the interval (`, `′) to the probability that µαβ(V) ≤ µαβ(V′). If the target object of µαβ also
possesses a metric, then one may define something like a derivative, i.e., a rule relating the sizes
of the intervals (µαβ(V), µαβ(V′)) to the sizes of the corresponding intervals (`, `′). More generally,
a region U of S obeys a version of the second law if a typical map γ : L → S originating in U obeys
an individual version of the second law. The word “typical” may be made precise in terms of a
generalized measure on the space of maps γ. It is sometimes necessary to restrict attention to special
maps to obtain a clear pattern; for example, some entropy quadruples exhibit entropy increases along
typical “short curves”, but not along typical “long curves”. In particular, some cosmological models
posit a reversal of the second law in the distant past and/or future.

3.3. Discrete Causal State Spaces

In statistical thermodynamics, microstates are determined by information up to first order, e.g.,
by positions and momenta of individual molecules. Such information, together with the dynamical
laws of classical mechanics, is sufficient to recover higher-order information; one may uniquely evolve
a given state “backward in time”. Hence, if two states are indistinguishable up to first order, then they
are absolutely indistinguishable. In discrete causal theory, the situation is different. The analogue of
information up to first order in a finite acyclic directed set D is its first-degree terminal state T1(D),
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which consists of all maximal elements of D, all relations terminating at these elements, and all
initial elements of these relations. Knowledge of T1(D) generally does not enable recovery of D.
One may propose a choice of classical dynamics implying such a relationship for very special classes of
directed sets, for example, by abstracting the Einstein–Hilbert action from general relativity, which takes
the form

SEH =
c4

16πG

∫
X

R
√
−det(g)d4x, (5)

in the simple vacuum case with zero cosmological constant. Here, g is a Lorentzian metric on a
4-dimensional manifold X, R is the curvature scalar arising from the metric connection, G is Newton’s
gravitational constant, and c is the speed of light. Yet despite interesting efforts in this direction,
for example, in causal set theory [45–47], such a strategy is dubious due to the amount of geometric
structure taken for granted in relativity. Geometric data such as metrics and curvature, and even
“pre-geometric” data such as dimension and topology, are emergent notions in discrete causal theory.
Action functionals in this context must be defined more fundamentally, and cannot be expected to
produce straightforward analogues of deterministic, time-symmetric Euler–Lagrange-type equations
that uniquely determine classical dynamics via information up to first order. In particular, elements of
a directed set D that are indistinguishable up to first order, i.e., permuted by an automorphism
of T1(D), may be distinguishable when one considers higher-order information. It is therefore necessary
to consider higher-degree terminal states in what follows. The form of Equation (4) does assume
that first-order information suffices at the level of kinematic schemes, in the sense that the phase of
an arbitrary co-relative kinematics is the product of the phases of its individual co-relative histories.
This picture may be generalized without leaving the general framework of path summation, but such
generalization is not undertaken here. In any case, the latter phases do generally depend nontrivially
on information above first order in the corresponding cobases and targets.

The simplest discrete causal analogues of familiar thermodynamic state spaces are nth-order state
spaces Dn, whose elements represent isomorphism classes of countable star finite acyclic directed sets ∆
with maximal chain length n. Equivalently, Rn(∆) is a nonempty antichain. It is useful to preface formal
definitions involving Dn with some informal remarks. First, while the notion of order identifying a
state ∆ as a member of Dn is intrinsic to ∆ itself, the desired interpretation of ∆ is as a terminal state of
a history D, containing information encoded by chains of length at most n terminating at maximal
elements of D. Second, it is usually impossible to choose a member of Dn that includes all such
information for n > 1, because chains of length at most n terminating at different maximal elements of
D may intersect to produce longer chains, thereby defining a higher-order state. One might consider
re-defining Dn to include such states, requiring only that each element be connected to a maximal
element by at least one chain of length at most n. In physical terms, such states are still composed of
elements exerting “recent influence”, but may contain chains of arbitrary length. However, such a
definition would not be ideal for the desired applications. For example, it would allow any countable
star finite acyclic directed set in which all chains are bounded above to be converted to a member
of D1 or D2 by adding new relations terminating at new maximal elements, thereby flouting the
intuition that low-order states should be “causally simple”. It is preferable to define a separate notion
called degree, which facilitates the definition of terminal states containing all information up to a
given order in a particular history. Following this idea, Definition 13 introduces special states Tn(D),
called nth-degree terminal states, which include all information encoded in chains of length at most n
terminating at a maximal element in D. Third, as mentioned in Section 2.4, the distinction between
order and degree does not arise for n = 1; the first-degree terminal state T1(D) of D automatically
belongs to D1. Fourth, the nth superset microstates introduced in Definition 18 are constructed by
adding n “prehistorical” elements to a state, which may not increase its maximal chain length at all.
These subtleties reflect the fact that more than one natural-number grading is useful in studying
discrete causal state spaces.
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It is useful to define terminal states in terms of transitions between pairs of histories, using the
relative viewpoint. Though the ultimate goal is to use information encoded in terminal states to assign
phases to sequences of co-relative histories, i.e., co-relative kinematics, the states of principal interest
in studying a given co-relative history h : Di ⇒ Dt are typically not those induced by transitions
representing h. This is because the “physically new” structure associated with Di and Dt is more
meaningful than whatever structure h “adds to” Di to produce Dt. For example, each co-relative
history h : Di ⇒ Dt in SPS adds only one element to Di, so most of the physically new structure in Dt

is typically already present in Di. Yet what one is really interested in is whether or not the physically
new structure in Dt is “more favorable” than the physically new structure in Di; i.e., one wishes to
compare terminal states of Di and Dt. These may be defined in terms of auxiliary transitions that are
determined by h, but do not represent h under Definition 9. First, however, one must define terminal
states associated with arbitrary transitions.

Definition 12. Let τ : D → D′ be a transition of acyclic directed sets. The subobject ∆τ of D′ consisting of
all elements of D′ − τ(D), all relations terminating at such elements, and all initial elements of such relations,
is called the terminal state of τ. If Rn(∆τ) is a nonempty antichain, then the order ord(∆τ) of ∆τ is n.

Despite the relative nature of Definition 12, it is convenient to refer to ∆τ as a terminal state of
the target set D′ in many cases. ∆τ does not include relations between elements of τ(D); it includes
only relations that are “new” with respect to τ. If the context is expanded to include cycles, a different
definition of order is necessary. For example, one may define ord(∆τ) to be the maximal length
of non-self-intersecting chains in ∆τ . Here, however, I focus almost exclusively on the acyclic case.
Any directed set D′ is itself the terminal state of the unique transition � → D′. This transition may be
denoted by τ� when the choice of target set D′ is obvious. As mentioned above, is useful to define
special terminal states that encode all information up to order n in a given history.

Definition 13. Let D be an acyclic directed set in which every chain is bounded above.

1. The nth-degree terminal state Tn(D) of D is the subobject of D consisting of all elements connected to
a maximal element of D by a chain of length at most n, together with all relations in such chains.

2. The nth-degree initial state In(D) of D is the subobject of D constructed by deleting all non-minimal
elements of Tn(D) from D, together with all relations in D terminating at such elements.

3. The nth-degree transition τn
D : In(D)→ D associated with D is the inclusion map In(D)→ D.

The boundedness hypothesis in Definition 13 is included to rule out situations in which D has
maximal elements but also has chains “extending to infinity”, since it is awkward to exclude such
chains from consideration when studying terminal behavior. Such histories are not considered here.

Definition 14. The nth-order state space Dn is the set of all isomorphism classes of countable star finite
acyclic directed sets ∆ such that Rn(∆) is a nonempty antichain. The finite-order state space D is the disjoint
union ä∞

n=0 Dn, and the (total, countable, acyclic) state space D is the set of all isomorphism classes of
countable acyclic directed sets, which may be viewed as limits of sequences in D.

Since the elements and relations in a member ∆ of Dn are assumed to possess no internal structure,
one might expect ∆ to be treated as a microstate. However, since discrete causal theory does not
rule out the dynamical relevance of information above order n at the level of individual histories,
data describing how ∆ might fit into a larger history can be important in determining future behavior
influenced by ∆. Such data defines an even finer level of detail than ∆ itself, permitting ∆ to be viewed
as a macrostate. Ambiguity regarding the status of ∆ is not surprising, due to the relative nature
of entropy. Figure 14 illustrates four different methods of defining coarse and fine levels of detail
using Dn. Informal discussion of these methods then precedes formal treatment in Definition 15.
The first diagram shows a third-order state ∆ embedded in a history D. In this case, ∆ does not
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contain all the third-order information in D; in particular, it is not the third-degree terminal state T3(D)

of D. The second diagram illustrates one way to treat ∆ as a microstate, called a resolution microstate,
by approximating its structure via the method of causal atomic resolution, introduced in [14]. This method
involves choosing special subsets of ∆, called causal atoms, which serve as individual elements of
a coarser directed set. Such a choice defines a causal atomic decomposition of ∆. A sequence of such
decompositions is a causal atomic resolution, with each subsequence defining “initial” and “terminal”
levels of detail, and hence a notion of entropy. More generally, one may define partially ordered
families of decompositions, also called resolutions, which induce entropy systems. The resolution
in the figure involves a single decomposition, and hence just two levels of detail. Causal atomic
resolution provides perhaps the most obvious discrete causal analogue of conventional coarse-graining.
In particular, it involves actual approximation, meaning that the information contained in a causal
atomic decomposition is not only incomplete, but also imprecise. However, there is generally no
canonical choice of resolution for a given state, and different resolutions may be very dissimilar.
Further, resolutions reaching far above the fundamental scale can produce objects that are obviously
“too granular” to resemble physical spacetime. Members of Dn are usually treated as macrostates in
this paper, but methods such as causal atomic resolution remain worthy of further study in more
general entropic settings.

0 1 2 3 4 5

6 7 8 9

10 11 12 13
14

15 16

17

0 1

2
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D

∆

atomic
resolution

superset
microstate

η : ∆∗ ⇒ ∆′∗

labeled
microstate
` : L→ ∆

symmetry
microstate
` : L→ ∆̃

Figure 14. History D and terminal state ∆; causal atomic resolution of ∆; superset microstate of ∆;
labeled microstate of ∆; symmetry microstate of ∆.

The third diagram in Figure 14 illustrates the most obvious way to treat a member ∆ of Dn as
a macrostate, by adding “prehistory” to define larger states called superset microstates. Different superset
microstates of ∆ impose different constraints on the family of histories of which ∆ could be a
terminal state. In particular, the superset ∆′ of ∆ shown in the diagram is induced by the history D.
At a higher level of detail, ∆′ may itself be viewed as a macrostate, with its own superset microstates
adding more prehistory. One may imagine “flipping over” this diagram to obtain a co-relative
history η : ∆∗ ⇒ ∆′∗ between the causal duals ∆∗ and ∆′∗ of ∆ and ∆′, and this is how superset
microstates are formalized in Definition 15. Hence, the convenient term “superset” is not quite precise,
because co-relative histories involve equivalence classes. Naïve amalgamation of superset microstates
produces a state space with an infinite number of elements in each cell, since one may always add more
prehistory to a directed set. This leads a priori to infinite multiplicities and entropies for finite states.
However, supersets adding “recent” data are expected to dominate dynamically, and families of
superset microstates may be filtered to reflect this expectation. In the case of finite states, one may
work with finite families of microstates defined in terms of numbers of elements and relations,
lengths of chains, sizes of antichains, and similar quantities. Here, I focus on families defined via the
number of prehistorical elements added to ∆. The quantity of superset microstates of a given type
is decreased by symmetries of ∆, which render equivalent different subsets of ∆. This meshes with
the intuition that high-entropy states should be “disordered”. For example, if ∆ is an antichain of
cardinality K with automorphism group Aut(∆) ∼= SK, then there is only one way to add a single
prehistorical element and k relations to ∆ for any k ≤ K, since the terminal elements of these relations
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in ∆ may be exchanged for any other k elements of ∆ under Aut(∆). By contrast, there are (K
k) ways to

add such an element and relations to ∆ if Aut(∆) is trivial.
The fourth and fifth diagrams in Figure 14 illustrate contrasting ways to treat a member ∆ of Dn as

a macrostate by focusing on its symmetries directly. Under the method illustrated in the fourth diagram,
a microstate of ∆ is simply a copy of ∆ labeled via a map ` : L → ∆, where L is a set of consecutive
natural numbers starting with zero, and where two labelings are regarded as equivalent if they are
related by an automorphism of ∆. Such a microstate is called a labeled microstate. The number of labeled
microstates associated with a state ∆ of cardinality K ranges from 1 if Aut(∆) ∼= SK to K! if Aut(∆)
is trivial. This method agrees qualitatively with the superset approach in the sense that high-entropy
states are those for which Aut(∆) is small. The method illustrated in the fifth diagram essentially
reverses this relationship. Here, one begins with an arbitrary labeling ` : L→ ∆̃, where ∆̃ is the subset
of ∆ not fixed by Aut(∆). Automorphisms of ∆ convert ` to other labelings, each of which represents
a symmetry microstate. Such a microstate may be viewed as a “mode of symmetry breaking”, since it
breaks the symmetries of ∆ in a specific way. For a finite state ∆, the number of symmetry microstates is
just |Aut(∆)|, so high-entropy states are those for which Aut(∆) is large. More generally, one may work
with non-surjective partial labelings ` : L→ ∆̃ that leave a subgroup of Aut(∆) unbroken. The labeling
in the figure is of this type, since there remains an automorphism of ∆ interchanging the elements
indicated by arrows. The set of such partial labelings is partially ordered by extension, which is
interesting from the perspective of state-specific detail discussed at the end of Section 3.1. While it
is counterintuitive to associate high entropy with symmetry, there are arguments for entertaining
such possibilities. Symmetry is central to the theory of “elementary” particles, so certain special
structures that are locally symmetric, at least at measurable scales, are favored by the actual dynamics
of the physical universe. Such structures may be “attached” to underlying causal structure via
auxiliary algebraic information, but the strong interpretation of the causal metric hypothesis demands
an emergent description of both spacetime symmetries and internal symmetries. The most obvious
way to satisfy this demand is to incorporate some type of symmetry data directly into Equation (4).
Notions of entropy associated with superset microstates and/or labeled microstates might accomplish
a similar purpose, since their enumeration depends largely on symmetry considerations. Regardless of
the type of entropy chosen, an attractive though speculative idea is that elementary particles might
arise via local entropic traps, whereby certain regular structures that are small by conventional measures
but large compared to the fundamental scale might be very stable from an entropic perspective.

A mathematical result important in the study of superset microstates, labeled microstates,
and symmetry microstates is Bender and Robinson’s proof [37] that a typical acyclic directed set
D has trivial automorphism group, i.e., is rigid. This result applies asymptotically under modest
assumptions about the number of relations in D. However, these assumptions fail to hold for a typical
low-order terminal state ∆, since such a state has unusually large “spatial size” and small “causal size”,
and typically lacks enough relations to “bind elements in place”. Hence, Aut(∆) is often nontrivial
for such a state. The extreme case is a zeroth-order state, whose automorphism group is the entire
symmetric group permuting its elements transitively. However, states tend to become increasingly
rigid as their order increases. Bender and Robinson’s result enables rough enumerations of the
number of high-order superset microstates and labeled microstates for a state ∆ of a given cardinality.
It also suggests a novel explanation for why the details of the distant past seem to be irrelevant to
future dynamics, namely, because relatively few additional generations of elements must be added to
a typical low-order state to break most of its symmetries.

Definition 15. Dn, D, and D may be used to define finer state spaces, for which their members are macrostates.

1. The nth-order superset state space Dn
SUP is the set of full, originary co-relative histories η : ∆∗ ⇒ ∆′∗.

where ∆ is a member of Dn and ∆′ is a member of D. Its elements are called superset microstates.
The corresponding finite-order superset state space DSUP and (total, countable, acyclic) superset
state space DSUP are defined in the obvious ways.
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2. The nth-order labeled state space Dn
LAB is the set of complete labelings of members ∆ of Dn, where two

labelings of ∆ are considered to be equivalent if they are related by an element of Aut(∆). Its elements
are called labeled microstates. The corresponding finite-order labeled state space DLAB and
(total, countable, acyclic) labeled state space DLAB are defined in the obvious ways.

3. The nth-order symmetry state space Dn
SYM is the set of partial labelings of members ∆ of Dn induced

by applying elements of Aut(∆) to arbitrary initial labelings of the subsets ∆̃ of ∆ not fixed by Aut(∆).
Its elements are called symmetry microstates. The corresponding finite-order symmetry state space
DSYM and (total, countable, acyclic) symmetry state space DSYM are defined in the obvious ways.

The spaces Dn
SUP, Dn

LAB, and Dn
SYM, together with their larger counterparts, offer many alternative

notions of states at many different levels of detail, and induce a variety of entropy systems. The reason
why the co-relative history η in the definition of Dn

SUP is not assumed to be proper is because it is
sometimes convenient to view a state ∆ as a superset microstate of itself, i.e., to take η to be the
co-relative history represented by the identity morphism ∆→ ∆. The “full” and “originary” conditions
on η merely formalize the idea that η adds “prehistory” to ∆. It is sometimes convenient to refer to
a superset ∆′ of ∆ as a superset microstate of ∆ if the choice of co-relative history η : ∆∗ ⇒ ∆′∗ is
clear from context, for example, if there is only one such co-relative history. Using this convention,
Figure 15 illustrates some of the superset microstates of the first-degree terminal state ∆7 appearing in
the sequential growth process in Figure 10. Each of these microstates is constructed by adding a single
prehistorical element to ∆7, along with a family of prehistorical relations. The 22 microstates shown in
the figure each involve one or two extra relations. Overall, there are 96 such microstates, with between
zero and seven extra relations.

some
superset

microstates
state ∆7

prehistorical
element

possible
prehistorical

relations

Figure 15. 22 of the 96 superset microstates of ∆7 given by adding one prehistorical element.

For a state ∆τ of cardinality K, the number of superset microstates adding a single element
is “roughly” 2K, if one ignores the contribution of symmetries. This reflects the idea that one may
choose any family of elements in ∆τ to be in the direct future of the single prehistorical element,
since 2K is the sum of the binomial coefficients (K

k) for 0 ≤ k ≤ K. Nontrivial symmetries of ∆τ reduce
this number; in particular, the number of superset microstates of the first-degree terminal states ∆7 to
∆11 in Figure 10 are 96, 64, 72, 144, and 132. Ignoring symmetries need not yield exactly 2K microstates,
due to a curious graph-theoretic phenomenon called pseudosimilarity, whereby one directed set may
be a terminal state of another in multiple distinct ways, even if the two sets differ by only a single
element. Figure 16 illustrates this subtlety via an example provided by Brendan McKay, in which
augmenting two copies of a state ∆τ by a single prehistorical element in two different ways produces
isomorphic supersets. The drawing emphasizes the latter isomorphism; the fact that the black nodes
and edges represent two copies of the same state ∆τ may be seen by matching up the elements labeled
x and y.
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Figure 16. McKay’s example: a superset may induce multiple microstates via pseudosimilarity.

Figure 17 illustrates a small region of D1
SYM whose macrostates are the first-degree terminal

states ∆7 to ∆11 appearing in the sequential growth process from Figure 10. The left-hand diagram
reproduces this process. In the middle diagram, ∆7 to ∆11 are represented by large cells labeled 7
to 11, subdivided into smaller cells representing symmetry microstates. Because the histories D7

to D11 are rigid, D1
SYM accurately reflects relative distinguishability properties between terminal

states and their histories in this case, since every state symmetry is broken by its ambient history.
The figure highlights the fact that symmetry microstates of a given terminal state are isomorphic as
partially labeled directed sets, which raises the question of how they are distinct. The answer is that
there are multiple ways to break the automorphisms of the original states involved, even though
the resulting objects remain isomorphic. D1

SYM generally has “too many microstates” for terminal
states of nonrigid histories, since it includes symmetry breaking information for symmetries that
remain unbroken. This issue may be addressed by restricting the class of permissible labelings.
The right-hand diagram represents the sequential growth process abstractly via a “curve” in D1

SYM.
Since D1

SYM encodes information only up to first order at the level of individual histories, the entire
curve is necessary to reconstruct the evolution of D11. The corresponding regions of D1

SUP and D1
LAB

are much too large and cluttered to illustrate here, but the basic structural aspects are similar.
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Figure 17. Sequential growth process from Figure 10; region of D1
SYM through which this process moves;

abstract view of the process.

Definitions 14 and 15 identify discrete causal state spaces as sets, but one may recognize additional
“geometric” structure on these spaces defined in terms of discrete operations that convert one state
to another. It is useful to define such operations for multidirected sets in general.

Definition 16. Let M and M′ be multidirected sets. Elementary operations on such sets are defined as follows:

1. Add or delete an isolated element.
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2. Add or delete a relation between two elements.

The absolute distance d(M, M′) between M and M′ is the minimal number of elementary operations required
to convert M to M′, if this number is finite. Otherwise, d(M, M′) = ∞.

Notions of distance between pairs of states facilitate useful analogues of familiar evolutionary
ideas. For example, in conventional thermodynamics, one may ask why every system does not
immediately transition to the cell in state space representing thermal equilibrium. The answer is
that curves in state space are continuous in this context, so a typical system beginning far from
thermal equilibrium must pass through a sequence of intervening macrostates before reaching it.
Although literal continuity does not apply in the discrete causal context, similar ideas may be
invoked whenever one can define notions of distance and neighbors. In particular, even if a given
co-relative history is “favored” from a purely entropic perspective, it may be “costly” in the sense
that it entails direct passage between widely separated regions of a discrete causal state space.
Similarly, “short” paths between a given pair of states might be favored over “long” paths that
involve drastic changes in structure. These ideas are revisited in Section 4.2 in the context of
spacetime expansion, and again in Section 4.3 in the context of discrete causal action principles.

Alternative, relative notions of distance between pairs of directed or multidirected sets may
be defined in terms of “ambient” structure from a configuration space. In the case of directed sets,
such structure may originate from a kinematic scheme.

Definition 17. Let S = (K,H) be a kinematic scheme, and let D be a member of K in which every chain is
bounded above. Let Tn(D) be the nth-degree terminal state of D, and let ∆ be any other element of D.

1. The directed distance dS,D(Tn(D), ∆) between Tn(D) and ∆ in S with respect to D is the minimal
length of chains x(D) ≺ x(D1) ≺ ... ≺ x(DN) in M(S), where Tn(DN) = ∆.

2. The undirected distance `S,D(Tn(D), ∆) between Tn(D) and ∆ in S with respect to D is the minimal
length of undirected paths x(D), x(D1), ..., x(DN) in M(S) with initial element x(D) and terminal
element x(DN), where Tn(DN) = ∆.

The reason why dS,D and `S,D depend on a choice of D is because Tn(D) and ∆ may appear as
terminal states of many different histories in S. If Tn(D) = Tn(D1) = Tn(D2), then it may be easier to
reach a history with nth-degree terminal state ∆ from D1 than from D2. The distinction between a chain
x(D) ≺ x(D1) ≺ ... ≺ x(DN) and an undirected path x(D), x(D1), ..., x(DN) is that chains respect
the directions of relations in M(S), while undirected paths generally do not. States close together in
an undirected sense may be far apart in a directed sense, since undirected paths are more general
than chains. Dependence on D implies that dS,D and `S,D are inherently asymmetric. It is reasonable to
expect that dS,D and `S,D may closely approximate more conventional notions of distance for suitable
classes of “large” directed sets, but this topic is not further explored here.

3.4. Multiplicities and Entropies

Four approaches to defining discrete causal microstates via terminal states of transitions were
introduced in Section 3.3. A preliminary step, given in Definition 14, was to define spaces Dn of
nth-order states, along with larger spaces D and D including states of arbitrary order. The first approach
was to treat the states making up these spaces as individual microstates, called resolution microstates,
and apply a discrete causal analogue of conventional coarse-graining, called causal atomic resolution,
to partition these spaces into cells. The remaining approaches treated such states as macrostates,
with finer state spaces of microstates introduced in Definition 15. The second approach was to add
detail to terminal states by specifying prehistorical information, leading to the spaces Dn

SUP, DSUP,
and DSUP of superset microstates. The third approach was to add detail to terminal states by labeling
their elements, leading to the spaces Dn

LAB, DLAB, and DLAB of labeled microstates. The fourth approach
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was to add detail to terminal states via partial labelings specifying symmetry breaking information,
leading to the spaces Dn

SYM, DSYM, and DSYM of symmetry microstates.
Before explaining how discrete causal entropies may be defined via these four approaches,

I mention progress in the study of causal set entropy by Sorkin and collaborators [35,36]. This work
exhibits interesting relationships with analogous continuum-based notions, is supported by numerical
simulations involving “low-dimensional” causal sets, and incorporates covariance considerations.
However, it is very different in its assumptions and emphasis from the approaches examined in
this paper. First, the entropies involved are defined in terms of auxiliary fields on causal sets,
and are therefore not completely background independent quantities. Sorkin does consider causal set
“vacuum solutions”, whose entropies may be attributed solely to causal structure, but entropies associated
with nontrivial interactions typically involve large quantities of extra-causal data. Second, pre-packaged
quantum-theoretic machinery such as Hilbert spaces, operator algebras, density matrices, and von
Neumann-type entropy are applied to individual causal sets under this approach, rather than
emerging naturally from a history configuration space. Third, the permeability problem and other
technical obstructions arising in the absence of relation space methods render it difficult to define
terminal states or associated entropic data in this setting. The resulting measures of entropy are
a priori “higher-dimensional”, and can be associated only indirectly with conventional notions of
time-dependent entropy and the second law of thermodynamics. Fourth, many of the cases considered
under this approach involve special causal sets of the type mentioned in Section 2.2, induced by
sprinkling elements into relativistic spacetime manifolds. Such causal sets are naturally limited in their
potential to reveal structural features beyond the scope of general relativity.

I give only a brief sketch of how one may construct entropy systems via resolution microstates.
For simplicity, I describe this construction in terms of an individual nth-order state space Dn. The first
step is to choose a resolution of each state ∆ in this space. In the simplest case, these resolutions may
be chosen to consist of single causal atomic decompositions. A choice of such decompositions defines
a coarse-graining of Dn, which induces an entropy quadruple, while a choice of resolutions involving
longer sequences of decompositions, or partially ordered families of decompositions, defines an
entropy system. In the general case, one may define a partially ordered family of equivalence relations
on Dn, specified by treating states as equivalent if their resolutions agree beyond a certain level
of detail. The associated equivalence classes then define partitions of Dn, and their cardinalities
define multiplicities. The resulting notion of entropy is called resolution entropy. One may choose to
define resolutions in such a way that each decomposition reduces the maximal length of chains in
each state by a specified quantity. For example, the decomposition illustrated in the second diagram in
Figure 14 converts a “fine” third-order state to a “rough” first-order state. An analogue of resolution
entropy appears in Sorkin’s approach to causal set entropy [35,36], but involves a random “decimation”
version of coarse-graining that does not incorporate causal structure in the same way that causal
atomic resolution does. It also involves “higher-dimensional” entropy, rather than entropy associated
with terminal states. However, numerical examples do hint at interesting universal behavior for this
type of entropy, and this evidence provides motivation for studying resolution entropy in more detail.

Numerous questions must be answered, however, before one may have confidence in the
resolution approach. The most basic is how sensitive resolution entropy is to changes of resolution,
since resolutions generally involve arbitrary extraphysical choices regarding the organization
of information. Another question, already mentioned in Section 3.3, is how one may reconcile
the increasing “granularity” produced by multi-level resolutions with the basic philosophy of
metric recovery, under which discrete causal structure at the fundamental scale should produce
effectively smooth structure at sufficiently large scales. A third issue arises from the empirical
dynamical irrelevance of details of the distant past. If only very low-order terminal states play
a substantial dynamical role in the future evolution of histories, then repeated causal atomic
decompositions of dynamically relevant states will produce antichains at relatively fine levels of detail.
Antichains possess no internal structure besides cardinality, which seems much too crude to determine
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meaningful dynamics, especially locally. Therefore, the utility of resolution entropy seems to be
limited by the “causal depth” of relevant information. This issue does not necessarily disqualify the
resolution approach, however, due to the scales involved. In particular, the difference in magnitude
between the Planck scale and presently-measurable scales suggests than information up to order 1010

or 1015 could be relevant without producing noticeable deviations from the empirical obsolescence
of high-order information. A resolution involving decompositions similar to the one illustrated in
Figure 14 would require perhaps 30 decompositions to cover 10–15 orders of magnitude, and could
therefore contain a large quantity of information. However, such illustrations involving small histories
can be misleading; for example, it would not be surprising if each element in a typical physically
realistic history were directed related to 1010 or more other elements. Such large numbers of relations
would affect the qualitative properties of realistic resolutions.

Superset microstates offer a variety of different ways to define entropy systems via the state spaces
Dn

SUP, DSUP, and DSUP. I begin by discussing simple notions of entropy involving individual partitions
of these spaces. For simplicity, I focus on the case of finite states. Let ∆ be such a state, and consider
all superset microstates η : ∆∗ ⇒ ∆′∗ adding a single prehistorical element to ∆. The number of
such microstates is the cardinality of the future relation set R+(x(∆∗)) in M(SPS), since the number
of different ways in which ∆ can be the terminal state of a history with one additional element is
the same as the number of ways in which ∆∗ can evolve into a history with one additional element.
As a reminder, x(∆∗) is the element in the underlying multidirected set M(SPS) of SPS representing ∆∗,
and R+(x(∆∗)) is the set of relations in M(SPS) beginning at x(∆∗), each of which represent a co-relative
history with cobase ∆∗. The first superset multiplicity µ1

SUP(∆) of ∆ is then defined to be the number
|R+(x(∆∗))| of such microstates η, and the first superset entropy e1

SUP(∆) is defined to be log µ1
SUP(∆).

Following essentially the same reasoning, nth superset multiplicities and entropies may be defined.

Definition 18. The nth superset multiplicity µn
SUP(∆) of a finite state ∆ is the number of co-relative histories

η : ∆∗ ⇒ ∆′∗, where the complement of the image of ∆∗ under any transition representing η has cardinality n.
The nth superset entropy en

SUP(∆) of ∆ is log µn
SUP(∆).

An interesting entropy system on DSUP is given by filtering superset microstates η : ∆∗ ⇒ ∆′∗ by
both the number of prehistorical elements added to ∆ by η, and the order of the resulting supersets ∆′.
DSUP has a natural partition whose members are the infinite sets CSUP(∆) parameterizing all full,
originary co-relative histories η with cobase ∆∗ and target belonging to D. One may partition each set
CSUP(∆) by numbers of elements added to ∆, or by orders of supersets ∆′, or by both. A general way to
formalize the idea that two superset microstates η1 : ∆∗ ⇒ ∆1

′∗ and η2 : ∆∗ ⇒ ∆2
′∗ of ∆ are equivalent

up a given level of detail is to specify a common interpolating microstate η3 : ∆∗ ⇒ ∆3
′∗, characterized by

the property that η1 and η2 both factor through η3. This means that there exist pairs of transitions

∆∗
τ3−→ ∆3

′∗ τ1−→ ∆1
′∗ and ∆∗

τ3
′
−→ ∆3

′∗ τ2−→ ∆2
′∗, where τ3 and τ3

′ both represent η3, and where the
compositions τ1 ◦ τ3 and τ2 ◦ τ3

′ represent η1 and η2, respectively. Informally, this means that besides
being supersets of ∆, the states ∆1

′ and ∆2
′ also share common prehistorical elements. One may then

define equivalence relations ∼m and ∼n on DSUP, for each m, n ∈ N, where η1 ∼m η2 if η1 and η2

factor through a common interpolating microstate η3 adding m prehistorical elements to ∆, and where
η1 ∼n η2 if η1 and η2 factor through a common interpolating microstate η3 whose superset has order n.
Equivalence relations ∼(m,n) combine these two requirements. The corresponding partitions P(m,n) are
partially ordered lexicographically; i.e., P(m,n) ≺ P(m′ ,n′) if and only if m < m′ or m = m′ and n < n′.
It is convenient to denote the pair (m, n) by the single symbol α, regarded as an element of N2 = N×N.
Informally, the partition Pα groups together superset microstates that agree both up to a given number
of prehistorical elements and a given order.

Definition 19. Let α = (m, n) ∈ N2, and let ΠLEX := {Pα}α∈N2 be the set of partitions Pα of DSUP defined
by taking superset microstates η1 and η2 of ∆ to be equivalent if they factor through a common interpolating
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microstate η3 : ∆∗ ⇒ ∆3
′∗ of ∆ represented by a transition τ3 : ∆∗ → ∆3

′∗ such that |∆3
′∗ − τ3(∆∗)| = m

and ord(∆3
′) = n. Let ∼α be the corresponding equivalence relation, and for any subset V ⊂ DSUP, let Vα be

the corresponding quotient set. For any relation Pα ≺ Pβ under the lexicographic order induced by N2, and for
any subset V belonging to Pα, let µαβ(Vβ) be the cardinality of Vβ. Let µLEX be the family of measures µαβ.
Then the triple (DSUP, ΠLEX, µLEX) is called the lexicographic superset entropy system.

The measures µαβ(Vβ) may take on infinite values; for example, there are infinitely many ways
to add a single prehistorical element to N. Definition 19 does not specify the number of relations
added to ∆ by each microstate, or the maximal sizes of antichains in the corresponding supersets,
or any of a variety of other basic combinatorial data that may be used to partition DSUP in
different ways. Using such quantities, one may define alternative entropy systems, involving,
for example, “higher-dimensional” lexicographic orders. This particular entropy system merely
formalizes some of the simpler properties that may be used to organize families of superset microstates.

Labeled microstates also induce a variety of entropic notions. The most obvious is given by simply
counting the number of equivalence classes of labelings of a state ∆. If ∆ has cardinality K, then its total
number of labelings is K!. These labelings are partitioned by the action of Aut(∆) into equivalence
classes of cardinality |Aut(∆)|, so the number of such classes is K!/|Aut(∆)|.

Definition 20. The labeled multiplicity µLAB(∆) of a state ∆ of cardinality K is K!/|Aut(∆)|. The labeled
entropy eLAB(∆) of ∆ is log µLAB(∆) = log K!− log |Aut(∆)|.

It is sometimes desirable to decompose the subset CLAB(∆) of DLAB consisting of all equivalence
classes of labelings of ∆. This may be accomplished via equivalence classes of partial labelings
of ∆, i.e., labelings of special subsets U of ∆. To yield a suitable version of equivalence, U must be a
union of orbits under Aut(∆), and the labeling must be by consecutive natural numbers beginning
with zero. The set of equivalence classes of such partial labelings is partially ordered by extension of
class representatives. A labeling ` of U corresponds to a subset CLAB(`) of CLAB(∆) defined by labelings
of ∆ extending `. Letting U and ` vary, one obtains a family of sets {CLAB(`)} that cover CLAB(∆),
generally in a highly redundant fashion. A partition of CLAB(∆) induced by partial labelings of ∆ is defined
to be a partition whose members are open sets in the topology on CLAB(∆) generated by {CLAB(`)},
i.e., unions of finite intersections of members of {CLAB(`)}. Choosing such a partition for each ∆
defines a partition of DLAB, and the collection of all such partitions forms a “large” entropy system.
Smaller subsystems may be more convenient to work with in practice.

Definition 21. Let ∆ be a member of D, and let CLAB(∆) be the subset of DLAB consisting of all equivalence
classes of labelings of ∆. Let ΠLAB(∆) be the set of partitions of CLAB(∆) induced by partial labelings of ∆,
and let ΠLAB be the set of partitions of DLAB constructed from the partitions ΠLAB(∆), partially ordered
by refinement. For any relation Pα ≺ Pβ in ΠLAB, and for any subset V belonging to Pα, let µαβ(Vβ) be the
cardinality of the quotient set Vβ of V under the equivalence relation ∼β induced by Pβ. Let µLAB be the family
of measures µαβ. Then the triple (DLAB, ΠLAB, µLAB) is called the labeled entropy system.

Symmetry microstates share entropic similarities with labeling microstates, since both approaches
involve labelings. The principal differences are that symmetry microstates label only elements of a state
∆ that are not fixed by its automorphisms, and labelings related by automorphisms are not considered
to be equivalent. It is convenient to fix an arbitrary “initial” labeling on the set ∆̃ of elements of ∆ not
fixed by Aut(∆), i.e., the union of nonsingleton orbits under Aut(∆). A labeling of ∆̃ is then considered
permissible if it is generated by applying an element of Aut(∆) to this initial labeling. The number of
such labelings is just the order |Aut(∆)| of Aut(∆).

Definition 22. The symmetry multiplicity µSYM(∆) of a finite state ∆ is |Aut(∆)|. The symmetry
entropy eSYM(∆) of ∆ is log µSYM(∆) = log |Aut(∆)|.
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By Definitions 20 and 22, µLAB(∆)µSYM(∆) = K! for a state ∆ of cardinality K. Processes exhibiting
an increase in eLAB therefore exhibit a decrease in eSYM for a fixed state cardinality, and vice versa,
although “expanding universes” may exhibit simultaneous increases in both types of entropy. As in
the case of labeled microstates, it is sometimes desirable to decompose the subset CSYM(∆) of DSYM

consisting of all permissible labelings of ∆̃. This may be accomplished by partially labeling ∆̃ in a
suitable manner; in particular, the set U of elements labeled must be a union of nonsingleton orbits
under Aut(∆). Such a labeling ` defines a subset CSYM(`) of CSYM(∆) consisting of all labelings of ∆̃
extending `. The set of all such labelings for all such U is partially ordered by extension. The collection
of sets {CSYM(`)} define a family of partitions of DSYM, and hence an entropy system.

Definition 23. Let ∆ be a member of D, and let CSYM(∆) be the subset of DSYM consisting of all permissible
labelings of the set ∆̃ of elements of ∆ not fixed by Aut(∆), with respect to an arbitrary initial labeling.
Let ΠSYM(∆) be the set of partitions of CSYM(∆) induced by partial labelings of ∆̃, and let ΠSYM be the set of
partitions of DSYM constructed from the partitions ΠSYM(∆), partially ordered by refinement. For any relation
Pα ≺ Pβ in ΠSYM, and for any subset V belonging to Pα, let µαβ(Vβ) be the cardinality of the quotient set Vβ

of V under the equivalence relation ∼β induced by Pβ. Let µSYM be the family of measures µαβ. Then the triple
(DSYM, ΠSYM, µSYM) is called the symmetry entropy system.

It may often suffice on physical grounds to restrict attention to notions of entropy more specific
than those associated with the entropy systems of Definitions 19, 21 and 23, although it may be
necessary to supersede the simplistic notions of Definitions 18, 20 and 22. For superset microstates,
weighted sums of entropies can be useful to naturally distill finite entropic values from infinite families
of microstates. Abstractly, such sums are analogous to Gibbs or Shannon entropies. A practical
reason to study such sums is to quantify the degree to which prehistorical data of various orders is
dynamically relevant. A simple example of such a weighted sum is

e(∆) =
∞

∑
n=1

en
SUP(∆)

n4 , (6)

where the denominator n4 dominates the rapid growth of en
SUP(∆) as n increases. For both

labeled microstates and symmetry microstates, symmetry considerations are paramount. Interesting
generalizations of Definitions 20 and 22 include those involving the study of symmetries that are
broken or preserved by specific prehistorical information. This leads to the concept of extension groups,
which measure how many automorphisms of a terminal state extend to automorphisms of a specified
superset. One may formalize this idea in terms of pairs of transitions (τ1, τ2), where τ1 specifies a
terminal state ∆τ1 , and τ2 specifies a superset ∆τ2 of ∆τ1 that breaks some of the symmetries of ∆τ1 .
Finiteness assumptions may be added as necessary.

Definition 24. Let τ, τ1 and τ2 be transitions of directed sets with sources D, D1 and D2, and common
target D′. Assume that τ2(D2) ⊂ τ1(D1) in D′. Let ∆τ , ∆τ1 and ∆τ2 be the terminal states of τ, τ1, and τ2.

1. The state automorphism group of τ is Aut(∆τ).
2. The relative extension group Eτ1τ2 of (τ1, τ2) is the subgroup of Aut(∆τ1) of automorphisms of ∆τ1 that

extend to automorphisms of ∆τ2 .
3. The relative symmetry multiplicity µτ1τ2

SYM of (τ1, τ2) is |Aut(∆τ1)| − |Eτ1τ2 |.
4. The relative symmetry entropy eτ1τ2

SYM of (τ1, τ2) is log µτ1τ2
SYM.

The generational automorphism groups discussed in Section 8.2 of [14] are special cases of
state automorphism groups. The quantities µτ1τ2

SYM and eτ1τ2
SYM may be derived from the symmetry

entropy system, if desired. Eτ1τ2 is generally not a normal subgroup of Aut(∆τ1). The superset ∆τ2 may
acquire “new” symmetries that do not extend nontrivial symmetries of ∆τ1 , but this is atypical due
to rigidity. Since the purpose of studying entropic phase maps is to assign quantum-theoretic phases
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to co-relative kinematics, it is necessary to adapt the preceding notions to apply to co-relative histories
h : Di ⇒ Dt in a kinematic scheme S. The states of principal interest in this context are terminal states
of the cobase Di and target Dt of h. For generality, it is convenient to work with an unspecified entropy
function on a subset of D. Again, finiteness assumptions may be added as necessary.

Definition 25. Let h : Di ⇒ Dt be a co-relative history. Let ∆τi and ∆τt be terminal states of Di
and Dt, respectively. Let e be an entropy function on a subset of D.

1. The initial entropy eτi
i (h) of h with respect to τi is e(∆τi ).

2. The terminal entropy eτt
t (h) of h with respect to τt is e(∆τt).

3. The relative entropy eτiτt(h) of h with respect to the pair (τi, τt) is e(∆τt)− e(∆τi ).

It is useful to specialize Definition 25 to the case where τi and τt are transitions of specific degrees,
as specified in Definition 13.

Definition 26. Let h : Di ⇒ Dt be a co-relative history, and let e be an entropy function on a subset of D.

1. The nth initial entropy en
i (h) of h is e(Tn(Di)).

2. The nth terminal entropy en
t (h) of h is e(Tn(Dt)).

3. The nth relative entropy en(h) of h is e(Tn(Dt))− e(Tn(Di)).

4. Entropic Phase Maps

4.1. Examples of Phase Maps

Given an entropy function e on a subset U of the state space D, one may assign relative entropies
eτiτt(h) = e(∆τt) − e(∆τi ) to each co-relative history h : Di ⇒ Dt in a kinematic scheme S whose
histories have terminal states in U, where ∆τi and ∆τt are terminal states of Di and Dt with respect to
transitions τi and τt. Abstracting Feynman’s approach, one may then associate a quantum-theoretic
phase θe(r(h)) = exp

(
ieτiτt(h)

)
with the relation r(h) representing h in R(M(S)). As explained in

Section 1.4, this approach may be generalized to allow for target objects other than the unit circle S1,
but such generalization is not carried out here. The subscript e in the expression θe indicates that this
function is defined directly in terms of entropy, rather than multiplicity, entropy per unit volume,
or some other variant of entropic information. Of course, θe also depends on the choices of transitions τi
and τt, but this dependence is suppressed to avoid notational clutter. For a co-relative kinematics in S,
represented by a chain γ = r(h0) ≺ ... ≺ r(hN) of relations r(hk) in R(M(S)) representing co-relative
histories hk : Dik ⇒ Dtk for 0 ≤ k ≤ N, one may extend θe multiplicatively to define a phase map

Θe(γ) =
N

∏
k=0

exp
(
ieτikτtk (hk)

)
, (7)

where ∆τik and ∆τtk are terminal states of Dik and Dtk with respect to transitions τik and τtk.
This approach restricts attention to causal Schrödinger-type equations of the form given in Equation (4),
since this equation is defined in terms of a relation function θ, rather than a possibly nonmultiplicative
phase map. Since the target of hk coincides with the cobase of hk+1, it is often reasonable to choose
τi(k+1) = τtk. With these choices, the product in Equation (7) telescopes to yield the simpler expression

Θe(γ) = exp
(

i
(
e(∆τtN )− e(∆τi0)

))
. (8)

This telescoping property implies that the value of Θe is independent of the choice of chain γ in
R(M(S)) between r(h0) and r(hN), a feature revisited in Section 4.2. It is sometimes convenient to use
the shorthand eτi0τtN (γ) for the entropic quantity e(∆τtN )− e(∆τi0) multiplying i in the exponential in
Equation (8), which generalizes the expression eτiτt(h) = e(∆τt)− e(∆τi ) appearing in Definition 25
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for a single co-relative history h : Di ⇒ Dt. The simplest such phase maps Θe are given by choosing
∆τik and ∆τtk to be the mth-degree terminal states Tm(Dik) and Tm(Dtk) defined via the mth-degree
transitions τik = τm

Dik
and τtk = τm

Dtk
under Definition 13, for some natural number m. I focus principally

on phase maps of this form in what follows. The primitive phase maps discussed in Section 8.2 of [14]
are defined exclusively in terms of terminal states of transitions representing the co-relative histories
h0, ..., hN . The approach described here is more general.

Referring to Section 3.4, there are many possible ways to define an entropy function e to determine
specific content for Equation (7) or Equation (8). No specific examples involving resolution entropy are
computed here, since the details of this approach are outside the scope of this paper. In rough terms,
however, the multiplicities assigned to terminal states in this context are the numbers of such states
sharing common resolutions, and the corresponding entropies are the logarithms of these multiplicities.
An obvious qualitative conclusion that may be drawn in this context is that maximizing the entropic
quantity eτi0τtN (γ) = e(∆τtN )− e(∆τi0) tends to favor “expanding universe” scenarios, in which the
cardinality of ∆τtN exceeds that of ∆τi0 , provided that the sizes of causal atoms are roughly equal
in decompositions of states of different sizes. This qualitative relationship may be understood by
“inverting” the decomposition process, replacing each element in a directed set with a causal atom;
there are clearly more ways to do this for larger sets. Qualitative entropic preference for expanding
universe scenarios is in fact a generic feature of discrete causal notions of entropy; this is a posteriori
obvious on basic enumerative grounds. Cosmological observations do favor accelerating expansion
of spacetime, but the correspondence between large universes and high overall entropy is much too
general to favor discrete causal theory specifically. Conventional thermodynamic systems exhibit
increasing entropy without acquiring new degrees of freedom, and this suggests examining the notion
of entropy per unit volume to “correct” for differences in the sizes of states. This idea is revisited in more
detail below. It should also be emphasized that the quantity eτi0τtN (γ) appears here in a role analogous
to that of the classical action S in Feynman’s phase map, which is typically minimized for favored
trajectories under Hamilton’s principle of stationary action. This suggests the possibility of adding a
minus sign to the exponents in Equations (7) and (8), thus treating eτi0τtN (γ) as a “negative action”.
Regardless of this choice, the quantity eτi0τtN (γ) must obey some analogue of stationary action to
produce suitable interference effects, for example, by exhibiting similar values for similar states of
high entropy. This nontrivial requirement is elaborated in Section 4.2.

A simple specific choice for the entropy function e in Equations (7) and (8) is the nth superset
entropy function en

SUP of Definition 18. Choosing ∆τi0 = Tm(Di0) and ∆τtN = Tm(DtN) in Equation (8)
yields the phase map

Θe(γ) = exp
(

i
(
en

SUP(T
m(DtN))− en

SUP(T
m(Di0))

))
. (9)

Even this simple phase map is difficult to compute exactly for arbitrary values of m and n, since it
requires calculating all possible ways to add n prehistorical elements and an unspecified number
of relations to Tm(Di0) and Tm(DtN). However, a few special cases may be computed, and rough
qualitative conclusions may be drawn. Beginning with m = 0, T0(Di0) and T0(DtN) are just antichains
consisting of the maximal elements of Di0 and DtN , respectively. In the finite case, their cardinalities
are natural numbers Ki0 and KtN . If also n = 0, then

Θe(γ) = exp
(

i
(
e0

SUP(T
0(DtN))− e0

SUP(T
0(Di0))

))
= exp

(
i
(

log 1− log 1
))

= e0 = 1,

for any choice of γ, since there is exactly one way to add zero elements to each of the directed
sets T0(Di0) and T0(DtN). More generally, trivial supersets produce trivial superset entropies.
Taking m = 0 and n = 1 in Equation (9) still involves zeroth-degree terminal states, but adds nontrivial
information to these states. The first superset multiplicity µ1

SUP(T
0(Di0)) of T0(Di0) under Definition 18

is Ki0 + 1, because a superset of an antichain given by adding a single prehistorical element is
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determined up to isomorphism by its number of relations, which may range from 0 to Ki0 in this case.
Similarly, the multiplicity µ1

SUP(T
0(DtN)) is KtN + 1, so with these choices

Θe(γ) = exp
(

i
(

log(KtN + 1)− log(Ki0 + 1)
))

.

Here, the entropic preference for “expanding universe” scenarios is quantitatively obvious, and the
same effect clearly extends to higher-order states and higher-index superset entropy functions,
since there are typically more ways to add families of prehistorical elements to large directed sets than to
small ones. Conventional thermodynamics suggests that working with zeroth-degree terminal states is
likely inadequate to determine relevant entropic quantities, so a more serious treatment involves states
of higher degree. Substituting first-degree terminal states T1(Di0) and T1(DtN) into Equation (9) yields
the most obvious discrete causal analogue of conventional thermodynamic entropy in the superset
context. Zeroth superset entropies offer no useful information, so the first interesting case is given by
setting m = n = 1. This requires computing the number of ways to add a single prehistorical element
to a first-degree terminal state of cardinality K, an interesting enumerative problem. Referring to the
discussion following Figure 15, a very rough estimate of this number is 2K, assuming that the state is
nearly rigid. This produces an estimate of

Θe(γ) ≈ exp
(

i(KtN − Ki0) log 2
)

for the resulting phase map, which again suggests an entropic preference for “expanding universe”
scenarios. Applying higher-index entropy maps en

SUP in this context leads to further intricate
enumerations, but rough estimates may again be formulated. Ignoring symmetries, overcounting,
and multidirected structure of the type illustrated by McKay’s example in Figure 16, the nth superset
multiplicity µn

SUP(∆) of a state ∆ of cardinality K and arbitrary order is roughly

µn
SUP(∆) ≈

n

∏
k=1

2K+k = 2(
n
2)+Kn = 2

n2
2 +O(n), (10)

which corresponds to superset entropies of roughly n2 log
√

2 + O(n). This estimate is derived
by adding prehistorical elements sequentially, and naïvely multiplying together the estimated
multiplicities at each step. The factor n2 explains the choice of denominators n4 in the summands in
Equation (6), which offers a simple way to ensure convergence of the series. Equation (10) yields better
estimates for higher-order states, which are typically more rigid. For zeroth-order states, it is a very
poor estimate, particularly for low-index superset entropies. For first-degree terminal states, its overall
accuracy depends on the asymptotic behavior of automorphism groups of states of increasing size.
The mathematical interest of terminal states of low but nonzero degree arises largely from the
fact that their behavior is balanced between the rigidity of high-order states and the transitivity of
zeroth-order states in a group-theoretic sense. Estimates assuming rigidity, such as Equation (10),
are naturally rough in this context, but can nonetheless provide useful upper bounds. As in the case
of resolution entropy, conventional thermodynamic analogies suggest studying entropies per unit
volume in the superset context. The necessity of demonstrating suitable interference effects under path
summation also remains central. Since there is generally no natural limit to “how far back in time” one
may extend supersets, filtering methods associated with the lexicographic superset entropy system of
Definition 19, such as such the weighted sum of entropies in Equation (6), are of interest for organizing
relevant information, while respecting the relative insignificance of the distant past, and producing
finite values for physically meaningful quantities.

The labeled entropy function eLAB of Definition 20 offers another choice for the entropy function e
in Equations (7) and (8). A trivial case is when ∆τi0 = T0(Di0) and ∆τtN = T0(DtN). Since these states
are antichains, they are transitive under their automorphism groups; i.e., each consists of a single orbit.
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Hence, all labelings of these states are equivalent, so their labeled multiplicities are equal to 1, and their
labeled entropies are equal to zero. Thus, Θe(γ) = e0 = 1 for any choice of γ. For higher-degree states,
the situation is more interesting. Referring again to Definition 20, the labeled multiplicity µLAB(∆) of
an arbitrary state ∆ of cardinality K is K!/|Aut(∆)|. In particular, the multiplicity of 1 for a zeroth-order
state may be interpreted as the ratio K!/K!. This ratio typically increases toward K! for a sequence of
states of increasing order, since such states tend to become increasingly rigid. For such a sequence
constructed by adding new levels of structure to an initial state, the state cardinality K in the ratio
K!/|Aut(∆)| is itself an increasing function, but this ratio is particularly interesting in the study of
entropy per unit volume, which corrects for increasing K. Low-order states often possess nontrivial
automorphism groups, and the computation of labeled entropies for such states leads to interesting
enumerative problems. The dynamical insignificance of the distant past suggests that these states
are also the most interesting from an evolutionary perspective. For high-degree states Tm(Di0) and
Tm(DtN) of cardinalities Ki0 and KtN , abbreviated to K and K′ for legibility, typical labeled multiplicities
are approximately K! and K′! by rigidity, and the corresponding entropies are approximately

eLAB(Tm(Di0)) ≈ log K! = K log K− K + O(log K)

and
eLAB(Tm(DtN)) ≈ log K′! = K′ log K′ − K′ + O(log K′),

by Stirling’s approximation. These estimates lead to a phase map with values of roughly

Θe(γ) ≈ exp
(

i log(K′!/K!)
)
≈ exp

(
i
(
K′ log K′ − K log K

))
, (11)

where the last expression omits the linear and logarithmic terms in Stirling’s approximation,
since rigidity is only generic and asymptotic. As in previous examples, maximizing the entropic
quantity eτi0τtN (γ) ≈ K′ log K′ − K log K in this context favors “expanding universe” scenarios.
More sophisticated phase maps involving filtering methods such as weighted sums associated with
the labeled entropy system of Definition 21 are also of interest in this context.

Phase maps derived from symmetry entropies may be treated in a similar manner, although high
labeled entropies correspond to low symmetry entropies, and vice versa, after accounting for the
cardinalities of the states under consideration. If e = eSYM, then the symmetry multiplicities of the
zeroth-degree states T0(Di0) and T0(DtN) of cardinalities K and K′ are K! and K′!, so the corresponding

phase Θe(γ) = exp
(

i log(K′!/K!)
)

is the same as the estimate given in Equation (11) for the phase

induced by labeled entropies of nearly-rigid states Tm(Di0) and Tm(DtN) of the same cardinalities.
Conversely, for nearly-rigid states, phase values induced by symmetry entropies are near e0 = 1.
Again, the most interesting behavior occurs for terminal states of relatively low but nonzero degree,
which possess limited but nontrivial causal structure, and have limited but nontrivial symmetries.
More sophisticated phase maps may be constructed in terms of the symmetry entropy system of
Definition 23. For example, it is interesting to compare entropies associated with terminal states of
different degrees for the same history, using the relative notions introduced in Definition 24.

4.2. Interference Effects

Feynman’s path integral reinforces the contributions of paths near the classical path γCL of
a particle, via constructive interference, while faraway paths are damped out via destructive interference.
Mathematically, this means that the phases assigned to paths near γCL tend to cluster near each other
on the unit circle S1, inducing large amplitudes for neighborhoods of γCL, while the phases assigned to
faraway paths tend to scatter around S1, leading to cancellation. To produce this type of behavior, paths
near γCL must possess similar phases. As explained in Section 1.2, Feynman’s phase map Θ(γ) = e

i
h̄S(γ)

satisfies this condition due to Hamilton’s principle, i.e., because γCL renders the classical action S

stationary. In the discrete causal context, analogous relationships must be identified and exploited for
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the path summation approach to succeed. Much of the appeal of entropic phase maps in this setting
arises from the fact that the idea of entropy is sufficiently general to produce a variety of discrete causal
quantities with interesting interference-related behavior that may resemble that of S, while remaining
sufficiently specific to offer meaningful physical interpretations. This is not to suggest that S is similar
to conventional entropy in other ways; indeed, S is a cumulative quantity that is typically minimized
by favored processes, which are typically time-symmetric, while entropy is conventionally understood
as an instantaneous quantity whose increase is observed to follow, and in some settings is believed to
possibly generate, the arrow of time. It is the role of discrete causal entropy in producing desirable
interference effects that must be “action-like” in the context of entropic phase maps. This is one reason
why it is reasonable to simultaneously entertain essentially opposite versions of entropy in this setting,
such as labeled entropy and symmetry entropy. In a similar manner, discrete causal action principles
need not closely resemble conventional motion-related or metric-related action principles in general,
provided that they play an analogous abstract role. The action principles discussed in Section 4.3 are
chosen with conventional definitions in mind, but many other choices are possible.

It is therefore interesting to explore which, if any, discrete causal notions of entropy can produce
“clustering effects” for phases that mimic stationary action in a suitable manner. I begin with a simple
“very early universe scenario” in SPS, involving a toy co-relative kinematics represented by a chain
γ = r(h0) ≺ ... ≺ r(hN) of relations r(hk) in R(M(SPS)) representing co-relative histories hk : Dik ⇒ Dtk
for 0 ≤ k ≤ N. In the general telescoping entropic phase map

Θe(γ) = exp
(

i
(
e(∆τtN )− e(∆τi0)

))
of Equation (8), I choose e to be the symmetry entropy function eSYM of Definition 22, and ∆τi0 and
∆τtN to be zeroth-degree terminal states T0(Di0) and T0(DtN) of cardinalities 5 and 10, respectively.
With these choices, Θe(γ) = exp

(
i(log 10! − log 5!)

)
= ei(10.3169...). Phases determined by this

particular map are very unstable for small changes in the sizes of T0(Di0) and T0(DtN). For example,
adding one additional element to T0(DtN) yields a phase of ei(12.7148...), which is separated from
Θe(γ) by an angle of about 3π/4 on S1. More generally, since log(K + 1)! − log K! = log(K + 1),
adding even a single additional maximal element to an arbitrary zeroth-order terminal state
produces a much different symmetry multiplicity, and this behavior only increases for large histories.
Working with entropy per unit volume, instead of raw entropy, trades this instability for a profound,
and perhaps excessive, stability. By Stirling’s approximation, the entropy per unit volume of T0(DtN)

is roughly log |T0(DtN)| in this example, a quantity which is very stable under small changes in the
size of T0(DtN). Using ballpark figures for fundamental units, the observable universe may possess
a spatial volume of about 10180 in a suitable frame of reference, and treating Hubble’s “constant” as
actually constant gives a doubling time of about 1060. Depending on the choice of kinematic scheme,
one may therefore imagine a chain of perhaps 1060 to 10180 co-relative histories leading to a change in
entropy per unit volume of about log 2. Hence, this simplistic notion of entropy per unit volume does
not seem to change very rapidly in the actual universe.

The chain independence property for the general telescoping entropic phase map Θe of
Equation (8) is at least superficially attractive in the path summation context, since it suggests large
amplitudes for processes possessing large numbers of evolutionary pathways. What is really needed,
however, is a stronger property that produces “nearly identical phases” for “nearly identical physics”,
rather than merely producing identical phases for alternative descriptions of identical physics. A class
of maps that often exhibits this type of behavior is the class of telescoping multiplicity phase maps

Θµ(γ) = exp
(
iµ(∆τtN )/µ(∆τi0)

)
. (12)

Even a modest increase in entropy between ∆τi0 and ∆τtN corresponds to a ratio µ(∆τtN )/µ(∆τi0)

that is near zero. Phases Θµ(γ) for chains γ exhibiting large increases in entropy therefore
constructively interfere, clustering near the complex number ei0 = 1. Similar behavior is not evident in
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Equation (8), because the entropic quantity eτi0τtN (γ) = e(∆τtN )− e(∆τi0) in the exponent of Θe typically
has nonnegligible magnitude compared to the circumference 2π of S1. Hence, two chains γ and γ’
with “similar” final co-relative histories exhibiting large but distinct entropies may possess phases
Θe(γ) and Θe(γ′) far apart on S1, which does not suggest encouraging interference properties for Θe.
For example, suppose that ∆τi0 is rigid, and compare two different chains γ and γ′ with final co-relative
histories hN and h′N′ exhibiting symmetry multiplicities µSYM(∆τtN ) = K and µSYM(∆τtN′ ) = 6K.
Here, ∆τtN and ∆τtN′ may be nearly-identical first-degree terminal states, differing, for example, by a
single “trident-shaped" component contributing a symmetry factor of S3. However, the difference
between the entropic quantities eτi0τtN (γ) and eτi0τtN′ (γ′) in Θe(γ) and Θ1

e (γ
′) is log 6, which translates

to an angular separation exceeding π/2. This example suggests that very similar processes can
destructively interfere under Θe. In contrast, the angular separation between Θµ(γ′) and Θµ(γ) in
this example is 1/6K, so that both phases are very near ei0 = 1 for large K. Unfortunately, the map
Θµ in Equation (12) seems to exhibit too much constructive interference, in the sense that it assigns
a phase near 1 to every chain involving a modest increase in entropy. The precedent of Feynman’s
phase map Θ(γ) = e

i
h̄S(γ) suggests that the entropic quantities multiplying i in a phase map should

not be uniformly small for “physically reasonable” chains. Indeed, by scaling the classical action S

by Planck’s reduced constant h̄, Feynman’s map allows these multipliers to differ appreciably for
modestly different paths describing the behavior of systems for which quantum effects are noticeable,
such as the motion of individual electrons.

It seems, then, that the “additive recipe” of Equation (8) may produce too little constructive
interference, while the “multiplicative recipe” of Equation (12) may produce too much. There are many
possible ways to address this issue. It should be noted that the problem with Equation (12) seems to
be much more serious, producing an obviously wrong answer, whereas for Equation (8) it is merely
unclear what the interference behavior looks like for physically realistic histories. If one chooses,
then, to study modifications of Equation (8), there are at least two obvious methods to explore.
First, one may adjust Θe via a positive real-valued scale factor s, analogous to h̄. The resulting phase
map is of the form

Θs(γ) = exp
( i

s
(
e(∆τtN )− e(∆τi0)

))
. (13)

Choosing s > 1 produces more tightly-clustered phases, thereby increasing constructive interference for
similar processes. The obvious question then becomes how to choose s in a non-arbitrary manner. This
immediately suggests a second method of modifying Θe, by adjusting the entropies e(∆τi0) and e(∆τtN )

individually, via information derived in a natural manner from the co-relative histories h0 and hN .
An interesting variant of this approach, foreshadowed above, is to focus on entropy per unit volume,
rather than raw entropy. This involves completely different considerations than does the conventional
thermodynamic study of a variable-volume system, such as a quantity of gas in a chamber compressed
by a piston. Such a system is background dependent and does not involve spacetime expansion. In the
present more-fundamental setting, the study of entropy per unit volume is partly motivated by the
idea that the production of “new spacetime” ought to involve some “cost”, or obey some analogue
of continuity. In particular, one does not observe immediate runaway expansion of spacetime, even
though this tends to produce a large increase in entropy. A general phase map for finite states defined
in terms of entropy per unit volume is the telescoping map

Θe/V(γ) = exp
(

i
(
e(∆τtN )/|∆τtN | − e(∆τi0)/|∆τi0 |

))
. (14)

For an “early universe scenario” involving a version of this map, let ∆τi0 and ∆τtN be first-degree
terminal states T1(Di0) and T1(DtN) of cardinalities 10 and 20, respectively, and suppose that
|Aut(∆τi0)| = 102 and |Aut(∆τtN )| = 104. Then using e = eSYM in Equation (14) yields

Θe/V(γ) = exp
(

i
(

log(104)/20− log(102)/10
))

= ei0 = 1.
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A similar process represented by a chain γ′ whose final co-relative history has the same size for its
first-degree terminal state but twice the symmetry multiplicity produces a phase of Θ1

e/V(γ
′) ≈ ei(0.0346...).

The angular difference of 0.0346... between these two values is much smaller than the corresponding
difference of log 2 = 0.6931... produced by Θ1

e . Hence, Θe/V offers an example of how one may increase
constructive interference effects via natural information associated with evolutionary processes. Precise
characterization of these effects in physically realistic scenarios depends on asymptotic behavior of
large states. For example, working with symmetry entropy, states that are “too rigid” will typically
produce values near ei0 = 1 under Equation (14), regardless of the process involved. On the other
hand, states that are “too free” will produce phases for similar processes insufficiently close to generate
adequate constructive interference. Other state-specific modifications of Equation (8) are also worth
considering. For example, natural data associated with states may be used to determine weights in
more sophisticated phase maps involving weighted sums, such as generalizations of the map given by
Equation (6). This is analogous to assigning density functions to state spaces or weights to individual
outcomes in Gibbs or Shannon entropy.

4.3. Objections and Alternatives

Entropic phase maps may be criticized in various ways, and alternative approaches are possible
under the general framework of path summation. Given a choice of dynamics favoring an increase
in a specified type of entropy, it is prudent to ask whether this dynamics obviously contradicts
established physics. If so, then it can be at best a toy model. Figure 18 illustrates one type of scenario
that may be considered in this context, involving a sequence of co-relative histories h′7 to h′11 beginning
with the initial history D7 from the evolutionary process illustrated in Figure 10. Subsequent histories
in the present process are much different; each is constructed by adding a new element related to
all previously-existing elements. New elements are illustrated by large black nodes. This process
is visually suggestive of gravitational collapse, leading to a “black hole” represented by the chain of
new elements. This analogy is motivated by the fact that causal influence flows exclusively toward
the “back hole”. The automorphism groups Aut(T1(D′k)) are large symmetric groups; in fact, they
are the largest possible automorphism groups for states of cardinality |T1(D′k)| that are not antichains.
In particular, they are much larger than the corresponding groups associated with the process illustrated
in Figure 10. Hence, the present process maximizes symmetry entropy for first-degree terminal states.

h′7

h′8

h′9

h′10

D′11

D′10

D′9

D′8

D7

Figure 18. Sequence of co-relative histories h′k suggestive of gravitational collapse.
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Since gravitational collapse is an important feature of general relativity, one should expect
such processes to be favored for certain histories that are large in ordinary terms but small on
cosmological scales. Similarly, one should expect “expanding universe” scenarios such as those
discussed in Section 4.1 to be favored in an appropriate cosmological sense. However, one should
not expect extreme versions of such processes to dominate all others in every situation, and such
behavior would disqualify any choice of dynamics producing it. Generalizing the present example,
it would discredit the entire idea of entropic phase maps if gravitational collapse scenarios were
found to entropically dominate all other evolutionary pathways combined. Rough computations
suggest that this is not the case. For example, beginning with a history D, one may estimate its
number of direct descendants in SPS, along with the possible sizes of their first-degree terminal state
automorphism groups. If D has cardinality K, then there exists one direct descendant D′ of D in SPS for
which Aut(T1(D′)) is isomorphic to SK, with cardinality K!, namely, the directed set D′ with one new
element related to all elements of D. The co-relative history D ⇒ D′ represents the beginning of the
global gravitational collapse scenario for D. Similarly, there are typically about K direct descendants
of D constructed by adding one new element connected to K− 1 elements of D. There may be fewer
such descendants, due to symmetries, but this is atypical due to rigidity. The first-degree terminal
state automorphism groups of these direct descendants may be as large as SK−1, with cardinalities as
large as (K− 1)!, though they may be smaller due to symmetry breaking by the “excluded element”.
Next, there are typically about (K

2) direct descendants of D in SPS constructed by adding one new
element connected to K − 2 elements of D, with first-degree terminal state automorphism groups
as large as (K− 2)!. Continuing this rough enumeration leads to an overestimate of the sum of the
symmetry multiplicities for first-degree terminal states over all direct descendants of D in SPS:

multiplicity sum ≈
K

∑
k=0

(
K
k

)
(K− k)! =

K

∑
k=0

K!
k!

.

The ratio of the individual multiplicity associated with the beginning of gravitational collapse to the
overall multiplicity sum is therefore roughly

K!/
K

∑
k=0

K!
k!

= 1/
( 1

K!

n

∑
k=0

K!
k!

)
= 1/

K

∑
k=0

1
k!
≈ 1

e
= 0.3678...

Though this ratio is actually somewhat larger due to symmetry considerations, as well as the tiny
effect of truncating the rapidly convergent series for e, this computation suggests that the gravitational
collapse scenario does not always entropically dominate all other evolutionary pathways in the case of
symmetry entropy.

A much more general objection to the idea of entropic phase maps, already mentioned
in Section 4.2, is that it forces together notions that are only distantly related in conventional
situations where the path summation approach to quantum theory is known to succeed and where
the second law of thermodynamics is known to hold. In particular, the interference behavior
of Feynman’s phase map for paths in R4 is not closely related to conventional entropic data.
As explained in Section 1.2, Feynman’s map Θ(γ) = e

i
h̄S(γ) is determined by the classical action

S(γ) =
∫

γ L dt, where L is the Lagrangian. Hamilton’s principle states that the classical path γCL

renders S(γ) stationary, and for “sufficiently short” paths, S(γ) is generally minimized by γCL.
In this context, the Lagrangian L is symmetric under time reversal, so Hamilton’s principle certainly
does not imply the second law. While paths favored by Hamilton’s principle typically do exhibit
increases in entropy in realistic scenarios, this behavior may be attributed to auxiliary details such as
where these paths originate in state space. However, time reversal of a classical system, which generally
involves a systematic decrease in entropy, obeys the equations of motion determined by L just as well
as does the original system. Hence, an analogy between “high entropy” and “stationary action” is not
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necessarily motivated by established physics in any compelling way. From this viewpoint, it is not at
all obvious that discrete causal analogues of Feynman’s phase map should depend directly on entropy.

The answer to this objection, already summarized in Section 4.2, is that discrete causal entropy
is neither expected, nor required, to play an “action-like” role in every sense. Nor must it resemble
conventional thermodynamic entropy in the sense of approximation, under which macrostates are
defined via imprecise, rather than merely incomplete, data. Indeed, the only version of entropy
introduced in Section 3 that fits this description is resolution entropy. The remaining versions all
differ from conventional thermodynamic entropy in at least two important respects: first, they do
not involve actual approximation; second, they depend nontrivially on information above first order
at the level of individual histories. More generally, discrete causal entropy must be “action-like”
only in that it produces desirable interference effects, and it must be “entropic” only in that it arises
via comparison of levels of detail under the basic framework of entropy systems. Regardless of
such conventional analogies, combinatorial data encoded in terminal states is likely, on basic
structural grounds, to determine discrete causal dynamics in the background independent setting.
The entropic notions introduced in Section 3.4 enjoy the additional benefits of possessing clear
physical meaning and suggesting effects that are known to be among the most universal in physics.
Hence, these notions stand out from among a relatively limited assortment of reasonable alternatives
for determining specific data for path summation.

Nevertheless, it is illuminating to briefly examine an alternative approach to path summation
in the discrete causal context, expressed via discrete causal action principles related more directly
to conventional motion-related or metric-related ideas. This involves defining discrete causal
“Lagrangians” and “actions” that mimic their conventional counterparts as closely as possible, in the
sense that they are defined in terms of specific “alterations” of individual histories. This is a much
narrower prescription than that of the relation function θ in Equation (4), which is “Lagrangian-like”
in an abstract sense regardless of its actual information content. An immediate difficulty with
this strategy is that notions such as energy, metric structure, and curvature, which are central to
conventional definitions of L and S, are themselves emergent in discrete causal theory. The same
is true of related quantities such as mass and momentum, which are often used to determine
these notions. In partially-background-dependent versions of discrete causal theory, such as quantum
causal set theory, “nongravitational matter” is ascribed to auxiliary fields and particles existing on
directed sets, and it is not too difficult to define reasonable analogues of L and S in this setting.
However, the situation is subtler in the perfectly-background-independent context under the strong
version of the causal metric hypothesis. As explained in Section 3.3, a popular problem in the
study of discrete gravity is how to abstract and generalize the Einstein–Hilbert action SEH [45–47].
However, the metric g and the scalar curvature R used to define SEH are unlikely to possess meaningful
direct analogues at the fundamental scale, where even primitive notions such as dimension and
topological structure are relatively obscure. Success in abstracting such quantities would accomplish
only part of the desired objective in any case, since a genuinely fundamental theory of spacetime
should explain the origins of more basic geometric and pre-geometric properties.

For these reasons, it seems preferable to work at a more conceptual level in defining discrete
causal analogues of L and S. The conceptual content of Hamilton’s principle is that nature is
basically conservative; it favors as little overall alteration as possible in evolving from one state
to another. Setting aside conventional ideas involving the conversion of one type of energy into another,
or the overall motion represented by a path between two points in a manifold, one may formulate discrete
causal action principles embodying this basic concept, hypothesizing that the resulting dynamics will
faithfully preserve the desired physical meaning as one works up from the fundamental scale. In this
context, the most natural discrete causal analogues of L and S are functionals that describe the extent
to which a given history or terminal state is altered in a process leading to another history or terminal
state. One way of describing such alteration is in terms of the elementary operations introduced in
Definition 16, which define the absolute distance between pairs of directed or multidirected sets. There
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are at least two possible choices for how to quantify such an action: one may either count the number of
elementary operations necessary to convert one state ∆ to another state ∆′, ignoring ambient histories,
or one may count the number of operations involved in converting a history with terminal state ∆ to a
history with terminal state ∆′. The difference between these two notions of action is analogous to the
difference between absolute distance in Definition 16 and scheme-dependent distances in Definition 17.

Definition 27. Let h : Di ⇒ Dt be a co-relative history in a kinematic scheme S. Let ∆τi and ∆τt be terminal
states of Di and Dt with respect to transitions τi and τt, respectively.

1. The state-level Lagrangian quantity Lτiτt(h) of h with respect to the pair (τi, τt) is the number of
elementary operations necessary to convert ∆τi to ∆τt .

2. The history-level Lagrangian L is the functional assigning to each co-relative history h the number of
elementary operations involved in converting Di to Dt, i.e., the number of elements and relations added to
Di by h.

Both Lτiτt(h) and L may take on either finite or infinite values in this general setting, though it is
often useful and appropriate to impose finiteness conditions. Lτiτt(h) is called a “Lagrangian quantity”
rather than a “Lagrangian” because it depends on choices of transitions τi and τt. One may specialize
this definition to define standard Lagrangian functionals. For example, one might define the first-degree

state-level Lagrangian L1 to be the functional assigning the state-level Lagrangian quantity L
τ1

Di
τ1

Dt (h) to
each co-relative history h : Di ⇒ Dt. The history-level quantity L seems much more natural than the
state-level quantity Lτiτt(h) in a structural sense. An unattractive aspect of Lτiτt(h) is that a sequence
of elementary operations converting ∆τi to ∆τt typically identifies structural components of these
two sets that arise from different parts of their corresponding histories. For example, the first-degree
terminal state ∆7 of the history D7 appearing in the evolutionary process illustrated in Figure 10 may
be converted into the first-degree terminal state ∆8 by a sequence of three elementary operations,
but only at the expense of identifying “early” structure in D7 with “later” structure in D8.

A good motivation to study state-level quantities such as Lτiτt(h) despite this awkwardness is
that they are related to conventional evolutionary ideas in certain important ways. For example,
one may imagine a history in which “nothing changes”, in the sense that each terminal state of a
given degree “exactly replicates itself”. The simplest example is given by sequential growth of a chain;
at each stage of evolution, the first-degree terminal state of this chain consists of a single relation
connecting its penultimate element to its terminal element. Such a “frozen” or “static” history exhibits
a value of zero at every stage of evolution for an appropriate uniform choice of state-level Lagrangian
quantities Lτiτt(h), such as those induced by the first-degree state-level Lagrangian L1. This agrees
with the naïve idea of dynamical stasis for this history. By contrast, the value L(h) of the history-level
Lagrangian L at every stage h of the evolution of such a history is a nonzero constant, and a similar
average value for L(h) occurs in “non-static” histories adding roughly the same number of elements
and relations at each evolutionary stage. Such histories may exhibit extreme structural differences
among generations, which may be essentially invisible to L. More generally, state-level quantities
may often detect interesting changes that are invisible to history-level quantities. A closely-related
issue is the problem of how to obtain suitable analogues of conventional evolutionary continuity.
As explained in Section 3.3, the conventional entropic preference for thermal equilibrium is balanced
by the continuity of evolution curves in state space and the fact that such curves may not originate near
the cell representing thermal equilibrium. The same topic was revisited in Section 4.2 in the context of
entropy per unit volume and spacetime expansion. Dynamics that explicitly resists drastic changes in
state-level quantities seems a priori more likely to avoid serious pathologies along these lines than
dynamics defined in terms of history-level quantities.

Each discrete causal Lagrangian induces a corresponding discrete causal action by summing
Lagrangian quantities over sequences of co-relative histories.
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Definition 28. Let S be a kinematic scheme, and let γ = r(h0) ≺ ... ≺ r(hN) be a chain in R(M(S))
representing a co-relative kinematics in S, where each relation r(hk) represents a co-relative history hk : Dik →
Dtk. Let ∆τik and ∆τtk be terminal states of Dik and Dtk with respect to transitions τik and τtk.

1. The state-level action quantity S{τik},{τtk}(γ) along γ with respect to the pair of sequences of transitions
{τik} = {τi0, ..., τiN} and {τtk} = {τt0, ..., τtN} is the sum

S{τik},{τtk}(γ) =
N

∑
k=0

Lτikτtk (hk)

2. The history-level action S is the functional assigning to each chain γ the number of elementary operations
involved in converting Di0 to DtN , i.e., the number of elements and relations added to Di0 by the sequence
of co-relative histories h0, ..., hN .

As in the case of Lagrangians, the history-level action S seems to be much more natural in a
basic structural sense than the state-level action quantity S{τik},{τtk}(γ). One obvious complication
involving the latter quantity is that fewer elementary operations are typically required to convert
a state ∆ directly to a state ∆′′ than to first convert ∆ to an “interpolating state” ∆′, then convert ∆′

to ∆′′. However, the awkwardness of S{τik},{τtk}(γ) may be ameliorated to some extent by specifying
a uniform choice of transitions {τik} and {τtk}, for example, first-degree transitions. The resulting
first-degree state-level action functional may be denoted by S1. Again, a good motivation for considering
state-level functionals is that they are more closely related to conventional evolutionary ideas in
certain respects than are history-level functionals. In particular, the history-level functional S does not
distinguish between co-relative kinematics involving state-replicating “static histories” and co-relative
kinematics involving histories in which considerable state-level change occurs, provided that the same
total number of elements and relations are added over the course of each process.

Discrete causal Lagrangians and actions defined in terms of elementary operations on directed
sets supply dynamical alternatives to entropic phase maps under the path summation approach
to quantum theory. For example, one might define an action-induced phase map Θ(γ) = eiS1(γ)

using the first-degree state-level action functional S1 introduced above. This raises the obvious
question of how these two general types of dynamics compare. For example, one may consider
the gravitational collapse scenario illustrated in Figure 18. The value of the first-degree state-level
Lagrangian L1 at the kth stage of evolution is 2, because the kth first-degree terminal state ∆k
differs from the (k + 1)st first-degree terminal state ∆k+1 by a single element and a single relation,
up to isomorphism. However, the elements and relations that are identified under such a comparison
are completely different from the perspective of the entire terminal history Dk+1. The value of the
history-level Lagrangian L at the kth stage of evolution is (k + 1), because one new element and
k new relations are added to the initial history Dk. The state automorphism group Aut(∆k) of ∆k,
meanwhile, is typically isomorphic to Sk−1, of cardinality (k − 1)!, and the state automorphism
group Aut(∆k+1) of ∆k+1 is typically isomorphic to Sk, of cardinality k!. The ratio of the symmetry
multiplicities µSYM(∆k+1)/µSYM(∆k) is therefore typically k, and the corresponding increase in
symmetry entropy is typically log k.

Interesting structural relationships exist between the Lagrangians and actions introduced in this
section and the entropic notions developed in Section 3. Here, I can only offer vague sketches of a few
of these relationships. For example, the construction of superset microstates may be expressed via
“elementary operations” at the level of kinematic schemes. In particular, the first superset multiplicity
µ1

SUP(∆) in Definition 18 is the number |R+(x(∆∗))| of relations in M(SPS) beginning at the element
x(∆∗) representing the causal dual ∆∗ of a state ∆. If this multiplicity is N, then one may imagine
a “growth process” for SPS that adds the N co-relative histories represented by the elements of
R+(x(∆∗)) at some stage of growth. This corresponds to a “history-level action” of roughly 2N for
the corresponding stage of growth of M(SPS), ignoring multidirected structure, so in this case large
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entropy corresponds to large action. However, since supersets encode “growth into the past”, one might
argue for associating a minus sign with this “action”, reversing this relationship. Relative notions
of symmetry entropy such as those introduced in Definition 24 also involve supersets, and may
therefore be related to such higher-level “action”. However, the most basic question in comparing
a “non-entropic” discrete causal action principle to a choice of discrete causal entropy is whether or
not such a principle, together with the structure of an appropriate discrete causal state space, at least
favors increasing entropy, regardless of whether or not it favors the maximal possible increase at each
evolutionary stage. In this context, an action principle applied to a state space may lead indirectly
to a version of the second law of thermodynamics, even if it is not derived from, or equivalent to,
such a law. This is certainly the case for conventional thermodynamics based on Newtonian physics
applied to ordinary state spaces. Corresponding relationships between discrete causal action principles
and discrete causal entropy remain mostly unexplored.

4.4. Summary and Conclusions

Entropic phase maps offer one possible method of supplying specific dynamical content for the
path summation approach to discrete quantum causal theory developed in [14]. Background and basics
of this approach are reviewed in Sections 1 and 2 of this paper. Such maps assign phases to evolutionary
pathways called co-relative kinematics in a discrete causal history configuration space called a
kinematic scheme. Their role is analogous to the role of Feynman’s phase map in the path summation
approach to ordinary quantum theory [1], which assigns phases to particle paths in a background
spacetime manifold. Each co-relative kinematics consists of a sequence of individual evolutionary
relationships between pairs of histories, called co-relative histories, mathematically represented
by equivalence classes of transitions between pairs of directed sets. A phase map whose values
are multiplicative for concatenation of co-relative kinematics is generated by a relation function θ,
which assigns phases to relations representing individual co-relative histories. Such a phase map
determines a specific version of the causal Schrödinger-type equation

ψ−R;θ(r) = θ(r) ∑
r−≺r

ψ−R;θ(r
−),

reproduced here from Equation (4). In physical terms, a suitable phase map must produce interference
effects that reinforce “reasonable” evolutionary processes, while damping out pathological processes.
In the case of entropic phase maps, this means that the entropic quantities defining these maps
should satisfy a property analogous to Hamilton’s principle of stationary action. In other respects,
these quantities need not resemble the classical action that determines Feynman’s phase map.
In particular, they need not be directly associated with familiar motion-related concepts such as
potential and kinetic energy, which define classical Lagrangians and actions in Newtonian mechanics,
or with metric structure, which determines the Einstein–Hilbert action in general relativity.

Entropy systems, introduced in Section 3.1, offer a general approach to entropy and the second law
of thermodynamics. Conventional versions of the second law involve notions of entropy associated
with “present states”, not with entire histories. In the discrete causal context, this suggests defining
entropies for terminal states of histories, which encode “recent” causes and effects. Such states are
defined in Section 3.3 in terms of transitions between pairs of directed sets. Aside from their evident
physical importance, such states are mathematically interesting due to their symmetry properties,
which exhibit a balance between the typical rigidity of general acyclic directed sets demonstrated
by Bender and Robinson [37], and the transitivity of antichains under their automorphism groups.
There are a variety of ways to define entropies for such states, all of which involve comparing
distinguishability properties of states at different levels of detail. Since multiple such levels merit
simultaneous consideration in discrete causal theory, a sufficiently general approach to discrete
causal entropy requires the use of entropy systems, which organize such levels in a systematic way.
Given two levels of detail, descriptions of a system at the coarser level are called macrostates,
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while descriptions at the finer level are called microstates. The corresponding notion of entropy
measures the quantity of microstates corresponding to each macrostate in a manner that is additive
for composite systems. An important distinction between conventional thermodynamics and discrete
causal theory is that precise information up to first order typically suffices to determine future evolution
in the former setting, while higher-order information at the level of individual histories is a priori
relevant in the latter setting. In both cases, however, empirical evidence suggests that details of the
distant past should exert negligible influence on future events.

Four general methods of defining discrete causal macrostates and microstates, along with their
associated notions of entropy, and the resulting entropic phase maps, are examined in this paper.
Spaces of states are studied in Section 3.3, entropies in Section 3.4, and phase maps in Section 4.1.
The first method uses the theory of causal atomic resolution, whereby causal structure at the
fundamental scale is approximated by families of coarser causal structures constructed from special
subsets of directed sets, called causal atoms. This leads to the notion of resolution entropy.
This approach is very similar to coarse-graining of state space in conventional thermodynamics; in
particular, it involves actual approximation. The second method supplements the information encoded in
terminal states by describing how they may embed into larger states called supersets. This leads to the
notion of superset entropy. The level of detail in the original states is regarded as “coarse” because it is
incomplete, not because it is approximate. Supersets offer finer detail in the sense that they encode
more complete information. The third method measures distinguishability properties intrinsic to states
by counting the number of distinct ways in which they may be labeled. This leads to the notion of
labeled entropy. Labeled entropy is maximal for states lacking nontrivial symmetries, which meshes
with the intuition that high-entropy states should be “disordered”. The fourth method follows
essentially the opposite approach, by counting symmetries. This leads to the notion of symmetry
entropy. Like superset entropy, both labeled entropy and symmetry entropy involve organizing precise
but incomplete information, rather than actual approximation.

Computation of entropic phase maps in physically realistic situations is analytically involved,
and most of the results in this paper involve toy examples or qualitative results. Many of these appear
in Sections 4.1, 4.2 and 4.3. Discrete causal versions of the second law of thermodynamics favor
expanding universe scenarios, but this conclusion is obvious on basic enumerative grounds, and does
not favor discrete causal theory over other theories in any specific way. There is some evidence that
raw measures of entropy may be too sensitive to minor changes in structure to produce desirable
interference effects. The notion of entropy per unit volume seems more stable in this regard, and is also
attractive in other respects. Since the theory of entropic phase maps is almost completely unexplored,
many versions of the approach can likely be eliminated without serious effort. Symmetry entropy is
doubtful on conventional grounds, and also seems to be vulnerable to pathological instabilities such as
universal gravitational collapse scenarios. However, the idea is not obviously unworkable, and the
desire to model symmetric structures in nature, such as “elementary” particles, renders such notions
worth entertaining. Discrete causal action principles involving elementary operations on directed sets
offer an alternative to entropic phase maps in the path summation context. Relationships exist between
these two approaches, but the details of these connections are unclear at present.

Problems that must be solved to further develop the theory of entropic phase maps
include the enumeration of certain classes of acyclic directed sets, and the computations of their
automorphism groups. These problems may be approached from a mathematical perspective via
the theory of random graphs, and interesting and important results of this nature may be found in
the graph-theoretic literature. However, most of these results are developed from a perspective very
different than the study of fundamental spacetime structure, and the perception of what problems
are interesting is different in this setting as well. Hence, it is not easy to mine the existing body of
graph theory for such results, and many physically relevant topics remain underdeveloped. This is
likely due both to difficulty of problems and differences in emphasis. Particularly useful in this
context would be a thorough analysis of families of directed graphs corresponding to nth-order states.
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For example, how would one compute the average number of superset microstates adding 103 elements
to a first-order state of cardinality 104? What is the average size of the automorphism group of a
first-order state with 109 elements and 1012 relations? For a fixed degree n, how does the average size
of Aut(Tn(D)) scale with the cardinality of D? For a fixed ratio of order to cardinality for states ∆,
how does the average size of Aut(∆) scale with the cardinality of ∆? Going beyond average quantities,
how are the numbers of superset microstates, or the sizes of state automorphism groups, distributed for
certain classes of states? Are they randomly scattered, or do they tend to cluster around certain values?
Many questions of this nature must be answered before the physical implications of entropic phase
maps can be understood in any detail. Computational resources may also be used to compile numerical
evidence about the behavior of various entropic phase maps for relatively small histories. For example,
it would be very interesting to compute some of the entropic quantities examined in this paper for the
first few generations of the positive sequential kinematic scheme SPS.
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