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Abstract: In Berend and Kontorovich (2012), the following problem was studied: A random sample
of size t is taken from a world (i.e., probability space) of size n; bound the expected value of the
probability of the set of elements not appearing in the sample (unseen mass) in terms of t and n. Here
we study the same problem, where the world may be countably infinite, and the probability measure
on it is restricted to have an entropy of at most h. We provide tight bounds on the maximum of the
expected unseen mass, along with a characterization of the measures attaining this maximum.
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1. Introduction

Let S be a finite probability space. Without loss of generality, suppose that S = {1, 2, ..., n}. Let
p = (p1, p2, . . . , pn) be a probability measure on S. Suppose that a random sample X1, X2, . . . , Xt is
drawn from S according to p. The missing mass is the random variable Ut, defined by:

Ut =
n

∑
i=1

pi1{X1 6=i
∧

...
∧

Xt 6=i}.

In words, Ut is the total probability mass of the set of those elements of S not observed at all in
the sample. According to the definition of Ut, it is easy to verify that EUt = ∑n

i=1 pi(1− pi)
t. When we

wish to make the dependence on the measure p explicit, we will write EpUt instead of EUt.
One of the earliest mentions of the missing mass is in Good–Turing frequency estimation [1].

The latter is a statistical technique for estimating the probability of encountering an object of a hitherto
unseen species, given a set of past observations of objects from different species. This estimator has
been used extensively in many machine learning tasks. For example, in the field of natural language
modeling, for any sample of words, there is a set of words not occurring in that sample. The total
probability mass of the words not in the sample is the so-called missing mass [2]. Another example
of using Good–Turing missing mass estimation is in [3], where the total summed probability of all
patterns not observed in the training data is estimated. In [4], Berend and Kontorovich showed that
the expectation of the missing mass is bounded above as follows:

EUt ≤
{

e−
t
n , t ≤ n,

n
et , t > n.

(Additionally, deviation bounds were provided in [5].)
Moreover, they have shown that:
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1. Every local maximum p of EUt is of the form

p1 = p2 = . . . = pn−1 ≤ pn,

(where without loss of generality we consider only vectors p with p1 ≤ p2 ≤ ... ≤ pn). That is,
p consists of one “heavy” atom and n− 1 “light” ones of identical size, where the possibility of
“heavy” = “light” is not excluded.

2. There exists a threshold τ = τ(n) > n such that:

(a) For t ≤ τ, there is a unique global maximum:

p1 = p2 = . . . = pn−1 = pn =
1
n

.

(b) For t > τ, there is a unique global maximum, and it has the form:

p1 = p2 = . . . = pn−1 < pn.

For an infinitely countable set S, one cannot generally provide a non-trivial upper bound on EUt

in terms of t only. Indeed, for each n, consider the probability measure on N supported on {1, 2, ..., n},
giving equal probabilities to these n atoms. Clearly, EUt ≥ 1− t

n in this case, and the right-hand side
becomes arbitrarily close to 1 as n grows. In [4] it was shown that

EUt ≤
l(p)

ct
, (1)

where l(p) roughly measures the size of sets of atoms of comparable mass and c is a universal constant
(for an exact definition, we refer to [4]). The bound given in (1) is non-trivial only if the sequence
(pi)

∞
i=1 decreases “sufficiently fast”. Such results may be useful, as shown in [6–9]. Another possible

restriction that makes the problem interesting is that the entropy of p is bounded above by some given
value. A similar restriction can be found in [10] in the context of discrete distribution estimation under
`1 loss. In this work, we study the possibility of providing tight bounds on EUt under the restriction
of some bound on the entropy. Thus, we can formulate our problem as follows:

sup
p

∑
i∈S

pi(1− pi)
t (2)

subject to

∑
i∈S

pi = 1, (3)

∑
i∈S

pi ln
1
pi
≤ h, (4)

where h ≥ 0 is the maximal allowed entropy.
In the case of distributions over countably infinite spaces we set S = N; otherwise, S = {1, 2, ..., n},

or in short, S = [n]. Note that we are looking for the supremum, since in the case S = N it is not a
priori clear that the maximum exists (in fact, it turns out that the maximum does exist—see Theorem 2).
Additionally, we will show that the maximum is obtained for a measure with finite support, which
leads us to study the problem for the case of distributions over finite spaces. We also study the structure
of local and global maxima and obtain some results analogous to [4].
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2. Main Results

Our first result is that in the case of S = N, an optimal solution exploits all the available entropy.
Denote the entropy of a probability measure p by H(p):

H(p) = ∑
i∈S

pi ln
1
pi

.

Proposition 1. Let S = N, and let p = (p1, p2, ...) be a probability measure on S. If H(p) < h, then there
exists a probability measure p′ = (p′1, p′2, ...) on S for which H(p′) = h and Ep′Ut > EpUt.

Corollary 1. In the problem given by (2)–(4), we may replace (4) by

∞

∑
i=1

pi ln
1
pi

= h.

In Theorem 1, we refer to the case S = [n] and show that an optimal solution of (2)–(4) cannot
assume more than four distinct non-zero values.

Theorem 1. Let S = [n], and p = (p1, p2, . . . , pn) be any locally optimal solution. Then, the pi’s assume at
most four non-zero values; i.e., if the pi’s are sorted, then for some indices j, k, l and m, we have p1 = . . . = pj =

0 < pj+1 = . . . = pk ≤ pk+1 = . . . = pl ≤ pl+1 = . . . = pm ≤ pm+1 = . . . = pn.

We do not know whether in some cases there are indeed atoms of four distinct sizes in the
optimal solution.

In the case S = [n], it is easy to see that EpUt is continuous with respect to p, and thus EUt attains
its maximum. On the other hand, when S = N, it is not a priori clear. Our next result shows that EUt

attains its maximum in this case as well.

Theorem 2. Let S = N.

(i) For each h > 0, the function EUt attains its maximum.
(ii) If p is a global maximum point of EUt, then p has a finite support.

Denote Ht = 1 + 1
2 + 1

3 + . . . + 1
t . Recall that ln t ≤ Ht ≤ ln t + 1 for each t.

Theorem 3. For all t ≥ 1, we have EUt ≤
h

H2t−1
.

In particular, EUt ≤
h

ln t
.

In Theorem 4 we show that given a fixed h, we cannot significantly improve the upper bound
from Theorem 3.

Theorem 4. For fixed h and every α > 1, if t is large enough then there exists a distribution p with H(p) ≤ h,

for which EpUt ≥
h

α ln t
.

As mentioned earlier, the parameter t represents the size of the sample. It appears that the
optimization problem cannot be solved analytically for any fixed arbitrary t. The following results
relate to the case t = 1. Obviously, this case is not typical, as one would hardly try to learn much from
a sample of size 1. Yet, it may be instructive, as in this case we obtain almost the best possible results.

Proposition 2. EU1 ≤ 1− e−h, h > 0.
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Next, we describe the structure of an optimal solution for the case S = [n] with t = 1.

Proposition 3. Let S = [n], and let p = (p1, p2, . . . , pn) be an optimal solution of the problem

max
n

∑
i=1

pi(1− pi) (5)

subject to

n

∑
i=1

pi = 1, (6)

n

∑
i=1

pi ln
1
pi

= h, (7)

where ln (k− 1) < h ≤ ln k, k ≤ n. Then (after sorting), p is of the form

p1 = p2 = . . . = pn−k = 0, pn−k+1 ≤ pn−k+2 = . . . = pn.

That is, the non-zero atoms of p consist of one “light” atom and k− 1 “heavy” ones.

Denote the mass pn−k+1 of the light atom in the proposition by p and that of the heavy ones by
q. In view of Proposition 3, it suffices to consider the case k = n, namely ln(n− 1) < h ≤ ln n. For
ln(n− 1) < h ≤ ln n, the following proposition gives a tight upper bound on EU1:

Proposition 4. EU1 ≤ 1− e−h −
∣∣∣∣e−h (2p− 1 + 2p ln p + 2ph) + (n− 1) q2 − p2

∣∣∣∣.
Remark 1. When h = ln n (or k = ln(n− 1)), there is an equality without the last term (see the proof of
Proposition 3). At these points, the last term indeed vanishes. Inside the interval (ln(n− 1), ln n), Proposition 4
provides an improvement over Proposition 2. In Figure 1, we plot the exact value of max EU1 (calculated
numerically using MATLAB) against the bounds of Propositions 2 and 4 for h ∈ [ln 3, ln 4]. It appears that the
additional term in Proposition 4 captures most of the error in Proposition 2.

Figure 1. Max EU1 vs. the bounds provided by Propositions 2 and 4.
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3. Proofs

Proof of Proposition 1. Change the measure p by splitting some atom i into two atoms of sizes p′i
and p′′i where 0 < p′i < pi and p′′i = pi − p′i. Let p̃ = (p1, ..., pi−1, p′i, p′′i , pi+1, ...) be the new measure.
The entropy of p is smaller than that of p̃ since

pi ln
1
pi

= [p′i + p′′i ] ln
1
pi

< p′i ln
1
p′i

+ p′′i ln
1
p′′i

.

Now

pi(1− pi)
t = [p′i + p′′i ](1− pi)

t

< p′i(1− p′i)
t + p′′i (1− p′′i )

t,

which implies that EpUt < Ep̃Ut. Similarly, splitting any number of atoms, we increase both the
entropy and EUt.

Now, take the first atom, for example, and split it into k sub-atoms, the first k− 1 of which are
of size p each and the k-th of size p′, where 0 ≤ p ≤ p1

k and p′ = p1 − (k− 1)p, and k is still to be
determined. The entropy of the new measure is

(k− 1)p ln
1
p
+ (p1 − (k− 1)p) ln

1
p1 − (k− 1)p

+
∞

∑
i=2

pi ln
1
pi

.

For sufficiently large k and p = p1
k , this entropy becomes arbitrarily large, and in particular

exceeds h. Take such a k, and consider the entropy of the obtained measure as p grows continuously
from 0 to p1

k . For p = 0, we have basically the original measure (and thus an entropy less than h), while
for p = p1

k the entropy is larger than h. Hence for an appropriate intermediate value of p, the entropy
is exactly h. The measure obtained for this p proves our claim.

Proof of Theorem 1. Write down the Lagrangian:

L(p, λ1, λ2) =
n

∑
i=1

pi(1− pi)
t + λ1

(
n

∑
i=1

pi − 1

)
+ λ2

(
n

∑
i=1

pi ln
1
pi
− h

)
.

The first-order conditions yield:

∂L
∂pi

= (1− pi)
t − tpi(1− pi)

t−1 + λ1 − λ2(ln pi + 1) = 0.

Denote:
f (x) = (1− x)t − tx(1− x)t−1 + λ1 − λ2(ln x + 1), 0 < x < 1.

We have:
f ′(x) = t(1− x)t−2[x(t + 1)− 2]− λ2

x
.

We claim that f ′ vanishes at most three times in (0, 1). Indeed, f ′(x) = 0 when

xt(1− x)t−2[x(t + 1)− 2] = λ2. (8)

Denote the left-hand side of (8) by g(x). Then:

g′(x) = −t(1− x)t−3[t2x2 + t(x− 4)x + 2].
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For every two points x1,x2 for which (8) holds, there is an intermediate point x1 < ξ < x2 such
that g′(ξ) = 0. Now, g′ clearly vanishes at no more than two points, so that (8) holds for at most three
values of x. It follows that each pi assumes one of up to (the same) four values.

Before we prove Theorem 2 we need two auxiliary lemmas. For h ≥ 0, let Xh be the subset of `1

consisting of all non-increasing sequences (p1, p2, . . .) satisfying the following properties:

1. pi ≥ 0 for each i and
∞

∑
i=1

pi = 1.

2. H(p) ≤ h.

Lemma 1. Xh is compact under the `1 metric.

Proof of Lemma 1. Let (pn)∞
n=1 be a sequence in Xh, say pn = (pn1, pn2, . . .) for n ≥ 1. We want to

show that it has a convergent subsequence in Xh. Employing the diagonal method, we may assume that
pn converges component-wise. Let p = (p1, p2, . . .) be the limit. It is clear that p has non-negative and

non-increasing entries, so we only need to show that
∞

∑
i=1

pi = 1, that H(p) ≤ h, and that pn −→n→∞
p in `1.

Assume first that
∞

∑
i=1

pi > 1. Then, there exists an index i0 such that
i0

∑
i=1

pi > 1. Hence for

sufficiently large n, we have
i0

∑
i=1

pni > 1, which is a contradiction. Hence
∞

∑
i=1

pi ≤ 1. Now assume that

∞

∑
i=1

pi < 1. Put ε = 1−
∞

∑
i=1

pi. Let i0 be an integer, to be determined later. We have
i0

∑
i=1

pni < 1− ε

2
for all

sufficiently large n. Note that for every q = (q1, q2, . . .) ∈ Xh we have qi ≤
1
i
(q1 + q2 + . . . + qi) ≤

1
i
.

Now we can bound from below the tail entropy of pn:

∞

∑
i=i0+1

pni ln
1

pni
>

∞

∑
i=i0+1

pni ln i0 >
ε

2
ln i0.

Taking i0 large enough, we can make the right-hand side larger than h, which is impossible. Hence
∞

∑
i=1

pi = 1.

We now show similarly that H(p) ≤ h. Assume that
∞

∑
i=1

pi ln
1
pi

> h. Then there exists an

i0 such that
i0

∑
i=1

pi ln
1
pi

> h. Then, however,
i0

∑
i=1

pni ln
1

pni
> h for sufficiently large n, which yields

a contradiction.

To prove convergence in `1, we estimate ‖pn − p‖1 =
∞

∑
i=1
|pni − pi|. Let ε > 0. Since

∞

∑
i=1

pi = 1,

we can find an i0 such that
∞

∑
i=i0+1

pi <
ε

6
. Due to the component-wise convergence, for sufficiently

large n we have
i0

∑
i=1
|pni − pi| <

ε

6
. For such n we also have

∞

∑
i=i0+1

pni <
ε

3
since
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i0

∑
i=1
|pni − pi| <

ε

6
⇒

∣∣∣∣∣ i0

∑
i=1

(pni − pi)

∣∣∣∣∣ < ε

6

⇒
i0

∑
i=1

pni >
i0

∑
i=1

pi −
ε

6
> 1− ε

3

⇒
∞

∑
i=i0+1

pni <
ε

3
.

Thus we have

∞

∑
i=1
|pni − pi| =

i0

∑
i=1
|pni − pi|+

∞

∑
i=i0+1

|pni − pi|

<
ε

6
+

∞

∑
i=i0+1

|pni|+
∞

∑
i=i0+1

|pi|

<
ε

6
+

ε

3
+

ε

6
< ε.

Hence we have convergence in `1. This proves the lemma.

Example 1. Note that the subset of Xh consisting of all those vectors whose entropy is exactly h is not compact.

Let us demonstrate this fact, say, for h = ln 2. We choose pn = (xn,
1− xn

n
,

1− xn

n
,

1− xn

n
, . . . ,

1− xn

n︸ ︷︷ ︸
n times

),

n ≥ 3, where xn will be defined momentarily. For arbitrary fixed n ≥ 3, put:

fn(x) = −x ln x− (1− x) ln
1− x

n
, 0 ≤ x ≤ 1.

We claim that there exists a unique solution xn to the equation fn(x) = ln 2. Indeed, this follows readily
from the fact that fn(x) is concave and fn(1) = 0 < ln 2 < ln n = fn(0). Denoting tn = 1− xn, we have

−(1− tn) ln (1− tn)− tn ln tn + tn ln n = ln 2.

Hence

tn =
1

ln n
(ln 2 + tn ln tn + (1− tn) ln (1− tn)) ≤

ln 2
ln n

,

so that

xn ≥ 1− ln 2
ln n

, n ≥ 3,

and in particular xn −→n→∞
1. Thus, pn −→n→∞

(1, 0, 0, 0, . . .) while H(pn) = ln 2 and H((1, 0, 0, 0, . . .)) = 0,
which completes the example.

For arbitrary fixed t, the quantity EUt assigns to each point in Xh a real number. We will denote
this function by EUt.

Lemma 2. The mapping EUt: Xh −→ R is Lipschitz with constant 1 with respect to the `1 metric.

Proof of Lemma 2. Consider the function f : [0, 1] −→ R given by f (x) = x(1− x)t , 0 ≤ x ≤ 1. Let
M be the Lipschitz constant for f (x). According to Lemma 7 from [4], the candidates for assuming
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the maximum of | f ′(x)| are the points x1 = 0 and x2 = 2
1+t . Now | f ′(x1)| = 1 and | f ′(x2)| =

(1− 2
1+t )

t−1 ≤ 1. Hence the Lipschitz constant for f (x) is 1. It follows that if p, p′ ∈ Xh, then:∣∣∣∣∣ ∞

∑
i=1

pi(1− pi)
t −

∞

∑
i=1

p′i(1− p′i)
t

∣∣∣∣∣ =

∣∣∣∣∣ ∞

∑
i=1

(
pi(1− pi)

t − p′i(1− p′i)
t)∣∣∣∣∣

≤
∞

∑
i=1

∣∣pi − p′i
∣∣ .

Proof of Theorem 2.

(i) Follows from Lemma 1 and Lemma 2.
(ii) Suppose that p = (p1, p2, . . .) does not have a finite support. Then, we can find an n0 such

that the first n0 entries p1, p2, . . . , pn0 of p assume more than four different values. Put p̃ =

(p1, p2, . . . , pn0) and let c = p1 + p2 + . . . + pn0 and h̃ = H(p̃). Consider the optimization
problem

max
p

n0

∑
i=1

pi(1− pi)
t (9)

subject to

n0

∑
i=1

pi ln
1
pi
≤ h̃, (10)

n0

∑
i=1

pi = c. (11)

Theorem 1 is still applicable to (9)–(11) with a minor variation. In the beginning of the proof,
replace the Lagrangian by

L(p, λ1, λ2) =
n

∑
i=1

pi(1− pi)
t + λ1

(
n

∑
i=1

pi − c

)
+ λ2

(
n

∑
i=1

pi ln
1
pi
− h̃

)

and proceed as previously. Since p ∈ Xh maximizes EUt, the vector p̃ is a global optimum of this
finite-dimensional problem. By Theorem 1, p̃ cannot assume more than four distinct values.

Proof of Theorem 3. For 0 < x < 1 :

ln(1− x) = −x− x2

2
− . . .− x2t−1

2t− 1
− . . .

< −x− x2

2
− . . .− x2t−1

2t− 1

=

(
−x− x2t−1

2t− 1

)
+ . . . +

(
− xt−k

t− k
− xt+k

t + k

)
(12)

+ . . . +
(
− xt−1

t− 1
− xt+1

t + 1

)
− xt

t
.

For each term on the right-hand side of (12) and for 1 ≤ k ≤ t− 1, we have

− xt−k

t− k
− xt+k

t + k
< − xt

t− k
− xt

t + k
.
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Indeed,

− xt−k

t− k
− xt+k

t + k
+

xt

t− k
+

xt

t + k
= −xt−k(1− xk)(

1
t− k

− xk

t + k
) < 0.

This gives us

−x− x2

2
− . . .− x2t−1

2t− 1
− . . . < −xt − xt

2
− . . .− xt

t
− . . .− xt

2t− 1
< −xtH2t−1.

Hence
ln p < −(1− p)tH2t−1,

and therefore

(1− p)t < − ln p
H2t−1

.

Finally,

EUt =
∞

∑
i=1

pi(1− pi)
t ≤ h

H2t−1
.

Proof of Theorem 4. Let t > 1 be an integer and α > 1. Define p by:

p1 = p2 = . . . = pt =
h√

αt ln t
, pt+1 = 1− h√

α ln t
.

For such t:

EpUt =

(
1− h√

α ln t

)(
h√

α ln t

)t
+

h√
α ln t

(
1− h√

αt ln t

)t

≥ h√
α ln t

(
1− h√

αt ln t

)t
.

Now: (
1− h√

αt ln t

)t
=

((
1− h√

αt ln t

)t ln t
)1/ ln t

−→
t→∞

(e−h/
√

α)0 = 1.

Proof of Proposition 2. Let P be the random variable assigning to each atom i ∈ S its probability:

P(i) = pi, i ∈ S.

Denote I = − ln P. Then:

EU1 = ∑
i∈S

pi(1− pi) = E[1− P] = E[1− e−I ].

The function f (x) = 1− e−x is concave, so by Jensen’s inequality:
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EU1 = E[1− e−I ]

≤ 1− e−E[I]

= 1− e−E[− ln P]

= 1− e∑i∈S pi ln pi

= 1− e−h.

Remark 2. If h = ln k for some positive integer k, then the bound is attained for the uniform distribution on a
space of k points.

Proof of Proposition 3. First, in the case where h = ln k we have a unique optimal solution, which is

p∗1 = p∗2 = . . . = p∗n−k = 0 < p∗n−k+1 = p∗n−k+2 = . . . = p∗n =
1
k

. It is straightforward to check that
p∗ is feasible and attains the upper bound in Proposition 2, and is optimal. Moreover, p∗ is unique
because any feasible non-uniform choice of p∗ leads to a strict inequality in Jensen’s inequality that
was used in Proposition 2.

Thus, we deal with the case of strict inequalities, ln(k − 1) < h < ln k. We start by showing
that any optimal solution (p∗1 , p∗2 , . . . , p∗n) assumes at most two non-zero distinct values. Write down
the Lagrangian:

L(p1, p2, . . . , pn, λ1, λ2) =
n

∑
i=1

pi(1− pi) + λ1

(
n

∑
i=1

pi − 1

)
+ λ2

(
n

∑
i=1

pi ln
1
pi
− h

)
.

The first-order conditions yield, at any optimal point,

∂L
∂pi

= 1− 2pi + λ1 − λ2 (ln pi + 1) = 0,

for every i with p∗i > 0. Define the function f by f (x) = 1− 2x + λ1 − λ2 − λ2 ln x. The function

vanishes at most twice in (0, 1) because its derivative f ′(x) = −2− λ2

x
vanishes at most once. Thus,

the non-zero p∗i s assume at most two distinct values. In fact, if all were equal, we would have k = ln k,
where k is the number of non-zero p∗i s, so that we would have exactly two distinct values for the p∗i s.
Disposing of the points of mass 0, we may assume that all n points of S have positive mass. Denote the
number of “light” atoms by `. We will show that EU1 decreases as we increase `. Denote the mass of a
“light” atom by p and write down the entropy constraint with ` “light” atoms and n− ` “heavy” ones:

−`p ln p− (1− `p) ln
(

1− `p
n− `

)
= h.

Now, define the function F(`, p) by:

F(`, p) = −`p ln p− (1− `p) ln
(

1− `p
n− `

)
− h.

Note that we treat ` as a continuous variable. The equation F(`, p) = 0 implicitly defines the

function p(`). Using the implicit function theorem, we can write an analytic expression for
dp
d`

:

dp
d`

= − p(`)
`

+

1− `p(`)
n− `

− p(`)

`

[
ln
(

1− `p(`)
n− `

)
− ln p(`)

] .

Now write down EU1 as a function of ` and take the derivative with respect to `:
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EU1 = `p(`)(1− p(`)) + (1− `p(`))
(

1− 1− `p(`)
n− `

)
.

dEU1

d`
=

(
p(`) + `p′)(`

)
(1− p(`))− `p(`)p′(`)

−
(

p(`) + `p′(`)
) (

1− 1− `p(`)
n− `

)
− (1− `p(`))

(n− `)2

(
−np(`)− n`p′(`) + `2 p′(`) + 1

)
. (13)

Notice that the term
1− `p(`)

n− `
is actually the mass of the “heavy” atom, so to simplify notation

we put q(`) =
1− `p(`)

n− `
. Substituting the expression for

dp
d`

, we obtain:

∂EU1

∂`
= (q(`)− p(`))2

 2

ln q(`)
p(`)

− 2p(`)
q(`)− p(`)

− 1


= (q(`)− p(`))2

 2

ln q(`)
p(`)

− 2
q(`)
p(`) − 1

− 1

 . (14)

To show that EU1 decreases as we increase `, it is enough to check that ∂EU1
∂` < 0. It suffices

to work out the second term in the product of (14). Using the change of variables y = q(`)
p(`) − 1, we

may write:

2

ln q(`)
p(`)

− 2
q(`)
p(`) − 1

− 1 =
2

ln (1 + y)
− 2

y
− 1.

It is straightforward to check that 2
ln(1+y) −

2
y − 1 ≤ 0:

2
ln (1 + y)

− 2
y
− 1 =

2y− 2 ln (1 + y)− y ln (1 + y)
y ln (1 + y)

.

Notice that y ln (1+ y) > 0, and hence it is enough to check that the numerator is negative. Indeed,

[2y− 2 ln (1+ y)− y ln (1+ y)]y=0 = 0

and
d

dy

[
2y− 2 ln (1+ y)− y ln (1+ y)

]
=

y
1+ y

− ln (1+ y) .

Now [ y
1+y − ln (1+ y)]y=0 = 0 and d

dy

[
y

1+y − ln (1+ y)
]
= 1

(1+y)2 − 1
1+y < 0. Thus, ∂EU1

∂` < 0.

It follows that ` should be as small as possible, which means (since there is at least one light atom)
that ` = 1. Finally, as there is one light atom and n− 1 heavy ones, the entropy h lies in the interval
(ln(n− 1), ln n). Reverting to the original notations, we have ln(k− 1) < h < ln k.

Proof of Proposition 4. We use the following refinement of Jensen’s inequality [11]: For any random
variable X and concave function φ,

φ(E (X))−E (φ(X)) ≥
∣∣∣∣∣E(∣∣∣φ(X)− φ(E (X))

∣∣∣)− ∣∣∣φ′+(E (X))
∣∣∣ ·E(∣∣∣X−E (X)

∣∣∣)∣∣∣∣∣, (15)
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where φ
′
+ denotes the right-hand derivative of φ. For I = − ln P and φ(x) = 1− e−x, the left-hand side

of (15) is
φ(E[I])−E[φ(I)] = 1− e−h −EU1.

The right-hand side of (15) gives:∣∣∣∣∣E(∣∣∣φ(I)− φ(E[I])
∣∣∣)− ∣∣∣φ′+(E[I])∣∣∣ ·E(∣∣∣I − E[I]

∣∣∣)∣∣∣∣∣
=

∣∣∣∣∣E(∣∣∣1− e−I −
(

1− e−h
)∣∣∣)− e−hE

(∣∣∣− ln P− h
∣∣∣)∣∣∣∣∣

=

∣∣∣∣∣p · ∣∣∣e−h − p
∣∣∣+ (n− 1) q ·

∣∣∣e−h − q
∣∣∣

−e−h
(

p ·
∣∣∣− ln p− h

∣∣∣+ (n− 1) q ·
∣∣∣− ln q− h

∣∣∣)∣∣∣∣∣
=

∣∣∣∣∣p(e−h − p
)
− (n− 1) q

(
e−h − q

)
−e−h

(
p (− ln p− h)− (n− 1) q (− ln q− h)

)∣∣∣∣∣
=

∣∣∣∣∣pe−h − p2 − (n− 1) qe−h + (n− 1) q2 − e−h
(
−2p ln p− h− 2ph + h

)∣∣∣∣∣
=

∣∣∣∣∣e−h
(

2p− 1+ 2p ln p + 2ph
)
+ (n− 1) q2 − p2

∣∣∣∣∣.
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