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Abstract: In this paper, the use of the MaxInf Principle in real optimization problems is
investigated for engineering applications, where the current design solution is actually an engineering
approximation. In industrial manufacturing, multibody system simulations can be used to develop
new machines and mechanisms by using virtual prototyping, where an axiomatic design can be
employed to analyze the independence of elements and the complexity of connections forming
a general mechanical system. In the classic theories of Fisher and Wiener-Shannon, the idea of
information is a measure of only probabilistic and repetitive events. However, this idea is broader than
the probability alone field. Thus, the Wiener-Shannon’s axioms can be extended to non-probabilistic
events and it is possible to introduce a theory of information for non-repetitive events as a measure
of the reliability of data for complex mechanical systems. To this end, one can devise engineering
solutions consistent with the values of the design constraints analyzing the complexity of the relation
matrix and using the idea of information in the metric space. The final solution gives the entropic
measure of epistemic uncertainties which can be used in multibody system models, analyzed with an
axiomatic design.

Keywords: axiomatic design; axioms; information; non-probabilistic entropy; Arrow’s impossibility
theorem; multibody systems

1. Introduction

Multibody systems represent a special class of mechanical systems made of rigid and/or flexible
bodies, mutually interconnected by joint constraints, and subjected to external force fields [1–10].
Several examples of such complex systems can be found in industrial engineering applications [11–20].
The complexity of the dynamic behavior of such constrained mechanical systems requires the
development of advanced analysis and modelling tools for performing virtual prototyping in
a multibody framework [21–28]. The design solutions employed in industrial applications are
engineering approximations based on technical as well as economic constraints, and are usually
obtained by using the ability and the experience of the designers. Considering the optimization
problem for the design of a general mechanical system, the interdependencies of the connections
between the elements that form the systems can be analyzed employing an axiomatic design. For this
purpose, a method based on Wiener-Shannon’s axioms theory can be used. Appling a theory of
information for non-repetitive events as a measure of the reliability of data, Wiener-Shannon’s axioms
can be extended to non-probabilistic events involving complex mechanical systems. By doing so,
engineering solutions consistent with the design constraints can be obtained. Analyzing the complexity
of the relation matrix and using the idea of information in the metric space, the resulting solution
gives the entropic measure of epistemic uncertainties. In this paper, the application of the MaxInf
Principle in real optimization problems is investigated and the measure of epistemic uncertainties is
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employed in the design process of multibody system models analyzed within the framework of the
axiomatic design.

Uncertainties in design are known in different forms. The two major categories are the aleatory
uncertainty and the epistemic uncertainty. The aleatory uncertainties can be taken into account using
the probability theory. The epistemic uncertainty can be taken into account incorporating uncertainty
in design analysis. In multibody system simulations, axiomatic design can be used for qualitative
analysis and the quantification of model uncertainty. In general, the design process gives the structure
necessary for the transformation of the qualitative needs, often stated in non-engineering terms, into
the real products. In the simulation of real problems, the different source of data can exhibit a high level
of error and, consequently, the final result cannot be considered as satisfactory. This transformation
is achieved through the application of scientific knowledge to the problems. Using previous design
databases, the design process generates several alternatives to be frequently evaluated. Usually, the
design process is divided into a series of phases with given specifics. Evaluations are needed to make
educated choices between these phases. Each evaluation determines whether the phase needs to be
repeated, or if the designer needs to go back to one or more phases.

In the axiomatic design of highly complex cases, the process optimizes elements using a set {FR_i}
of functional requirements and a set {DP_j} of physical parameters. The axiomatic method can also be
used for the optimal design of rigid-flexible multibody systems based on new formulation strategies.

In axiomatic designs, the transformation of needs into functional requirements are given by the
following matrix:

[A] =

 ∂FR1/∂DP1 · · · ∂FR1/∂DPj
...

. . .
...

∂FRi/∂DP1 · · · ∂FRi/∂DPj

 (1)

The structure of the matrix [A] gives the epistemic uncertainty. While the aleatory variability is
the natural randomness in a process, the epistemic uncertainty is the scientific uncertainty in the model
of the process. The epistemic uncertainty is due to limited data or poor knowledge. In the axiomatic
design method, the scheme process optimizes elements using a set {FRi} of functional requirements and
a set {DPj} of physical parameters. To compare two design solutions on the basis of axiomatic design
postulates, one can compare the information content of the two designs which can satisfy the functional
parameters. The information content can be described by means of a mathematical framework similar
to Wiener-Shannon’s theory. When the number of DPs < FRs, then the DPs are insufficient to achieve
all of the FRs. Then, epistemic uncertainty is maximal. In this respect, the numerical simulation can
help to reduce the model uncertainties. The multibody system simulations are a great help in the
product development and can be used to evaluate the safety and human-machine interaction as well
as the alternative solutions.

In axiomatic designs, there are two axioms that could help to achieve a good design. The relation
of {FR_i} with {DP_j} is mathematically expressed as:

FR_i = f(DP_j) (2)

The design process is reduced to a series of mappings from the design’s functional requirements
into the design’s parameter space. The mapping process between the domains is repeated several times,
so that the previous design parameters determine the next set of functional requirements. The domains
are defined by the vectors:

{FR} = vector of functional domain
{DP} = vector of physical domain
{PV} = vector of process domain
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In the classical design before of the introduction of the axiomatic design approach, there was a
unique domain. In this latter approach, we are able to find all the information. In Figure 1, one can see
the transformation steps from the traditional design and the axiomatic design.Entropy 2017, 19, 291 3 of 10 
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Figure 2. Information steps.

The relation between these two domains in matrix notation can be written as:

{FR} = [A]{DP} (3)

{DP} = [B]{PV} (4)

where [A] and [B] are the design matrices. In the problems in which the {FR_i} depend on non-linear
functions, Equation (2) can be written in the following differential form:

{dFR} = [A]{dDP} (5)
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The elements of design matrix [A] can be written as Aij =
∂FRi
∂DPj

and the design matrix is given by:

[A] =

 ∂FR1/∂DP1 · · · ∂FR1/∂DPj
...

. . .
...

∂FRi/∂DP1 · · · ∂FRi/∂DPj

 (6)

A small change in a parameter may cause a deviation in the functional requirement given by:

∆FRi =
∂FRi

∂DPj
∆DPj (7)

In linear design, Aij = ∂FRi/∂DPj are constants. Therefore, one has:

FRi = ∑n
i=1 AijDPj (8)

In Equation (2), the diagonal matrix is a special case. The design matrix [A], in general, is a
rectangular array of values. In the axiomatic design, two axioms are used on functional requirement,
in order to examine the actions of planning. The axioms are:

Axiom 1: The independence axiom. Maintain the independence of functional requirement.

Axiom 2: The information axiom. Minimize the information content of the design.

The first axiom states that the independence of functional set {FR_i} must be always maintained.
The information axiom states that the best design has the minimum information and the minimum of
functional requirements. To compare two designs, one can compare the information content of the
two designs that can satisfy the functional parameters. The information content can be described by
Wiener-Shannon’s theory.

The elements of a design matrix [A] can be either constants or functions, so that the design may
be non-linear. Although mathematical techniques can transform a matrix, the physical significance of
the elements Aij can be lost. An ideal design matrix is a square diagonal matrix with each FR related
one-to-one to a single DP. The uncoupled tolerance for a DPi is ∆DPi = ∆FRi/Aii. The propagation
of tolerance for a decoupled design with a lower triangular matrix n × n, is expressed as

∆DP∗i =
∆FRi −∑n

j=1
∣∣Aij∆DPj

∣∣
Aii

(9)

From Equation (9), it is evident that ∆DPi ≥ ∆DP∗i . The consequence of this is that a decoupled
design has less tolerance than an uncoupled design, and the increase of the order of design matrix
makes the tolerance of the last DPi smaller. If the number of s DPs is greater than the number of s
FRs, then the design is redundant. When the number of DPs is less than the number of FRs , then
the coupled design cannot be satisfied. Supposing that there is a set of three {FRs} and a set of two
{DP1, DP2}, then the equation in matrix notation is:

FR1

FR2

FR3

 =

 A11 A12

A21 A22

A31 A32

{ DP1

DP2
} (10)

In this equation, FR3 cannot be always satisfied. Equation (10) can be written as:

FR1 = A11DP1 + A12DP2

FR2 = A21DP1 + A22DP2

FR3 = A31DP1 + A32DP2

(11)
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It is not possible to have a solution of system (11) without making changes to
functional requirements.

2. Classical Design

The main difficulty is understanding what information can be ignored or rejected by the designer.
The design steps can be described by the following system:

Dm =
{

data d

∣∣∣∣∣d =
verify the design statement

at step mth

}
(12)

For example, D evolves from N to P, as described in Figure 3.
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Figure 3. Classical design.

In N, there is general information and unclassified information, whereas in P there is accurate
information, classified, and quantified information. An existence condition of the project is that:

Dn ⊃ Dm ∀m < n (13)

The criteria initially set (they are present in D) are used by the evaluator to examine the
relationships between Dm and Dn. The greater the power of the set Dn, the greater the possibility that
the existence condition is verified, as shown in Figure 4.
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3. Non-Probabilistic Information in Metric Space

The idea of information, according to the theories of Fisher and Wiener-Shannon, is a measure of
only probabilistic and repetitive events. When the idea of information is broader than the probability
and the axioms of Wiener-Shannon, it can be extended to non-probabilistic and repetitive events
“Wiener (1948)”.

Using the information axioms, it is possible to develop models for information that can be very
useful in applications. For every event A ∈ D, it is possible to have a measure of information using the
mathematical expression:

J(A) =
1

d(A)
(14)

This definition of information has a natural application in metric space [29]. Norbert Wiener in
Cybernetics gives the clearest definition of entropy [30]: “We may conceive this in the following way:
we know a priori that a variable lies between 0 and 1, and that a posteriori it lies on the interval (a,b)
inside (0,1) Then, the amount of information we have from our a posteriori knowledge is [as follows]”:

− log2
measure of (a, b)
measure of (0, 1)

(15)

The information can be evaluated by the probability and by the non-probabilistic measures of
diameters. Thus, it is possible to have the measure of the information from non-probabilistic data.
In non-probabilistic information, instead of probability, it is possible to utilize a finite number of
appropriate proportions subject to a set of constraints that add up to one [31,32]. In observance of the
axioms, let d1, d2,..., dn be non-negative real numbers, let:

n
∑

i=1
di 6= 0 ρi =

di
d1+d2+...+dn

n
∑

i=1
ρi = 1 ρi ≥ 0 ∀i

(16)

It is possible to use the measure of information by the relation:

J(ρ) = J(ρ1, ρ2, . . . .., ρn) = −
n

∑
i=1

ρi ln ρ1 (17)

So that: J(ρ) is maximum when ρ1 = ρ2 = . . . .. = ρn, and J(ρ) is minimum when: ∀i only one
number is 6= zero.

4. Entropic Analysis of Matrix

In the probabilistic approach, if we analyze our project, we have to use the probability of success.
If we have the following uncoupled design:

{ FR1

FR2

}
=

[
A11 0

0 A22

]{ DP1

DP2

}
(18)

Suppose p is the probability of satisfying FRi with DPi, then p1 and p2 are the probabilities of
satisfying FR1 and FR2 with DP1 and DP2, respectively. The probability to achieve a solution is:

p = p1p2 (19)

Now let us consider the problem of choice among the three possible pairs of solutions in a design.
In the simple case of a choice between two solutions, it is assumed that designers select the one,
between two possible choices, that has the highest score in their preferences, even if their number
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of choices may be different from the two choices under consideration. In a choice between three
solutions, say A, B, and C, we can proceed as follows: if the first group of designers would choose
solution A, the second group would also prefer solution A and the third group would prefer solution
B, then the three-choice problem concerning solution A would win two-thirds of the ballot and we
could say that solution A is the preferred solution with respect to solution B. Moreover, with respect
the choice between the solutions A, B, and C, we can have the impossibility of solution C, which
is expressed in mathematical terms as A > B > C > A. Kenneth Arrow mathematically proved
that there is no method for constructing the list of preferences starting from some arbitrary rules.
In other words, for establishing design preferences, some precise rules of design are needed. Thus,
the proper implementation of a project requires some precise priorities. Their lacking may induce
some new uncertainty, which is highlighted by Arrow’s theorem. In order to simplify the analysis of
the relationships between elements of the array, in this paper we do not analyze Arrow’s constraints
between elements. In particular, we assume that the order and the solution of the constraints do not
have any influence on the final result. Moreover, we skip the analysis of the entropy, which, instead,
is considered in Arrow’s theorem. If we have a coupled design with the FRs/FRj, then we have a
complexity with a probability of solution.

FR1

FR2

FR3

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33




DP1

DP2

DP3

 (20)

We can have the following conditioning:

(FR3/FR1); (FR3/FR2); (FR2/FR1); (FR3 ∪ FR2/FR1); (FR3 ∪ FR1/FR2);

(FR1 ∪ FR2/FR3)
(21)

For example, a vector with three elements can have six conditionings: 3! = 3× 2× 1 = 6. In this
case, we can have the conditional complexity:

Wc =
only FRdependent

j

all FRpossible dependent
i

=

(
∑

j=m
j=1 j

)
dep.(

∑i=n
i=1 i

)
poss. dep.

=
m
n!

(22)

For matrix [A] we can write the same relation as follows:

Wc =
∑n

i {g}i
n!

(23)

with {g}i as a set of conditional elements of the matrix. From the Wiener theorem, one has that the
non-normalized “a priori” set is n! and the “a posteriori” set that lies in the a priori set is ∑n

i {g}i.

Therefore, the information is − log2
∑n

i {g}i
n! . At this point, we can introduce the entropy and we can

speak of entropic complexity:

EC = − log2(1−Wc) = − log2

(
1− ∑n

i {g}i
n!

)
(24)

5. Numerical Example

If one has in the relation that:

p3 is the probability of satisfying FR3 with DP3

p2 is the probability of satisfying FR2 with DP2
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and in the vector [FR1, FR2, FR3]
−1 the conditioned relation (FR3/FR2), then we have the entropic

complexity (20) p = p3p2. The conditional complexity (19) will be:

Wc =
[(FR3/FR2)] (FR3/FR1); (FR3/FR2); (FR2/FR1);

(FR3 ∪ FR2/FR1); (FR3 ∪ FR1/FR2);
(FR1 ∪ FR2/FR3)


=

1
6

(25)

The entropic stochastic complexity is:

EC = − log2(1− 1/6) = 0.26 bit (26)

EC is also a measure of epistemic uncertainties in a solution. The best solution is:
FR1

FR2

FR3

 =

 A11

A22

A33




DP1

DP2

DP3

 (27)

This solution has the minimum of epistemic uncertainties. If P is the total uncertainties, then the
epistemic uncertainty is Pepistemic = (Ptotal − Pstochastic).

6. Conclusions

The main goal of the research of the authors is the development of nonconventional methodologies
for the design and analysis of engineering solutions for complex mechanical systems [33–43]. In this
paper, stochastic and epistemic uncertainty were analyzed, extending Wiener-Shannon’s information
theory to non-probabilistic events by introducing the theory of information for non-repetitive events
as a measure of data consistency. By analyzing the relation of elements of the relation matrix and
by using the concept of information in metric space, the idea of measuring the complexity and the
epistemic uncertainties was introduced and the entropy of independence of the matrix elements was
defined. With this new definition in a design matrix and with the assumption that the order and the
solution of the system constraints do not change the final result, one can have two kinds of entropy
which are, respectively, probabilistic Shannon-Wiener Entropy and non-probabilistic Shannon-Wiener
Entropy. The final solution yields the entropic measure of epistemic uncertainties in multibody system
models analyzed using an axiomatic design.
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