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Abstract: Untreated paediatric obstructive sleep apnoea syndrome (OSAS) can severely affect the
development and quality of life of children. In-hospital polysomnography (PSG) is the gold standard
for a definitive diagnosis though it is relatively unavailable and particularly intrusive. Nocturnal
portable oximetry has emerged as a reliable technique for OSAS screening. Nevertheless, additional
evidences are demanded. Our study is aimed at assessing the usefulness of multiscale entropy (MSE)
to characterise oximetric recordings. We hypothesise that MSE could provide relevant information of
blood oxygen saturation (SpO2) dynamics in the detection of childhood OSAS. In order to achieve this
goal, a dataset composed of unattended SpO2 recordings from 50 children showing clinical suspicion
of OSAS was analysed. SpO2 was parameterised by means of MSE and conventional oximetric indices.
An optimum feature subset composed of five MSE-derived features and four conventional clinical
indices were obtained using automated bidirectional stepwise feature selection. Logistic regression
(LR) was used for classification. Our optimum LR model reached 83.5% accuracy (84.5% sensitivity
and 83.0% specificity). Our results suggest that MSE provides relevant information from oximetry
that is complementary to conventional approaches. Therefore, MSE may be useful to improve the
diagnostic ability of unattended oximetry as a simplified screening test for childhood OSAS.

Keywords: paediatric obstructive sleep apnoea syndrome; unattended oximetry; multiscale entropy;
automated pattern recognition

1. Introduction

Paediatric obstructive sleep apnoea syndrome (OSAS) is a sleep-related breathing disorder
characterised by intermittent and repetitive episodes of partial or complete collapse of the child’s
upper airway while sleeping [1]. Recurrent apnoeic events lead to gas exchange abnormalities and
sleep disruption [2], which may cause major long-term adverse consequences in several body systems,
such as neuropsychological and cognitive deficits, cardiovascular and metabolic dysfunction, and
growth impairment [1–3]. Consequently, this condition severely affects health, development and
quality of life of infants and young children [4]. In addition, untreated OSAS increases healthcare
utilization and associated costs [5]. Therefore, early detection is essential in order to initiate treatment.
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In this regard, a recent report of the American Academy of Paediatrics re-emphasised the need for
OSAS screening in every habitually snoring child [2].

The prevalence of OSAS is estimated to range 1% to 5% of children in the general paediatric
population [2]. Despite its major negative consequences, childhood OSAS is considered a relatively
under-diagnosed condition [6]. Overnight polysomnography (PSG) in a supervised sleep laboratory
is the gold standard technique for a definitive diagnosis [2,4]. One of the most important factors
responsible for this under-diagnosis is the limited availability of paediatric sleep units in most
countries [4,7]. An additional major limitation is the intrusiveness of PSG for children, who showed
high aversion to spend the whole night in the sleep unit with several sensors attached [4,8]. These
drawbacks limit the effectiveness of conventional PSG as a screening technique for OSAS in every
symptomatic child as suggested by the international medical community. Therefore, during the last
decade, it has emerged a great demand for novel and simplified screening tools for the disease [9–11].

In the context of simplified alternatives to PSG, attended respiratory polygraphy (RP) has become
a reliable method for OSAS detection in clinical settings [11–13]. In addition, unattended RP at
home has been recently proposed as a feasible approach in low resource settings when in-lab PSG is
not available [10,11]. Nevertheless, RP, which measures airflow (thermistor and/or nasal pressure),
respiratory movements (chest and abdominal effort), body position, pulse rate and blood oxygen
saturation (SpO2), also manage several sensors, being still potentially intrusive for infants and young
children. In this regard, recording of single-channel SpO2 from overnight oximetry has been also
proposed as a highly simple as well as effective screening technique for paediatric OSAS due to its
suitability for children [10,14,15]. Moreover, automated processing of oximetric recordings has been
proposed to enhance the diagnostic performance of overnight oximetry as a single screening test for
childhood OSAS [16–19].

Several automated signal processing methods have been applied during the last years to
parameterise changes in the overnight SpO2 profile due to apnoeic events. Previous studies in
the framework of paediatric OSAS detection by means of oximetry assessed conventional desaturation
indexes [16–21], common statistics in the time domain [16,17,19], spectral features in the frequency
domain [16,19] and nonlinear measures [16,19]. Among these complementary approaches, nonlinear
methods have been marginally explored. Approximate entropy (ApEn) [22], sample entropy
(SampEn) [23], central tendency measure [24], and Lempel–Ziv complexity [25] have demonstrated
their usefulness to characterise desaturations linked to apnoeic events both in adults [26–32] and
children [16,19]. Nevertheless, we hypothesise that different nonlinear metrics could gain insight into
the dynamics of oximetry leading to additional and essential information. Furthermore, common
apnoeic events in children with OSAS lead to slight fluctuations in SpO2 recordings compared with
deeper desaturations commonly present in adult patients. Consequently, screening for paediatric
OSAS using only information from nocturnal oximetry is more challenging and thus more powerful
methods are needed to thoroughly characterise all the changes linked with the disease. In the present
paper, we propose the multiscale entropy (MSE) as a method able to exhaustively inspect nonlinear
dynamics of SpO2 recordings.

MSE is a nonlinear measure of complexity previously applied in different medical frameworks
to quantify entropy changes in biomedical recordings over time scales [33]. In this regard, MSE
has demonstrated to be useful to characterise differences in the heart rate dynamics due to age [33],
obesity [34] and cardiac disease [35] or to analyse human gait [36], as well as to quantify changes
in the complexity of the electroencephalogram (EEG) background activity in Alzheimer’s disease
patients [37] and EEG changes due to pharmacological intervention in schizophrenia [38]. Similarly,
MSE has been applied to cerebral oxygenation signals from infrared spectroscopy in order to study
mortality and brain injury in preterm infants [39]. In the context of OSAS, MSE has been recently
used to analyse heart rate dynamics in adult patients. Particularly, in the study by Pan et al. [40], MSE
was applied to estimate the deterioration in autonomic and vascular regulatory function linked with
increasing OSAS severity and the subsequent improvement after continuous positive airway pressure
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treatment. Similarly, MSE has demonstrated to be useful in the analysis of speech signals in order to
quantify disorderliness in vocal patterns indicative of sleep apnoea [41]. In a previous study by our
group [42], MSE was also applied to characterise the dynamics of heart rate variability time series in
order to derive new patterns able to detect adult OSAS.

The aim of this study was two-fold: (i) firstly, to accomplish a comprehensive analysis of oximetry
dynamics by means of MSE in order to characterise differences between non-OSAS children and
paediatric patients suffering from the disease; (ii) and second, to assess the usefulness of MSE-derived
features in order to compose an optimum model from unattended oximetry able to accurately screen
for paediatric OSAS at home.

2. Methodology

2.1. Dataset and Sleep Studies

The population under study was composed of 50 children referred to the Respiratory Sleep
Disorders Unit of the University Hospital of Burgos (Spain). All children showed common symptoms
linked with clinical suspicion of OSAS, i.e., habitual snoring and/or witnessed breathing pauses during
sleep reported by their parents or caretakers. According to our recruitment protocol, children referred
to the sleep unit were randomly selected to participate in the study in order to avoid potential bias
linked with the inclusion process. In addition, children suffering from serious chronic medical and/or
psychiatric additional conditions, those showing symptoms indicative of sleep disorders other than
OSAS, and those children who required urgent interventions were excluded. Sleep studies consisted
of unsupervised RP at children’s home and a subsequent in-hospital PSG. Table 1 summarises the
socio-demographic and clinical features of the dataset. The Ethical Review Committee of the hospital
approved the protocol (#CEIC 936) and informed consent to participate in the study was obtained
from all caretakers prior to the enrolment.

Table 1. Demographic, anthropometric, polysomnographic, and oximetric characteristics of the
paediatric population under study using a cut-off of 3 events/h for positive OSAS.

All Children OSAS-Negative OSAS-Positive p-Value

No. Subjects (%) 50 24 (48.0%) 26 (52.0%) -
Age (years) 4 [4, 6] 4.5 [4, 6] 4 [4, 6] N.S.

No. Males (n) 27 (54.0%) 11 (45.8%) 16 (61.5%) N.S.
BMI (kg/m2) 16.42 [15.00, 17.53] 16.42 [15.61, 17.42] 16.38 [14.57, 17.70] N.S.

OAHI (events/h) 3.56 [1.21, 17.28] 1.18 [0.54, 1.87] 15.88 [6.72, 23.49] <<0.05
Recording time (h) 9.05 [8.40, 9.27] 9.0 [8.74, 9.22] 9.08 [8.28, 9.56] N.S.
ODI3 (events/h) 1.89 [5.19] 0.87 [1.48] 5.90 [7.26] <<0.05

SatMIN (%) 90 [4] 91 [2] 89 [3] <0.05
SatAVG (%) 97 [2] 97 [1] 97 [2] N.S.
CT95 (%) 0.82 [3.00] 0.36 [1.10] 1.62 [6.61] <0.05

OSAS: obstructive sleep apnoea syndrome; BMI: body mass index; OAHI: obstructive apnoea–hypopnoea index;
ODI3: oxygen desaturation index of 3%; SatMIN: minimum SpO2 during the whole recording; SatAVG: average
SpO2 during the whole recording; CT95: percentage of time with a SpO2 below 95%; N.S.: non-significant statistical
differences (p > 0.05)

According to the American Academy of Sleep Medicine (AASM), in-lab PSG was used as
gold standard for a definitive diagnosis of paediatric OSAS [43]. In-lab supervised PSG was
conducted from 22:00 to 08:00 using a digital polysomnograph Deltamed Coherence® 3NT version 3.0
(Diagniscan, S.A.U., Group Werfen, Paris, France). The following signals were recorded and
stored for subsequent manual scoring: EEG, right and left electrooculogram, tibia and submental
electromyogram, electrocardiogram, airflow (thermistor and nasal cannula), chest and abdominal
movements (effort bands), oximetry, continuous transcutaneous carbon dioxide (PtcCO2), snoring
and body position. The 2012 AASM rules for children were used to perform sleep staging and score
apnoeic events [43]: an obstructive apnoea was quantified when a drop in the peak signal excursion
≥90% from pre-event baseline of oronasal thermal sensor occurred during at least the duration
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of two breaths while maintaining the presence of respiratory effort throughout the entire period
of airflow cessation. On the other hand, hypopnoea was quantified when peak signal excursions
in the nasal pressure recording drop by ≥30% of pre-events baseline lasting at least two breaths,
accompanied by a desaturation ≥3% or an electroencephalographic arousal. After manual scoring, the
standard obstructive apnoea–hypopnoea index (OAHI) was computed, which measures the number
of obstructive apnoeas and hypopnoeas per hour of sleep. There is a great controversy regarding the
clinical cut-off used to confirm childhood OSAS [2,4,10,15]. In order to address this issue, a common
OAHI cut-off point of 3 events/h was used in the present study [11,18,19]. According to this clinical
threshold, a positive diagnosis was confirmed in 26 children (OSAS prevalence 52%). Table 1 shows
the clinical and oximetric characteristics for the OSAS-negative and the OSAS-positive groups.

Unattended RP was carried out at children’s home by means of a portable polygraphy equipment
(eXim Apnea Polygraph by Bitmed, Sibel S.A., Barcelona, Spain). Unsupervised SpO2 recordings
from RP were acquired using a high sampling rate of 100 Hz in order to assist with artefact rejection.
As suggested by the AASM, a pre-processing stage was implemented to remove artefacts due to
patient’s movements. Then, a non-overlapping time-averaging moving window of 1 s was applied,
which is lower than the maximum acceptable signal averaging time of 3 s recommended by the
AASM [44]. Every oximetric recording was downloaded as a single European Data Format (EDF) file
for subsequent automated processing by means of MSE. Figure 1 depicts representative at-home SpO2

portable recordings from our dataset. It is important to note that even the SpO2 overnight profile of
a child with moderate OSAS (OAHI ≥ 5 events/h) showed small fluctuations. Furthermore, all the
desaturations of the oximetric recording from a severe OSAS-positive patient (OAHI≥ 10 events/h) are
comprised in the range 90%–100%, making it difficult to search for differences between OSAS-negative
and OSAS-positive children just using the nocturnal oximetry profile.
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Figure 1. Representative nocturnal oximetric profiles for: (a) a children suspected of suffering from
OSAS with OAHI < 5 events/h; (b) an OSAS-positive patient with 5 ≤ OAHI < 10 events/h (moderate
OSAS); and (c) an OSAS-positive patient with OAHI ≥ 10 events/h (severe OSAS).

2.2. Automated Signal Processing

An automated signal processing scheme composed of three stages was accomplished. Firstly,
every oximetric recording was analysed by means of MSE. MSE curves were parameterised to
thoroughly characterise the complexity of overnight desaturations. In addition, conventional oximetric
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indexes were used to account for additional information linked with the number and the severity of
desaturations. After the feature extraction stage, an initial feature set composed of 21 variables was
built. Secondly, an automated feature selection stage was conducted to identify the optimum feature
subset composed of the most relevant as well as complementary variables. The widely known forward
stepwise logistic regression (FSLR) algorithm was used to accomplish feature selection [45]. Finally,
a binary logistic regression (LR) model aimed at discerning among OSAS-negative and OSAS-positive
children was composed using the optimum features.

2.2.1. Multiscale Entropy

MSE is a nonlinear method proposed by Costa et al. [46] aimed at quantifying the complexity of
a time series taking into account entropy changes along multiple time scales. As complex temporal
fluctuations are inherent to physiological dynamics, MSE is able to provide additional and useful
information that conventional entropy-based measures cannot. Despite its validated usefulness,
traditional single-scale entropies do not account for the a priori relevant information linked with the
dynamical structure of the signal on scales other than the shortest one [33,46]. In order to overcome
this issue, MSE estimates the entropy of consecutive coarse-grained versions of the original time series
so that each coarse-grained sequence characterises the system state on increasing time scales.

Regarding the algorithm proposed by Costa et al. [46], given a one-dimensional discrete time
series x(i) of length N (i = 1, . . . , N), the coarse-grained versions for a time scale factor τ are computed
as follows:

y(τ)(j) =
1
τ

jτ

∑
i=(j−1)τ+1

x(i), 1 ≤ j ≤ N
τ

(1)

For τ = 1, the sequence y(1) is really the original time series, whereas elements of each
coarse-grained sequence are the average of the original samples within non-overlapping segments of
length τ. Therefore, the length of each coarse-grained sequence is the original length N divided by the
scale factor τ. Accordingly, MSE analysis is performed by computing the single-scale entropy measure
for each coarse-grained time series plotted as a function of τ, from the original signal (τ = 1) to the
highest time scale [46].

Approximate entropy (ApEn) and sample entropy (SampEn) are commonly used as single-scale
entropy measures to compute MSE [36,42,46]. Similarly, both the Tsallis and the Rényi entropies have
been also proposed [34]. Nevertheless, the use of SampEn has several major advantages [23,33]: it is
less dependent of the sequence length so it can be applied to relatively short and noisy biomedical
recordings, and it shows relative consistency over a broader range of input model-dependent
parameters. In addition, SampEn reduces the bias caused by self-matching inherent to the ApEn
algorithm [23]. Therefore, SampEn was used in the present research.

Briefly, SampEn (m, r, N) is aimed at quantifying irregularity of one-dimensional time series,
assigning larger values to sequences showing larger degree of disorder, i.e., higher entropy [23].
SampEn is computed as follows [23]:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(2)

where Am and Bm are the average number of segments Xm(i) (1 ≤ i ≤ N − m + 1) of length m and m+1,
respectively, such that the distance between every pair of segments Xm(i) and Xm(j) is less than or equal
to a tolerance r according to the following equation:

d[Xm(i), Xm(j)] = max
k=0,...,m−1

(|x(i + k)− x(j + k)|), with 1 ≤ j ≤ N −m and j 6= i (3)

There is not a consensus to set the highest time scale in MSE analyses though it depends on
the problem under study, as well as on the characteristics of the signal and the single-scale measure
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of entropy [37,42]. In the present study, overnight oximetric recordings had a median duration of
9.05 h, i.e., ≈ 215 samples after pre-processing and time-averaging. As a proper estimation of SampEn
requires at least 10m samples [23], we set a conservative maximum scale factor of τ = 50 in order to
inspect oximetry dynamics. Regarding the input parameters of SampEn, the values of m and r are
critical in the estimation of entropy and thus in the performance of MSE analyses. In the present
study, we used m = 1 and r = 0.25 times the standard deviation (SD) of the original recording, which
have demonstrated to be optimal in previous analysis of oximetry by means of SampEn [19,27,31].
As recommended by Costa et al. [33], r was not normalised for time scales τ > 1 because changes
of variance in the coarse-grained versions of the signal have information about the whole original
time series. As in similar studies [37,42], MSE curves were parameterised by means of slopes and
single-entropy values for the time scales showing the most significant visual differences among the
groups under study. Similarly, the area under the MSE profile for these scales and the time scale where
the MSE function is maximum were used to characterise each curve.

2.2.2. Conventional Oximetric Indexes

Information linked with the number and severity of desaturations is commonly used in clinical
settings in the context of childhood OSAS due to its readiness and easy interpretation. In fact, despite
evidences showing their inherent underestimation, conventional oximetric indexes have demonstrated
to be useful in OSAS screening [1,20,21]. Therefore, the following indices were included in our initial
feature space to account for this relevant data: the oxygen desaturation index ≥ 3% (ODI3), which
measures the number of desaturations greater than or equal to 3% from baseline per hour of recording;
the minimum (SatMIN) and the average (SatAVG) saturation values along the whole recording; and the
cumulative time spent with a saturation below 95% (CT95) as a percentage of the total recording time.

2.2.3. Feature Selection and Classification

The well-known binary logistic regression (LR) algorithm was involved both in feature selection
and classification stages. Regarding dimensionality reduction, bidirectional forward stepwise logistic
regression (FSLR) is a widely applied method for LR model optimization [29,31,42,47]. FSLR is able to
find the simplest as well as still representative feature subset conducting an efficient and robust iterative
process [45]. Briefly, bidirectional FSLR selects the most relevant variables (forward selection) and
simultaneously removes the redundant ones (backward elimination) in terms of statistically significant
differences between the current model and a candidate one. In the present study, a bootstrapping
approach was implemented to obtain an optimal feature space independent of a particular dataset.
Bootstrapping is particularly useful to estimate statistics in small-sized datasets [48]. Hence, the FSLR
feature selection algorithm was applied 1000 times to different bootstrap replicates derived from the
original dataset. In order to gather as much relevant information as possible, as well as maintain a
moderate number of variables, a conservative threshold for feature selection was set: all variables
automatically selected at least 10% of the runs composed the optimum feature space. Finally, a LR
model aimed at classifying OSAS-negative and OSAS-positive children was built using our optimum
feature subset.

2.2.4. Statistical Analyses

Matlab R2015a (The MathWorks Inc., Natick, Massachusetts) was used to perform statistical
analyses as well as to implement automated pattern recognition stages. The Kolmogorov-Smirnoff’s
normality test and the Levene’s homoscedasticity test revealed that the oximetric features involved
in our study were not normally distributed and variances were unequal. Accordingly, a descriptive
analysis of every feature was carried out by means of the median and interquartile range. Similarly,
significant statistical differences (p < 0.05) between the groups under study (OSAS-negative vs.
OSAS-positive) were assessed using the non-parametric Mann-Whitney U test.
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The common bootstrap 0.632 approach was applied in order to validate our proposal since it is
particularly useful to estimate performance metrics in small-sized datasets [18,19,48]. Given an original
dataset of size N, bootstrap 0.632 applies resampling with replacement to build M new datasets, the
so-called bootstrap replicates, each one composed of N instances. For each replicate mi (1 ≤ i ≤M),
every instance from the original dataset can be selected several times with equal (uniform) probability,
i.e., all replicates will contain repeated instances. Consequently, for each bootstrap replicate, a number
of instances from the original dataset are not selected. At each iteration, a dataset mi is used for training
purposes, whereas instances not involved in the replicate are used for validation. In order to obtain a
proper estimation of the 95% confidence interval (CI95%), the number of bootstrap replicates was set to
M = 1000 [48]. According to bootstrap 0.632, every statistic or performance metric must be computed
as a contribution of both the training replicate and its corresponding test dataset as follows [48]:

metric(mi) = 0.632 ·metric(mi)
TEST + 0.368 ·metric(mi)

TRAIN (4)

Finally, the estimation of each performance metric is obtained as the average across all the M
bootstrap replicates.

The performance of the LR classifier was assessed by means of sensitivity (Se), specificity (Sp),
positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+),
negative likelihood ratio (LR−), accuracy (Acc), and area under the receiver operating characteristics
(ROC) curve (AUC).

3. Results

Figure 2 plots individual SampEn values as a function of τ for every overnight oximetric recording
in the population under study, as well as the average for the whole OSAS-positive and OSAS-negative
groups. Despite the inherent variance, OSAS-positive patients showed greater averaged entropy, i.e.,
irregularity, than OSAS-negative children due to desaturations caused by apnoeic events for every time
scale. We performed a visual inspection of the averaged MSE profiles to properly parameterise each
curve. Regarding the smaller time scales, it is important to note that SampEn values of OSAS-positive
patients increased with a substantially higher slope than for the OSAS-negative group from scales τ = 1
to τ = 6. Then, SampEn values increased monotonically for both groups until reaching a similar slope.
In addition, we can observe that there was a maximum difference between both MSE averaged profiles
for time scale τ = 14. In order to gather this information, the following parameters were derived from
the MSE profile of each oximetric recording:

i. Slope of the MSE curve between scale τ = 1 and scales τ = 2 (Slp1-2), τ = 3 (Slp1-3), τ = 4 (Slp1-4),
τ = 5 (Slp1-5) and τ = 6 (Slp1-6). It is estimated as the slope of the straight-line connecting the
MSE values of the time scales under study. Higher slope accounts for a larger entropy increase
between the original signal (τ = 1) and coarse-grained versions in consecutive short time scales
(τ = 2 to 6), i.e., the control mechanisms regulating peripheral blood oxygen saturation on such
short time scales are the most affected by recurrent apnoeic events.

ii. Individual SampEn values from scale τ = 1 to scale τ = 6 (SE1 to SE6). Single-scale SampEn is a
measure of entropy or disorderliness and thus larger individual values are linked with more
complex underlying mechanisms governing the dynamics of the oximetric signal for these
time scales.

iii. SampEn single value in the scale reaching the maximum margin between MSE curves of the
groups under study, i.e., τ = 14 (SEmax). This feature quantifies the irregularity of the oximetric
recording for the time scale where the maximum difference between the classes under study
(OSAS-negative vs. OSAS-positive) is expected.

iv. Area enclosed under the MSE curve between scale τ = 1 and scales τ = 2 (Ar1-2), τ = 4 (Ar1-4)
and τ = 6 (Ar1-6). MSE curves allow us to compare the relative complexity of time series [33].
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Higher area is achieved when SampEn values are higher for the majority of the time scales,
suggesting that the time series is more complex.

v. Area enclosed under the MSE curve between scale τ = 1 and the scale reaching the maximum
margin (τ = 14) between the averaged MSE curves (Ar1-max). After time scale τ = 14, the MSE
curves of OSAS-negative and OSAS-positive groups monotonically increase with a similar
slope, showing almost equal behaviour. From short time scales to scale τ = 14, the MSE curves
of both groups show the greatest differences regarding shape and individual entropy values.
Thus, this feature gathers the contribution of the time scales showing the maximum differences
in the dynamics of nocturnal oximetry between the groups under study.

vi. Time scale where the maximum SampEn value is reached (τmax). This feature is related to the
level of depth of changes in the underlying complexity of the signal, i.e., it shows the time scale
up to which entropy increases.
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Figure 2. MSE curves for every overnight oximetric recording in the population set. Averaged MSE
profiles along each time scale are also plotted for the whole OSAS-negative (blue) and OSAS-positive
(red) groups.

Table 2 summarises the median and interquartile range (IQR) of all these MSE-derived parameters
for the OSAS-negative and the OSAS-positive groups. It is noticeable that almost all features achieved
statistically significant differences between groups (p < 0.05). On average, OSAS-positive patients
showed significantly higher slopes (Slp1-2 to Slp1-6), higher irregularity (SE1 to SE6), and higher area
under the MSE curve (Ar1-2 to Ar1-6) in the smaller time scales than OSAS-negative children. Similarly,
OSAS-positive patients also showed significantly higher area under the MSE curve between time scales
1 and the maximum-margin scale (τ = 14) as well as higher entropy in such a maximum-margin scale
than OSAS-negative children.

Table 3 summarises the diagnostic performance of every entropy-based parameter derived from
MSE analysis. Almost all features under study showed balanced sensitivity and specificity values, as
well as moderate diagnostic accuracy. Regarding slope-based MSE features, accuracy ranged 71.4%
to 73.4% and both Slp1-3 and Slp1-4 reached the maximum AUC (0.80). Similarly, the accuracy of
area-based MSE features ranged 71.3% to 72.3% and Ar1-2, Ar1-4 and Ar1-6 reached 0.80 AUC. In regard
to SampEn values at individual time scales, accuracy ranged 68.1% to 73.4% and both SE1 and SE3
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achieved 0.81 AUC. Finally, τmax reached poor accuracy (Acc = 55.8%) and poor area under the ROC
curve (AUC = 0.60). Table 4 shows the performance of every conventional oximetric index involved in
the study. Accuracy ranged 58.8% to 74.5% and all indices showed balanced sensitivity and specificity.
It is important to highlight that ODI3 performed notably higher than the remaining conventional
features, reaching 74.5% Acc (71.9% Se and 77.6% Sp) and 0.85 AUC.

Table 2. Descriptive analysis (median and interquartile range) of each MSE-derived feature for each
patient group under study.

MSE Features OSAS-Negative OSAS-Positive p-Value

Slp1-2 0.015 [0.017] 0.031 [0.041] <<0.05
Slp1-3 0.028 [0.031] 0.057 [0.070] <<0.05
Slp1-4 0.038 [0.044] 0.079 [0.094] <<0.05
Slp1-5 0.049 [0.059] 0.096 [0.111] <<0.05
Slp1-6 0.058 [0.073] 0.110 [0.128] <0.05
SE1 0.016 [0.019] 0.039 [0.055] <<0.05
SE2 0.032 [0.036] 0.071 [0.097] <<0.05
SE3 0.045 [0.050] 0.097 [0.126] <<0.05
SE4 0.055 [0.063] 0.118 [0.149] <<0.05
SE5 0.067 [0.078] 0.135 [0.166] <<0.05
SE6 0.075 [0.092] 0.147 [0.175] <<0.05

SEmax 0.129 [0.147] 0.229 [0.216] <0.05
Ar1-2 0.048 [0.055] 0.110 [0.152] <<0.05
Ar1-4 0.151 [0.168] 0.324 [0.427] <<0.05
Ar1-6 0.292 [0.338] 0.599 [0.767] <<0.05

Ar1-max 1.164 [1.382] 2.114 [2.463] <<0.05
τmax 48.000 [3.500] 48.000 [5.000] N.S.

MSE: multiscale entropy; Slp1-x: slope of the MSE curve between scale τ = 1 and scale τ = x; SEx: Sample entropy
value in the scale τ = x; SEmax: Sample entropy value in the scale reaching the maximum margin between MSE
curves of the groups under study; Ar1-x: Area enclosed under the MSE curve between scale τ = 1 and scale τ = x;
Ar1-max: Area enclosed under the MSE curve between scale τ = 1 and the scale reaching the maximum margin
between MSE curves; τmax: Scale where the maximum sample entropy value is reached; N.S.: non-significant
statistical differences (p > 0.05).

Figure 3 shows the number of times each variable was selected after FSLR feature selection
using the bootstrapping approach proposed to improve model generalization. A total of nine features
(five from MSE analysis and four conventional indices) were above the specified threshold (10% of
total runs): Slp1-2, Slp1-6, SE1, SEmax, τmax, ODI3, SatMIN, SatAVG and CT95. Using these features,
an optimum LR model was composed. Figure 4 shows the ROC curves during the training stage of the
bootstrapping procedure (average across all bootstrap replicates) for each feature subset under study,
i.e., MSE-derived features (MSE), conventional oximetric indices (OX), all features together without
feature selection (MSE-OX) and the optimum feature subset from FSLR (OPT). We can observe that the
feature subsets using MSE-derived features and oximetric indices jointly achieved notably higher AUC
than each single approach individually, which supports our initial hypothesis of complementarity
between both approaches.

Table 5 summarises the diagnostic performance of all approaches involved in the study. A LR
model composed of all the MSE-derived features reached 75.2% Acc (75.7% Se, 75.3% Sp) and 0.79 AUC,
whereas a LR model built with all the oximetric indices reached 76.0% Acc (74.7% Se, 77.7% Sp) and
0.82 AUC. Similarly, a LR model composed of all the MSE and oximetric variables under study reached
comparable performance, achieving 79.0% Acc (79.4% Se, 79.3% Se) and 0.80 AUC. Interestingly, our
optimum LR model composed of features automatically selected by FSLR performed significantly
better, reaching 83.5% Acc (84.5% Se, 83.0% Sp) and 0.86 AUC.
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Table 3. Diagnostic performance using a bootstrap approach for each feature derived from the MSE
profile of nocturnal oximetric recordings.

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR− Acc (%) AUC

Slp1-2
75.6

(47.7, 98.3)
67.8

(36.6, 96.3)
72.5

(50.5, 96.8)
72.6

(48.3, 97.7)
2.83

(1.30, 6.71)
0.37

(0.03, 0.77)
71.8

(56.8, 86.5)
0.79

(0.62, 0.94)

Slp1-3
78.1

(49.4, 98.5)
68.1

(38.4, 95.8)
73.1

(51.2, 96.4)
74.9

(49.7, 98.0)
2.89

(1.34, 6.71)
0.33

(0.02, 0.72)
73.2

(58.8, 88.2)
0.80

(0.63, 0.94)

Slp1-4
78.6

(50.6, 98.5)
68.0

(37.6, 96.2)
73.2

(51.4, 96.5)
75.1

(49.6, 98.1)
2.94

(1.36, 7.07)
0.32

(0.02, 0.72)
73.4

(57.7, 88.6)
0.80

(0.64, 0.95)

Slp1-5
76.1

(48.7, 98.4)
66.6

(35.7, 95.7)
71.8

(48.7, 96.2)
72.6

(46.9, 97.6)
2.71

(1.26, 6.10)
0.37

(0.03, 0.81)
71.4

(55.2, 86.4)
0.78

(0.61, 0.94)

Slp1-6
76.6

(45.8, 97.6)
66.5

(35.7, 95.6)
71.8

(48.8, 95.9)
72.8

(47.6, 97.1)
2.72

(1.23, 6.33)
0.36

(0.03, 0.81)
71.6

(55.2, 87.4)
0.77

(0.60, 0.92)

SE1
75.2

(47.4, 98.6)
70.2

(36.0, 96.9)
74.0

(51.4, 97.3)
73.0

(48.3, 98.0)
3.10

(1.35, 7.43)
0.36

(0.02, 0.76)
72.7

(57.6, 88.6)
0.81

(0.65, 0.95)

SE2
75.0

(48.4, 98.7)
68.7

(36.6, 96.6)
73.0

(50.9, 96.8)
72.6

(48.3, 98.1)
2.92

(1.34, 6.99)
0.37

(0.02, 0.77)
71.9

(56.8, 87.2)
0.80

(0.64, 0.95)

SE3
76.9

(49.1, 98.3)
68.9

(39.1, 96.3)
73.3

(51.4, 96.7)
74.0

(48.6, 97.8)
2.96

(1.34, 6.92)
0.34

(0.02, 0.74)
72.9

(58.0, 88.2)
0.81

(0.64, 0.94)

SE4
77.3

(50.1, 98.5)
69.4

(36.6, 96.5)
73.9

(51.7, 96.8)
74.6

(48.7, 97.9)
3.06

(1.35, 7.14)
0.33

(0.02, 0.74)
73.4

(57.6, 88.2)
0.80

(0.64, 0.95)

SE5
76.4

(49.1, 98.7)
67.9

(36.1, 96.1)
72.8

(50.5, 96.6)
73.3

(48.3, 98.1)
2.88

(1.30, 6.81)
0.35

(0.02, 0.76)
72.2

(56.8, 87.0)
0.79

(0.63, 0.94)

SE6
75.8

(49.9, 97.7)
67.1

(36.2, 96.1)
72.0

(48.6, 96.5)
72.3

(47.9, 97.2)
2.79

(1.25, 6.63)
0.37

(0.03, 0.82)
71.5

(55.2, 87.0)
0.78

(0.61, 0.93)

SEmax
74.3

(39.4, 98.7)
61.6

(31.7, 96.0)
68.3

(46.0, 95.7)
70.7

(43.4, 97.8)
2.26

(1.13, 5.49)
0.42

(0.02, 0.95)
68.1

(52.3, 83.6)
0.75

(0.58, 0.91)

Ar1-2
74.8

(48.4, 98.7)
68.8

(34.8, 96.7)
73.1

(50.7, 96.8)
72.5

(48.3, 98.1)
2.94

(1.31, 7.03)
0.37

(0.02, 0.78)
71.8

(55.2, 87.2)
0.80

(0.64, 0.95)

Ar1-4
76.1

(49.1, 98.6)
68.5

(36.6, 96.5)
73.0

(51.3, 96.8)
73.4

(48.3, 98.0)
2.92

(1.33, 7.07)
0.35

(0.02, 0.76)
72.3

(57.8, 87.2)
0.80

(0.64, 0.95)

Ar1-6
75.1

(49.2, 98.6)
68.7

(36.9, 96.5)
73.0

(50.5, 96.8)
72.5

(47.9, 98.0)
2.94

(1.30, 7.05)
0.37

(0.02, 0.78)
71.9

(55.5, 87.2)
0.80

(0.64, 0.94)

Ar1-max
75.5

(47.4, 98.3)
67.1

(35.0, 96.2)
72.0

(49.1, 96.3)
72.3

(47.8, 97.3)
2.75

(1.26, 6.47)
0.37

(0.03, 0.82)
71.3

(55.2, 86.4)
0.78

(0.61, 0.93)

τmax
57.0

(21.2, 98.3)
55.0

(20.3, 89.2)
58.3

(31.9, 84.0)
56.6

(29.0, 96.8)
1.47

(0.64, 3.59)
0.81

(0.04, 1.94)
55.8

(39.6, 71.8)
0.60

(0.51, 0.76)

Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LR+: positive
likelihood ratio; LR- negative likelihood ratio; Acc: accuracy; AUC: area under the receiver operating characteristic
curve; Slp1-x: slope of the MSE curve between scale τ = 1 and scale τ = x; SEx: SampEn in the scale τ = x; SEmax:
SampEn in the scale reaching the maximum margin between MSE curves of the groups under study; Ar1-x: Area
enclosed under the MSE curve between scale τ = 1 and scale τ = x; Ar1-max: Area enclosed under the MSE curve
between scale τ = 1 and the scale reaching the maximum margin between MSE curves; τmax: Scale where the
maximum sample entropy value is reached.

Table 4. Diagnostic performance using a bootstrap approach for each oximetric variable involved in
the model development.

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%) AUC

ODI3 71.9
(44.9, 97.6)

77.6
(40.7, 100)

79.7
(55.1, 100)

72.6
(49.7, 97.3)

3.97
(1.50, 11.20)

0.36
(0.03, 0.70)

74.5
(58.5, 88.9)

0.85
(0.70, 0.97)

SatMIN
54.2

(20.3, 97.8)
64.2

(21.2, 98.2)
64.8

(34.7, 97.3)
58.4

(30.8, 96.1)
1.96

(0.72, 5.62)
0.72

(0.05, 1.44)
58.8

(42.9, 73.6)
0.62

(0.51, 0.79)

SatAVG
69.4

(34.2, 96.7)
66.8

(39.5, 95.9)
69.8

(45.1, 95.6)
68.1

(42.1, 96.0)
2.41

(1.07, 5.40)
0.46

(0.05, 0.94)
68.1

(49.9, 82.9)
0.70

(0.52, 0.88)

CT95 66.8
(34.2, 96.3)

69.3
(35.9, 98.6)

72.0
(48.3, 98.2)

66.4
(42.3, 95.4)

2.63
(1.14, 8.02)

0.49
(0.06, 0.97)

67.8
(52.3, 83.0)

0.75
(0.57, 0.92)

Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LR+: positive
likelihood ratio; LR- negative likelihood ratio; Acc: accuracy; AUC: area under the receiver operating characteristic
curve; ODI3: oxygen desaturation index of 3%; SatMIN: minimum SpO2 during the whole recording; SatAVG: average
SpO2 during the whole recording; CT95: percentage of time with a SpO2 below 95%.
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Table 5. Diagnostic performance using a bootstrap approach for all the binary LR models under study
using a cut-off of 3 events/h for positive OSAS.

Se (%) Sp (%) PPV (%) NPV (%) LR+ LR– Acc (%) AUC

LRMSE
75.7

(49.0, 100)
75.3

(43.4, 100)
77.5

(53.6, 100)
74.4

(48.7, 100)
5.95

(1.78, 13.41)
0.38

(0, 0.93)
75.2

(57.0, 90.0)
0.79

(0.58, 0.95)

LROX
74.7

(47.3, 98.8)
77.7

(44.4, 1)
79.7

(55.9, 1)
74.2

(49.9, 98.7)
4.76

(1.62, 12.92)
0.35

(0.01, 0.75)
76.0

(58.8, 90.4)
0.82

(0.64, 0.97)

LRMSE-OX
79.4

(54.9, 1)
79.3

(55.3, 1)
80.8

(62.1, 1)
78.4

(58.5, 1)
6.65

(2.56, 14.39)
0.34

(0, 0.92)
79.0

(63.1, 92.8)
0.80

(0.62, 0.95)

LROPT
84.5

(60.1, 1)
83.0

(54.2, 1)
84.7

(61.6, 1)
83.3

(58.7, 1)
7.81

(1.58, 15.05)
0.23

(0, 0.70)
83.5

(63.2, 96.1)
0.86

(0.65, 0.99)

Se: sensitivity; Sp: specificity; PPV: positive predictive value; NPV: negative predictive value; LR+: positive
likelihood ratio; LR− negative likelihood ratio; Acc: accuracy; AUC: area under the receiver operating characteristic
curve; LRMSE: LR model composed of all the MSE-derived features; LROX: LR model composed of all the oximetric
features; LRMSE-OX: LR model composed of all the MSE-derived and oximetric features; LROPT: LR model composed
of the optimum features derived from FSLR.

4. Discussion

In this study, we analysed the usefulness of MSE in the context of screening for paediatric
OSAS by means of overnight unattended oximetry at home. Nocturnal oximetry has emerged as a
reliable technique for simplified OSAS detection in children. The present research gains additional
insight into the diagnostic capability of portable oximetry. Our results showed that MSE is able to
provide relevant and complementary information to conventional oximetric indices commonly used
by physicians. MSE profiles of oximetric recordings showed a consistent behaviour, with significant
differences between OSAS-negative and OSAS-positive children, particularly for lower time scales.
In addition to single-scale entropy measures from scales τ = 1 to τ = 6, where maximum visual
differences were found, all the proposed slope- and area-based parameters derived from the MSE
curve achieved statistically significant differences between groups. According to these MSE-measures,
OSAS-positive patients showed significantly higher average irregularity than non-OSAS children due
to desaturations linked with OSAS along all the time scales. Regarding the diagnostic performance,
individual MSE-based parameters reached moderate accuracy (maximum Acc of 73.4%), similar to that
achieved by conventional ODI3 (74.5% Acc). A multivariate analysis showed that putting all this data
together led to a notably overall performance increase, which demonstrated that MSE is able to provide
additional as well as complementary information. A LR model composed of all features under study
reached 79.0% Acc (79.4% Se, 79.3% Sp) and 0.80 AUC. Furthermore, our novel LR model fed with an
optimum feature subset derived from FSLR feature selection reached 83.5% Acc (84.5% Se, 83.0% Sp)
and 0.86 AUC, which significantly outperformed all the approaches under study. Comparing the ROC
curves from training shown in Figure 4 and the final performance of each LR model in terms of the
AUC values shown in Table 5, we can observe that LROX and LROPT showed the smallest decrease in
performance. On the other hand, the model composed of all the variables from the original feature
space (LRMSE-OX) showed a significant performance decrease, which supports the convenience of our
optimum feature subset derived from FSLR. Therefore, LROPT reached higher diagnostic accuracy as
well as higher generalization ability.

It is essential to highlight that the optimum feature subset was composed of variables from both
MSE analysis (five features: Slp1-2, Slp1-6, SE1, SEmax, τmax) and conventional indices (four features:
ODI3, SatMIN, SatAVG and CT95), which points out the complementarity of the proposed MSE approach.
Regarding the physiological interpretation of the optimum features, it is widely known that ODI3
quantifies the number of desaturations per hour of recording, whereas the remaining conventional
indices account for the overall (SatAVG and CT95) and maximum (SatMIN) severity of the desaturations.
On the other hand, it is unknown how the proposed MSE-derived measures are related to particular
changes in the dynamics of oximetry. As proposed by Costa et al. [33], we used MSE curves to
compare the relative complexity of normalised time series, i.e., oximetric recordings belonging to
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OSAS-negative and OSAS-positive children. Accordingly, Slp1-2 and Slp1-6 reflect that the degree of
change in the complexity of overnight oximetry (computed as the slope of the MSE curve) due to
apnoeic events is more relevant in smaller scales (scales 1-2 and 1-6). The single-scale entropy measure
SE1 shows that original (τ = 1) oximetric recordings from OSAS-positive children have significantly
higher irregularity than OSAS-negative children. Moreover, the influence of apnoeic events is still
relevant in moderate time scales since SEmax reflects significantly higher irregularity in oximetric
recordings from OSAS-positive patients for time scale τ = 14. Finally, according to Table 2, τmax did not
show statistically significant differences between groups. Nevertheless, it was automatically selected
by FSLR, suggesting that the level up to which entropy increases due to the influence of apnoeic events
provides complementary information to direct measures of entropy.

In order to gain insight into the performance of our binary classifier, we analysed
polysomnographic and polygraphic features of misclassified children. Notice that a bootstrapping
technique was carried out to validate our approach and thus all performance metrics were computed
as the average across all the bootstrap replicates. Therefore, we analysed those patients misclassified
in a significant number of repetitions of the algorithm. Accordingly, there were five false positive
children. Two of them were borderline, showing an OAHI from PSG equal to 2.5 and 2.6 events/h,
respectively. It is important to highlight that children were diagnosed according to in-lab PSG, which is
the gold standard, whereas our screening method is based on the oximetry signal recorded at-home in
a different night. Hence, it is essential to consider common night-to-night variability inherent to OSAS
when analysing misclassifications. In this regard, three out of five false positive patients showed an
at-home OAHI > 3 events/h, ranging 3.6 to 7.7 events/h. Regarding false negative patients, there were
five OSAS-positive children incorrectly classified as no-OSAS using our screening oximetry-based tool.
It is important to note that they were all moderate-to-severe OSAS patients (in-lab OAHI > 5 events/h),
showing a similar behaviour at home (unsupervised OAHI ranging 4.0 to 11.1 events/h). Nevertheless,
four out of five false negative children showed an at-home ODI3 significantly lower, ranging 0.5 to
2.3 events/h. This suggests that apnoeic events did not lead to a matching desaturation in the oximetric
profile, which is probably the main limitation of oximetry as a single screening tool for the disease.

Previous studies used MSE in the context of automated characterisation of OSAS in adults.
In a recent study by Roebuck and Clifford [41], MSE was applied to characterise irregularity of speech
patterns from subjects suspected of suffering from sleep apnoea. MSE coefficients of speech signals for
small (τ = 1, 2, 4, 8) and large (τ = 16, 32, 65, 130, 180) scales were used to detect moderate-to-severe
OSAS (AHI≥ 15 events/h) using a random forest classification paradigm. An overall accuracy of 79.9%
(66.0% Se, 88.8% Sp) was obtained, whereas the performance increased up to 80.5% Acc (69.2% Se,
87.9% Sp) when demographic variables were added to the model. Pan et al. [40] analysed heart rate
variability (HRV) time series of snoring patients with and without OSAS by means of MSE in order to
assess changes in autonomic and vascular regulatory function. A significant irregularity decrease in
HRV dynamics both for small (τ < 6) and large (τ > 6) time scales were found for moderate-to-severe
OSAS patients (AHI≥ 15 events/h), whereas non-OSAS subjects and patients with continuous positive
airway pressure therapy showed a similar increase in MSE features in the larger scales. Similarly,
Gutiérrez-Tobal et al. [42] applied MSE to HRV recordings in order to model adult OSAS in independent
populations separated by gender. Using together MSE coefficients and spectral entropy measures
automatically selected by means of FSLR, a LR model achieved 85.2% Acc (80.8% Se, 89.3% Sp) in the
classification of women with OSAS (AHI ≥ 10 events/h). The performance decreased to 77.6% Acc
(87.1% Se, 56.1% Sp) when modelling OSAS in men.

To our knowledge, this is the first study assessing MSE in the context of childhood OSAS.
Moreover, in the present research, we focused on the diagnostic ability of unattended oximetry at home
as a single screening tool for the disease, which is a major novelty in the framework of paediatric sleep
apnoea. Previously, few studies assessed the usefulness of automated analysis of overnight portable
oximetry [16–20,49]. Kirk et al. [20] analysed a dataset composed of 57 children suspected of suffering
from OSAS. The oxygen desaturation index > 4% (ODI4) from unattended portable oximetry was used
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to characterise OSAS (AHI ≥ 5 events/h), reaching 66.7% sensitivity and 60.0% specificity when a
cut-off of ODI4 ≥ 5 events/h was used. In the study by Garde et al. [16], time and spectral features
from overnight pulse oximetry were used to assist in paediatric OSAS detection (AHI ≥ 5 events/h).
The Authors analysed 146 SpO2 recordings acquired by means of a portable device, although all
sleep studies were carried out in a supervised hospital setting. Stepwise linear discriminant analysis
(LDA) reached 78.5% accuracy (80.0% Se, 83.9% Sp) using only features from SpO2, whereas the
performance increased up to 84.9% accuracy (88.4% Se, 83.6% Sp) when features from SpO2 and pulse
rate were used jointly. In the study by Sahadan et al. [49], pulse rate time series from unattended
pulse oximetry was analysed to assist in the management of childhood OSAS (AHI ≥ 1 event/h). The
quantification of pulse rate increases of 15 bpm (PRI-15) reached the highest performance, achieving
18.0% sensitivity and 97.0% specificity when a cut-off of PRI-15 > 35/h was used. In a previous study
by our group [18], ODI3 from nocturnal unsupervised SpO2 was combined with spectral measures
from at-home airflow recordings to characterise children with suspected OSAS (OAHI ≥ 3 events/h).
A LR model from stepwise feature selection reached 86.3% accuracy (85.9% Se, 87.4% Sp). Cohen
and De Chazal [17] analysed a large dataset composed of 288 children showing suspicion of suffering
from OSAS. ECG and SpO2 from unattended PSG at home were automatically processed in order
to detect every individual apnoeic event. An accuracy of 74.7% (39.6% Se, 76.4% Sp) was reached
under an epoch-based classification approach using a LDA model only composed of features from
time-frequency analysis of ECG. Conversely, the accuracy decreases up to 66.7% (58.1% Se, 67.0% Sp)
when statistics from SpO2 were added to the model. In a recent study by our group [19], single-scale
non-linear measures of entropy, complexity and variability were combined with conventional statistics,
spectral features and oximetric indices to parameterise unattended SpO2 recordings. Optimum LR
models were composed from stepwise feature selection for different cut-offs for the disease, reaching
83.4% accuracy (82.9%, 84.4%) for a clinical threshold of OAHI≥ 3 events/h. In the present research, we
reached similar diagnostic performance using MSE as unique complement of conventional oximetric
indices, suggesting that different nonlinear methods other than SampEn, central tendency measure
(CTM) or Lempel-Ziv complexity (LZC) are also able to provide relevant information in the context of
paediatric OSAS detection from oximetry.

A trade-off between the reduction of complexity of the diagnostic methodology by means of
simplified techniques and the diagnostic accuracy have to be taken into account. Previous studies
reported contradictory data regarding the complementarity of information from different signals
in the context of paediatric OSAS. Some studies [16,18] showed a slight-to-moderate performance
increase when using jointly features from oximetry and other cardiorespiratory signals such as pulse
rate or airflow, whereas other studies [17] reported a significant decrease in performance when
oximetry and ECG recordings are combined. Similarly, a recent study by Álvarez et al. suggested
that automated analysis of unattended oximetry at home might be as accurate as manual scoring
of at-home respiratory polygraphy, particularly when using low OAHI cut-off points for a positive
diagnosis of the disease [19]. Therefore, additional robust evidences are still needed to define the best
combination of cardiorespiratory signals in order to design an accurate as well as simplified screening
tool for paediatric OSAS.

Some limitations should be taken into account to be able to properly generalise our conclusions.
Firstly, a larger population would allow for optimal design and assessment of the proposed LR
models. Notwithstanding, a bootstrapping approach was conducted both for feature selection and
classification in order to overcome this drawback. In the same way, a wider dataset would let us
a better characterisation of overnight oximetry dynamics by means of MSE for childhood OSAS.
Nevertheless, our results revealed a quite consistent trend of average MSE curves for OSAS-negative
and OSAS-positive groups, as well as statistically significant differences between groups for almost all
MSE-based parameters. Regarding feature extraction from overnight oximetry, our findings suggest
that multiscale processing methods provide relevant information from oximetric recordings. In this
regard, additional time-scale techniques, such as the wavelet transform, could provide useful as well
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as complementary features to MSE and conventional clinical indices in the framework of childhood
OSAS detection from oximetry. Finally, the proposed methodology focused on binary classification.
Although this is a very useful approach in order to implement automated screening tools for the
disease, it would be very interesting to develop a pattern recognition scheme aimed at classifying
patients into the four common categories of severity, i.e., non-OSAS, mild, moderate and severe.

LR could be considered the reference classifier in the context of automated pattern recognition to
assist in childhood OSAS. Linear discriminant analysis (LDA) [16,17,50,51] and LR [1,18,19,52] have
been predominantly used for binary classification of children suspected of suffering from the disease.
LDA assumes that all the input variables show normal distribution and equal variances, assumptions
that are not always consistent in real-world pattern classification tasks. LR provides a more general
approach that fits better to the characteristics of the problem under study. Nevertheless, additional
automated pattern recognition techniques such as decision trees, artificial neural networks or support
vector machines, which have demonstrated its usefulness in the context of adult OSAS [31,53–56],
need to be assessed in the context of paediatric OSAS.

5. Conclusions

A comprehensive analysis of overnight oximetry dynamics along increasing time scales
demonstrated an ability to provide additional information about the influence of desaturations in
the characterisation of paediatric OSAS. SampEn values from the MSE profiles of OSAS-positive
children were consistently higher than the entropy values obtained for non-OSAS patients for all scales.
Particularly, MSE-derived parameters reached significant statistical differences between both groups
for small time scales (τ ≤ 6). An exhaustive feature selection methodology confirmed that MSE analysis
provided relevant as well as complementary information to conventional oximetric indices. A LR
model composed of optimum features properly selected from both MSE and conventional analyses
outperformed each of these approaches taken individually. Therefore, MSE may be useful to improve
the diagnostic ability of unattended oximetry as a simplified screening test for childhood OSAS.
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