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Abstract: In this paper, the noise-enhanced detection problem is investigated for the binary
hypothesis-testing. The optimal additive noise is determined according to a criterion proposed
by DeGroot and Schervish (2011), which aims to minimize the weighted sum of type I and II error
probabilities under constraints on type I and II error probabilities. Based on a generic composite
hypothesis-testing formulation, the optimal additive noise is obtained. The sufficient conditions are
also deduced to verify whether the usage of the additive noise can or cannot improve the detectability
of a given detector. In addition, some additional results are obtained according to the specificity of
the binary hypothesis-testing, and an algorithm is developed for finding the corresponding optimal
noise. Finally, numerical examples are given to verify the theoretical results and proofs of the main
theorems are presented in the Appendix.
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1. Introduction

In the binary hypothesis testing problem, there are usually a null hypothesis H0 and an alternative
hypothesis H1, and the objective of testing is to be determine truthfulness of them based on the
observation data and a decision rule. Due to the presence of noise, the decision result obviously cannot
be absolutely correct. Generally, two erroneous decisions may occur in the signal detection: type I
error that rejects a true null hypothesis and type II error that accepts a false null hypothesis [1].

In the classical statistical theory, the Neyman–Pearson criterion is usually applied to obtain
a decision rule that minimizes the type II error probability β with a constraint on the type I error
probability α. However, the minimum β may not always correspond to the optimal decision result.
For instance, in the example 1 of [2], a binary hypothesis testing is designed to determine the mean
of a normal data: the mean equals to −1 under H0 and equals to 1 under H1. Under the constraint
that the type I error probability is fixed to 0.05, the type II error probability is decreased from 0.0091
to 0.00000026 when the data size increases from 20 to 100, whereas the rejection region of the null
hypothesis is changed from (0.1, +∞) to (−0.51, +∞). In such case, more information brings a worse
decision result even a smaller type II error probability is achieved with the fixed type I error probability.
Similarly, the decision rule that minimizes the type I error probability for a fixed type II error probability
may not perform well. Therefore, it could not be appropriate to simply minimize one of the two error
probabilities in practice. The ideal case is to develop a decision criterion that minimizes the two types
of error probabilities simultaneously, but it is almost impossible in practical applications.

In order to obtain a better decision result to balance the type I and II error probabilities,
DeGroot and Schervish [1] proposed a criterion to minimize a weighted sum of type I and II error
probabilities, i.e., min

φ
[c1 · α(φ) + c2 · β(φ)], where φ represents the decision rule, c1 and c2 are the

weight coefficients corresponding to α and β, respectively, and c1, c2 > 0. Furthermore, DeGroot
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also provided the optimal decision procedure to minimize the weighted sum. The decision rule
is given as follows. If c1 f (x|H0) < c2 f (x|H1) , the null hypothesis H0 is rejected, where f (x|H0)

and f (x|H1) are the respective probability density functions (pdfs) of the observation x under
H0 and H1. If c1 f (x|H0) > c2 f (x|H1) , the alternative hypothesis H1 is rejected. In addition, if
c1 f (x|H0) = c2 f (x|H1) , the hypothesis H0 can be either rejected or not. The optimal detector in
this case is closely related to the distribution of the observation. This implies that once the distribution
changes, the detector should be adjusted accordingly. But in the cases where the detector is fixed,
this weighted sum rule cannot be directly applied. In such a case, finding an alternative method to
minimize the weighted sum of type I and II error probabilities instead of changing the detector is
important. Fortunately, the stochastic resonance (SR) theory provides a means to solve this problem.

The SR, first discovered by Benzi et al. [3] in 1981, is a phenomenon where noise plays a
positive role in enhancing signal and system through a nonlinear system under certain conditions.
The phenomenon of SR in the signal detection is also called noise-enhanced detection. Recent studies
indicate that the system output performance can be improved significantly by adding noise to the
system input or increasing the background noise level [4–22]. The improvements achieved via noise
can be measured in the forms of increased signal-to-noise ratio (SNR) [7–10], mutual information
(MI) [11,12] or detection probability [13–16], or in the form of decreased Bayes risk [17,18]. For example,
the SNR gain of a parallel uncoupled array of bistable oscillators, operating in a mixture of sinusoidal
signal and Gaussian white noise, is maximized via extra array noise [8]. In addition, due to the
added array noise, the performance of a finite array closely approaches to an infinite array. In [11],
the throughput MI of threshold neurons is increased by increasing the intensity of faint input noise.
The optimal additive noise to maximize the detection probability with a constraint on false-alarm
probability is studied in [13], and the sufficient conditions for improvability and non-improvability are
deduced. In [17], the effects of additive independent noise on the performance of suboptimal detectors
are investigated according to the restricted Bayes criterion, where the minimum noise modified
Bayes risk is explored with certain constraints on the conditional risks. Inspired by this concept, it
is reasonable to conjecture that a proper noise can decrease the weighted sum of type I and II error
probabilities for a fixed detector.

In the absence of constraints, it is obvious that the additive noise that minimizes the weighted
sum is a constant vector, whereas the corresponding type I or II error probability may exceed a certain
value to cause a bad decision result. To avoid this problem, two constraints are enforced on type I
and II error probabilities, respectively, to keep a balance. The aim of this work is to find the optimal
additive noise that minimizes the weighted sum of type I and II error probabilities with the constraints
on type I and II error probabilities for a fixed detector. Furthermore, the work can also be extended
to some applications, such as the energy detection in sensor networks [23,24] and the independent
Bernoulli trials [25]. The main contributions of this paper are summarized as follows:

• Formulation of the optimization problem for minimizing the noise modified weighted sum of
type I and II error probabilities under the constraints on the two error probabilities is presented.

• Derivations of the optimal noise that minimizes the weighted sum and sufficient conditions
for improvability and nonimprovability for a general composite hypothesis testing problem
are provided.

• Analysis of the characteristics of the optimal additive noise that minimizes the weighted sum
for a simple hypothesis testing problem is studied and the corresponding algorithm to solve the
optimization problem is developed.

• Numerical results are presented to verify the theoretical results and to demonstrate the superior
performance of the proposed detector.

The remainder of this paper is organized as follows: in Section 2, a noise modified composite
hypothesis testing problem is formulated first for minimizing the weighted sum of type I and II
error probabilities under different constraints. Then the sufficient conditions for improvability and
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nonimprovability are given and the optimal additive noise is derived. In Section 3, additional
theoretical results are analyzed for a simple hypothesis testing problem. Finally, simulation results are
shown in Section 4 and conclusions are made in Section 5.

Notation: Lower-case bold letters denote vectors, with υi denoting the i-th element of υ; θ denotes
the value of parameter Θ; fυ(υ|θ) denotes the pdf of υ for a given parameter value Θ = θ; Ωi
denotes the set of all possible parameter values of Θ under Hi; δ(·) denotes the Dirac function; ∩,
∪ and ∅ denote intersection, union and null set, respectively; ∗, (·)T ,

∫
, E{·}, min, max and arg

denote convolution, transpose, integral, expectation, minimum, maximum and argument operators,
respectively; inf{·} and sup{·} denote the infimum and supremum operators, respectively; ∑ means
summation; ∇ and H denote the respective gradient and Hessian operators.

2. Noise Enhanced Composite Hypothesis Testing

2.1. Problem Formulation

Consider the following binary composite hypothesis testing problem:{
H0 : fx(x|θ), θ ∈ Ω0

H1 : fx(x|θ), θ ∈ Ω1
(1)

where x ∈ RN is the observation vector, H0 and H1 are the null and the alternative hypothesizes,
respectively, θ denotes the value of parameter Θ, fx(x|θ) represents the pdf of x for a given parameter
value Θ = θ. The parameter Θ has multiple possible values under each hypothesis and denote the pdf
of any parameter value Θ = θ under H0 and H1 by v0(θ) and v1(θ). In addition, Ω0 and Ω1 denote
the respective sets of all possible values of Θ under H0 and H1. It is true that Ω0 ∩Ω1 = ∅ and the
union of them forms the parameter space Ω, i.e., Ω = Ω0 ∪Ω1.

Without loss of generality, a decision rule (detector) is considered as:

φ(x) =

{
1, x ∈ Γ1

0, x ∈ Γ0
(2)

where Γ0 and Γ1 form the observation space Γ. Actually, the detector chooses H1 if x ∈ Γ1, otherwise
chooses H0 if x ∈ Γ0.

In order to investigate the performance of the detector achieved via an additive noise, a noise
modified observation y is obtained by adding an independent additive noise n to the original
observation x, i.e., y = x + n. For a given parameter value Θ = θ, the pdf of y is calculated by
the convolution of the pdfs of x and n, given by:

fy(y|θ) = fx(x|θ) ∗ pn(n) =
∫
RN

pn(n) fx(y− n|θ)dn (3)

where pn(n) denotes the pdf of n. For a fixed detector, the noise modified type I and II error
probabilities of the detector for given parameter values now is expressed as:

αy(φ; θ) =
∫

Γ
φ(y) fy(y

∣∣θ)d y =
∫

Γ1

fy(y
∣∣θ)d y, θ ∈ Ω0 (4)

βy(φ; θ) =
∫

Γ
(1− φ(y)) fy(y

∣∣θ)d y =
∫

Γ0

fy(y
∣∣θ)d y, θ ∈ Ω1 (5)

Correspondingly, the average noise modified type I and II error probabilities are calculated by:

αy(φ) =
∫

Ω0

αy(φ; θ)v0(θ)dθ (6)
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βy(φ) =
∫

Ω1

βy(φ; θ)v1(θ)dθ (7)

From (6) and (7), the weighted sum of the two types of average error probabilities is obtained as:

Ery = c1 · αy(φ) + c2 · βy(φ)

= c1 ·
∫

Ω0
αy(φ; θ)v0(θ)dθ + c2 ·

∫
Ω1

βy(φ; θ)v1(θ)dθ
(8)

where c1 and c2 are the weights assigned for the type I and II error probabilities, which can be
predefined according to the actual situations. For example, if the prior probabilities are known, the
value of c1 and c2 equal the prior probabilities corresponding to H0 and H1, respectively. Besides, the
values of c1 and c2 can also be determined based on the expected decision results.

In this work, the aim is to find the optimal independent additive noise, which minimizes the
weighted sum of the average error probabilities under the constraints on the maximum type I and
II error probabilities for different parameter values. The optimization problem can be formulated
as below:

popt
n (n) = argmin

pn(n)
Ery (9)

subject to 
max
θ∈Ω0

αy(φ; θ) ≤ αo

max
θ∈Ω1

βy(φ; θ) ≤ βo
(10)

where αo and βo are the upper limits for the type I and II error probabilities, respectively.
In order to explicitly express the optimization problem described in (9) and (10), substituting (3)

into (4) produces:
αy(φ; θ) =

∫
Γ1

∫
RN pn(n) fx(y− n|θ)dn dy

=
∫
RN pn(n)

∫
Γ1

fx(y− n|θ)d ydn
=
∫
RN pn(n)Aθ(n)dn

= E{Aθ(n)}

, θ ∈ Ω0 (11)

where
Aθ(n) =

∫
Γ1

fx(y− n|θ)d y =
∫

Γ
φ(y) fx(y− n|θ)d y,θ ∈ Ω0 (12)

It should be noted that Aθ(n) can be viewed as the type I error probability obtained by adding a
constant vector n to x for θ ∈ Ω0. Therefore, αx(φ; θ) = Aθ(0) =

∫
Γ φ(x) fx(x|θ)d x denotes the type I

error probability for the original observation x.
Similarly, βy(φ; θ) in (5) can be expressed as:

βy(φ; θ) = E{Bθ(n)}, θ ∈ Ω1 (13)

where
Bθ(n) =

∫
Γ0

fx(y− n|θ)d y =
∫

Γ
(1− φ(y)) fx(y− n|θ)d y, θ ∈ Ω1 (14)

The Bθ(n) can be treated as the type II error probability obtained by adding a constant vector n
to x for θ ∈ Ω1 and βx(φ; θ) = Bθ(0) =

∫
Γ (1− φ(x)) fx(x|θ)d x is the original type II error probability

without adding noise for θ ∈ Ω1.
With (11) and (13), (8) becomes:

Ery =
∫
RN

pn(n)
[

c1 ·
∫

Ω0

Aθ(n)v0(θ)dθ + c2 ·
∫

Ω1

Bθ(n)v1(θ)dθ

]
dn = E{Er(n)} (15)

where
Er(n) = c1 ·

∫
Ω0

Aθ(n)v0(θ)dθ + c2 ·
∫

Ω1

Bθ(n)v1(θ)dθ (16)
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Accordingly, Er(n) is the weighted sum of two types of average error probabilities achieved by
adding a constant vector n to the original observation x. Naturally, Erx = Er(0) denotes the weighted
sum of type I and II average error probabilities for the original observation x.

Combined (11), (13) and (15), the optimization problem in (9) and (10) now is:

popt
n (n) = argmin

pn(n)
E{Er(n)} (17)

subject to 
max
θ∈Ω0

E{Aθ(n)} ≤ αo

max
θ∈Ω1

E{Bθ(n)} ≤ βo
(18)

2.2. Sufficient Conditions for Improvability and Non-improvability

In practice, the solution of the optimization problem in (17) and (18) requires a research over all
possible noises and this procedure is complicated. Therefore, it is worthwhile to determine whether the
detector can or cannot be improved by adding additive noise in advance. From (17) and (18), a detector
is considered to be improvable if there exists one noise n that satisfies E{Er(n)} < Erx = Er(0),
max
θ∈Ω0

E{Aθ(n)} ≤ αo and max
θ∈Ω0

E{Bθ(n)} ≤ βo simultaneously; otherwise, the detector is considered to

be non-improvable.
The sufficient conditions for non-improvability can be obtained according to the characteristics of

Aθ(n), Bθ(n) and Er(n), which are provided in Theorem 1.

Theorem 1. If there exists θ∗ ∈ Ω0 (θ∗ ∈ Ω1) such that Aθ∗(n) ≤ αo (Bθ∗(n) ≤ βo) implies Er(n) ≥ Er(0)
for any n ∈ Pn, where Pn represents the convex set of all possible additive noises, and if Aθ∗(n) (Bθ∗(n)) and
Er(n) are convex functions over Pn, then the detector is non-improvable.

The proof is provided in Appendix A.
Under the conditions in Theorem 1, the detector cannot be improved and it is unnecessary to

solve the optimization problem in (17) and (18). In other words, if the conditions in Theorem 1
are satisfied, the three inequities Ery ≥ Erx, max

θ∈Ω0
E{Aθ(n)} ≤ αo and max

θ∈Ω1
E{Bθ(n)} ≤ βo cannot be

achieved simultaneously by adding any additive noise. In addition, even if the conditions in Theorem 1
are not satisfied, the detector can also be non-improvable. This implies the sufficient conditions for
improvability need to be addressed.

The sufficient conditions for improvability are discussed now. Suppose that Aθ(x) (∀θ ∈ Ω0),
Bθ(x) (∀θ ∈ Ω1) and Er(x) are second-order continuously differentiable around x = 0. In order to
facilitate the subsequent analysis, six auxiliary functions are predefined as follows based on the first and
second partial derivatives of Aθ(x), Bθ(x) and Er(x) with respect to the elements of x. The first three
auxiliary functions a(1)θ (x, g), b(1)θ (x, g) and er(1)(x, g) are defined as the weight sums of the first partial
derivatives of Aθ(x), Bθ(x) and Er(x), respectively, based on the coefficient vector g. Specifically:

a(1)θ (x, g) ,
N

∑
i=1

gi
∂Aθ(x)

∂xi
= gT∇Aθ(x), θ ∈ Ω0 (19)

b(1)θ (x, g) ,
N

∑
i=1

gi
∂Bθ(x)

∂xi
= gT∇Bθ(x), θ ∈ Ω1 (20)

er(1)(x, g) ,
N

∑
i=1

gi
∂Er(x)

∂xi
= gT∇Er(x) (21)
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where g is a N-dimensional column vector, gTis the transposition of g, xi and gi are the i-th elements of
x and g, respectively. In addition, ∇ denotes the gradient operator, thereby ∇Aθ(x) (∇Bθ(x),∇Er(x))
is a N-dimensional column vector with i-th element ∂Aθ(x)/∂xi (∂Bθ(x)/∂xi, ∂Er(x)/∂xi), i = 1, . . . , N.
The last three auxiliary functions a(2)θ (x, g), b(2)θ (x, g) and er(2)(x, g) are defined as the weight sums of
the second partial derivatives of Aθ(x), Bθ(x) and Er(x) based on the N× N coefficient matrix ggT, i.e.,

a(2)θ (x, g) ,
N

∑
j=1

N

∑
i=1

gjgi
∂2 Aθ(x)
(∂xj∂xi)

= gT H(Aθ(x))g, θ ∈ Ω0 (22)

b(2)θ (x, g) ,
N

∑
j=1

N

∑
i=1

gjgi
∂2Bθ(x)
(∂xj∂xi)

= gT H(Bθ(x))g, θ ∈ Ω1 (23)

er(2)(x, g) ,
N

∑
j=1

N

∑
i=1

gjgi
∂2Er(x)
(∂xj∂xi)

= gT H(Er(x))g (24)

where H denote the Hessian operator, H(Aθ(x)) (H(Bθ(x)),H(Er(x))) is a N × N matrix
with its (j, i)-th element denoted by ∂2 Aθ(x)/(∂xj∂xi) (∂2Bθ(x)/(∂xj∂xi),∂2Er(x)/(∂xj∂xi)), where
i, j = 1, . . . , N.

Based on the definitions in (19)–(24), Theorem 2 presents the sufficient conditions for improvability.

Theorem 2. Suppose that Λ0 and Λ1 are the sets of all possible values of θ that maximize Aθ(0) and Bθ(0),
respectively, αo = max

θ∈Ω0
Aθ(0) and βo = max

θ∈Ω1
Bθ(0). The detector is improvable, if there exists a N-dimensional

column vector g that satisfies one of the following conditions for all θ0 ∈ Λ0 and θ1 ∈ Λ1:

(1) er(1)(x, g)
∣∣∣x=0 < 0 , a(1)θ0

(x, g)
∣∣∣x=0 < 0 , b(1)θ1

(x, g)
∣∣∣x=0 < 0 ;

(2) er(1)(x, g)
∣∣∣x=0 > 0 , a(1)θ0

(x, g)
∣∣∣x=0 > 0 , b(1)θ1

(x, g)
∣∣∣x=0 > 0 ;

(3) er(2)(x, g)
∣∣∣x=0 < 0 , a(2)θ0

(x, g)
∣∣∣x=0 < 0 , b(2)θ1

(x, g)
∣∣∣x=0 < 0 .

The proof is presented in Appendix B.
Theorem 2 indicates that under the condition (1), (2) or (3), there always exist noises that decrease

the weighted sum of average error probabilities under the constraints on the type I and II error
probabilities. In addition, alternative sufficient conditions for improvability can be obtained by
defining the following two functions, and they are:

I(t) = inf
{

Er(n)
∣∣∣∣max
θ∈Ω0

Aθ(n) = t, n ∈ RN
}

(25)

S(t) = sup
{

max
θ∈Ω1

Bθ(n)
∣∣∣∣max
θ∈Ω0

Aθ(n) = t, n ∈ RN
}

(26)

where I(t) and S(t) are the minimum weighted sum of two types of average error probabilities and the
maximum type II error probability for a given maximum type I error probability obtained via adding a
constant vector, respectively. If there is a t0 ≤ αo such that I(t0) ≤ Er(0) and S(0) ≤ βo, the detector
is improvable. More specifically, there exists a constant vector n0 that satisfies max

θ∈Ω0
Aθ(n0) = t0 ≤ αo,

Er(n0) ≤ Er(0) and max
θ∈Ω0

Bθ(n0) ≤ βo simultaneously. However, in most cases, the solution of the

optimization problem in (17) and (18) is not a constant vector. A more practical sufficient condition for
improvability is shown in Theorem 3.

Theorem 3. Let α̃ = max
θ∈Ω0

αx(φ; θ) and β̃ = max
θ∈Ω1

βx(φ; θ) be the respective maximum type I and II error

probabilities without adding any noise, and suppose that α̃ ≤ αo, β̃ ≤ βo and S(α̃) = β̃. If I(t) and S(t)
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are second-order continuously differentiable around t = α̃, and I ′′ (α̃) < 0 and S′′ (α̃) < 0 hold at the same
time, then the detector is improvable.

The proof is given in Appendix C.
Additionally, the following functions J(ε) and G(ε) are defined:

J(ε) = inf
{

Er(n)
∣∣∣∣max
θ∈Ω1

Bθ(n) = ε, n ∈ RN
}

(27)

G(ε) = sup
{

max
θ∈Ω0

Aθ(n)
∣∣∣∣max
θ∈Ω1

Bθ(n) = ε, n ∈ RN
}

(28)

A similar conclusion to the Theorem 3 can be made as well, provided in Corollary 1.

Corollary 1. The detector is improvable, if J ′′ (β̃) ≤ 0 and G′′ (β̃) ≤ 0 hold, where J(ε) and G(ε) are
second-order continuously differentiable around ε = β̃, and G(β̃) = α̃.

The proof is similar to that of Theorem 3 and it is omitted here.

2.3. Optimal Additive Noise

In general, it is difficult to solve the optimization problem in (17) and (18) directly, because the
solution is obtained based on the search over all possible additive noises. Hence, in order to reduce the
computational complexity, one can utilize Parzen window density estimation to obtain an approximate
solution. Actually, the pdf of the optimal additive noise can be approximated by:

pn(n) =
L

∑
l=1

ηlϑl(n) (29)

where ηl ≥ 0 and ∑L
l=1 ηl = 1, while ϑl(·) represents the window function that satisfies ϑl(x) ≥ 0 for

any x and
∫

ϑl(x)dx = 0 for l = 1, . . . , L. The window function can be a cosine window, rectangular
window, or Gauss window function. With (29), the optimization problem is simplified to obtain
the parameter values corresponding to each window function. In such cases, global optimization
algorithms can be applied such as Particle swarm optimization (PSO), Ant colony algorithm (ACA),
and Genetic algorithm (GA) [26–28].

If the numbers of parameter values in Ω0 and Ω1 are finite, the optimal additive noise for (17)
and (18) is a randomization of no more than M + K constant vectors. In this case, Ω0 and Ω1 can be
expressed by Ω0 = {θ01, θ02, . . . , θ0M} and Ω1 = {θ11, θ12, . . . , θ1K}, where M and K are finite positive
integers. The Theorem 4 states this claim.

Theorem 4. Suppose that each component in the optimal additive noise is finite, namely ni ∈ [ai, bi] for
i = 1, . . . , N, where ai and bi are two finite values. If Aθ0i (·) and Bθ1i (·) are continuous functions, the pdf of
the optimal additive noise for the optimization problem in (17) and (18) can be expressed as:

pn(n) =
M+K

∑
l=1

ηlδ(n− nl) (30)

where ηl ≥ 0 and ∑M+K
l=1 ηl = 1.

The proof is similar to that of Theorem 4 in [17] and Theorem 3 in [13], and omitted here.
In some special cases, the optimal additive can be solved directly based on the characteristics of I(t)
(H(ε)). For example, let Ermin = min

t
I(t) = I(tm) (Ermin = min

ε
H(ε) = I(εm)) and max

θ∈Ω0
Aθ(nm) = tm

(max
θ∈Ω1

Bθ(nm) = εm). If tm ≤ αo (εm ≤ βo) and max
θ∈Ω1

Bθ(nm) ≤ βo (max
θ∈Ω0

Aθ(nm) ≤αo), the optimal additive
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noise is a constant vector with pdf of pn(n) = δ(n− nm). In addition, equality of max
θ∈Ω0

E{Aθ(n)} = αo

(max
θ∈Ω1

E{Bθ(n)} = βo) holds if tm > αo (εm > βo).

3. Noise Enhanced Simple Hypothesis Testing

In this section, the noise enhanced binary simple hypothesis testing problem is considered, which
is a special case of the optimization problem in (9) and (10). Therefore, the conclusions obtained
in Section 2 are also applicable in this section. Furthermore, due to the specificity of simple binary
hypothesis testing problem, some additional results are also obtained.

3.1. Problem Formulation

When Ωi = {θi}, i = 0, 1, the composite binary hypothesis testing problem described in (1) is
simplified to a simple binary hypothesis testing problem. In this case, the probability of θi under Hi
equals to 1, i.e., vi(θ) = 1 for i = 0, 1. Therefore, the corresponding noise modified type I and II error
probabilities is rewritten as:

αy(φ) = αy(φ; θ0) =
∫
RN

pn(n)
∫

Γ1

f0(y− n)dydn = E{A0(n)} (31)

βy(φ) = βy(φ; θ1) =
∫
RN

pn(n)
∫

Γ0

f1(y− n)dydn = E{B1(n)} (32)

where f0(·) and f1(·) represent the pdfs of x under H0 and H1, respectively, and A0(n) and B1(n) are:

A0(n) =
∫

Γ1

f0(y− n)dy (33)

B1(n) =
∫

Γ0

f1(y− n)dy (34)

Correspondingly, the weighted sum of noise modified type I and II error probabilities is
calculated by:

Ery = c1αy(φ) + c2βy(φ) = c1E{A0(n)}+ c2E{B1(n)}
=
∫
RN pn(n)(c1 A0(n) + c2B1(n))dn

= E{Er(n)}
(35)

where
Er(n) = c1 A0(n) + c2B1(n) (36)

As a result, the optimization problem in (9) and (10) becomes:

popt
n (n) = argmin

pn(n)
E{Er(n)} (37)

subject to {
E{A0(n)} ≤ αo

E{B1(n)} ≤ βo
(38)

Based on the definitions in (33) and (34), A0(n) and B1(n) are viewed as the noise modified type I
and II error probabilities obtained by adding a constant vector noise. Furthermore, A0(0) and B1(0)
are the original type I and II error probabilities, respectively.

3.2. Algorithm for the Optimal Additive Noise

According to the Theorem 4 in Section 2.3, the optimal additive noise for the optimization problem
in (37) and (38) is a randomization of most two constant vectors with the pdf popt

n (n) = ηδ(n− n1) +
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(1− η)δ(n− n2). In order to find the values of η, n1 and n2, we first divide each constant vector n
into four disjoint sets according to the relationships of A0(n) and αo, B1(n) and βo. To be specific,
the four disjoint sets are Q1 = {n|A0(n) ≤ αo, B1(n) ≤ βo}, Q2 = {n|A0(n) ≤ αo, B1(n) > βo},
Q3 = {n|A0(n) > αo, B1(n) ≤ βo}, and Q4 = {n|A0(n) > αo, B1(n) > βo}. Then, we calculate
the minimum Er(n), the corresponding set of all possible values of n is denoted by
Qe =

{
n
∣∣∣n = argmin

n
Er(n)

}
. It should be noted that n ∈ Qe is the optimal additive noise that

minimizes the weighted sum without constraints.
It is obvious that Q1, Q2 and Q3 do not exist if all the elements of Qe belong to Q4. In other

words, if Qe ⊂ Q4, there is no additive noise that satisfies E{Er(n)} < Er(0) under the constraints of
E{A0(n)} ≤ αo and E{B1(n)} ≤ βo. Therefore, if the detector is improvable, the elements of Qe must
come from Q1, Q2 and/or Q3. Theorem 5 is now provided to find the values of η, n1 and n2.

Theorem 5. Let η1 = αo−A0(n2)
A0(n1)−A0(n2)

and η2 = βo−B1(n2)
B1(n1)−B1(n2)

.

(1) If Qe ∩Q1 6= ∅, then η = 1 and n1 ∈ Qe ∩Q1 such that Ery
opt = Er(n1) = min

n
Er(n).

(2) If Qe ∩Q2 6= ∅ and Qe ∩Q3 6= ∅ are true, then we have n1 ∈ Qe ∩Q2, n2 ∈ Qe ∩Q3, η1 ≤ η ≤ η2,
and Ery

opt = min
n

Er(n).

(3) If Qe ⊂ Q2, then Ery
opt is obtained when η = η2, and the corresponding E{A0(n)} achieves the minimum

and E{B1(n)} = βo.
(4) If Qe ⊂ Q3, then Ery

opt is achieved when η = η1, and the corresponding E{A0(n)} = αo and E{B1(n)}
reaches the minimum.

The corresponding proofs are provided in Appendix D.
From (3) and (4) in Theorem 5, under the constraints on E{A0(n)} ≤ αo and E{B1(n)} ≤ βo, the

solution of the optimization problem in (37) and (38) is identical with the additive noise that minimizes
E{A0(n)} (E{B1(n)}) when Qe ⊂ Q2 (Qe ⊂ Q3). In such cases, the optimal solution can be obtained
easily by referring the algorithm provided in [14].

4. Numerical Results

In this section, a binary hypothesis testing problem is studied to verify the theoretical analysis,
and it is: {

H0 : x = v
H1 : x = Θ + v

(39)

where x ∈ R is an observation, Θ is a constant or random variable, and v is the background noise
with pdf pv(·). From (39), the pdf of x under H0 is f0(x) = pv(x), and the pdf of x under H1 for a
given parameter value Θ = θ is denoted by fθ(x) = pv(·) ∗ pθ(·), where pθ(·) represents the pdf of
Θ = θ. A noise modified observation y is obtained via adding an additive independent noise n to
the observation x, i.e., y = x + n. If the additive noise n is a constant vector, the pdf of y under H0 is
calculated as f0(y) = f0(x− n), and the pdf of y under H1 for Θ = θ is fθ(y) = fθ(x− n). In addition,
a linear- quadratic detector is utilized here, given by:

T(y) = d0y2 + d1y + d2
H1
>
<
H0

γ (40)

where d0, d1 and d2 are detector parameters, and γ denotes the detection threshold. In the
numerical examples, αo = αx and βo = βx, where αx and βx are the original type I and II error
probabilities, respectively.
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4.1. Rayleigh Distribution Background Noise

Suppose that Θ = s is a constant, the problem shown in (39) represents a simple binary hypothesis
testing problem. Here, we set d0 = d2 = 0 and d1 = 1, then the detector becomes

T(y) = y
H1
>
<
H0

γ (41)

It is assumed that the background noise v obeys the mixture of Rayleigh distributions with zero-means
such that pv(v) = ∑M

i=1 mi ϕi(v− µi), where mi ≥ 0 for i = 1, . . . , M, ∑M
i=1 mi = 1, and

ϕi(x) =

{
x

σ2
i

exp(− x2

2σ2
i
), x ≥ 0

0, x < 0
(42)

In the simulations, the variances of all the Rayleigh components are assumed to be the same,
i.e., σi = σ for i = 1, . . . , M. In addition, the parameters are specified as M = 4, u1 = 0.2, u2 = 0.4,

u3 = −2σ
√

π
2 − 0.2, u4 = −2σ

√
π
2 − 0.4 and mi = 0.25 for i = 1, . . . , 4. From (33) and (34), the noise

modified type I error probability A0(n) and type II error probability B1(n) obtained by adding a
constant vector n is calculated as:

A0(n) =
∫ +∞

γ
f0(y)dy =

4

∑
i=1

miΦ(γ− µi − n) (43)

B1(n) =
∫ γ

−∞
f1(y)dy =1−

4

∑
i=1

miΦ(γ− µi − n− s) (44)

where Φ(x) =
∫ ∞

x
x

σ2 exp(− x2

2σ2 )dt, when x > 0; Φ(x) = 1, when x ≤ 0. Accordingly, αx = A0(0)
= ∑4

i=1 miΦ(γ− µi) and βx = B1(0) = 1 − ∑4
i=1 miΦ(γ− µi − s). Let c1 = βx/(αx + βx) and

c2 = αx/(αx + βx), the noise modified weighted sum of the two types of error probabilities obtained
via adding a constant vector is Er(n) = c1∑4

i=1 miΦ(γ− µi − n) + c2∑4
i=1 miΦ(γ− µi − n− s).

From Section 3.2, the pdf of the optimal additive noise that minimizes weighted sum of type I and
II error probabilities is denoted by popt

n (n) = ηδ(n− n1) + (1− η)δ(n− n2), under the two constraints
that αy ≤ αx and βy ≤ βx. Moreover, the optimal additive noise for the case without any constraints is
a constant vector.

Figure 1 plots the minimum noise modified weighted sums of type I and II error probabilities
obtained under no constraint and two constraints that αy ≤ αx and βy ≤ βx, and the original weighted
sum without adding any noise for different values of σ when s = 3 and γ = s/2. When σ ≤ σ1, there
is no noise that decreases the weighted sum. With the increase of σ, noise exhibits a positive effect on
the detection performance. To be specific, when σ1 < σ < σ2, the weighted sum can be decreased by
adding a constant vector for the no constraint case. When σ > σ2, the weighted sum can be decreased
adding the noise under two constraints. The noise modified weighted sum obtained without any
constraints is less than or equal to that obtained under the two constraints, and the difference between
them first decreases to zero for σ3 < σ < σ4 and then gradually increases when σ > σ4. In addition,
once σ exceeds a certain value, no noise exists that can decrease the weighted sum for any cases.
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Figure 1. The minimum noise modified weighted sums of the type I and II error probabilities obtained
under no constraint and two constraints, and the original weighted sum for different σ when s = 3 and
γ = s/2.

Figure 2 shows the type I and II error probabilities corresponding to the weighted sum in Figure 1.
From both Figures 1 and 2, it is observed that one of the noise modified Type I and II error probabilities
performs worse than the original one for the no constraint case. Therefore, though the noise modified
weighted sum obtained with no constraint is less than that obtained under the two constraints, the
corresponding noise is actually not suitable to add to the observation. Furthermore, when the minimum
value of the noise modified weighted sum is obtained under the two constraints, the corresponding
type II probability equals to the original one and the type I probability achieves the minimum for
σ2 < σ < σ3. Conversely, when σ > σ4, the corresponding type I probability equals to the original one
and the type II probability achieves the minimum. The results are consistent with part (3) and part (4)
in Theorem 5. Especially, for σ3 < σ < σ4, the minimum values of the noise modified weighted sum
obtained under no constraint is equal to that obtained under two constraints, and the corresponding
type I and II error probabilities are the same, which also agrees with part (2) in Theorem 5. In order to
further illustrate the results in Figures 1 and 2, Table 1 provides the optimal additive noises added for
the two different cases.
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Table 1. The optimal additive noises that minimize the weighted sum under two constraints and no
constraint for various σ where s = 3 and γ = s/2.

σ
Two Constraints No Constraints

n1 n2 η no

0.950 - - - −1.7089
1.250 −1.9082 1.7963 0.6950 −1.9218
2.125 −2.5136 3.1896 0.7862 −2.5136/3.1896
3.000 −3.3771 4.6942 0.3770 4.7449

Figure 3 depicts the minimum noise modified weighted sums of the type I and II error probabilities
versus s for the cases of no constraint and two constraints, and the original weighted sum, when
σ = 1 and γ = s/2. The corresponding type I and II error probabilities are depicted in Figure 4a,b,
respectively. It is seen in Figure 3, the improvement of the weighted sum obtained by adding noise
first increases and then decreases with the increase of s, and finally they all converge to the same
value. The differences for the cases with and without constraints are very small in most cases. In the
small interval of s, i.e., s ∈ (s1, s2), the difference even decreases to zero. On the other hand, the noise
modified type I error probability obtained under no constraint is significantly greater than the original
one for s < s1, while the corresponding type II error probability is less than that obtained under the
two constraints. The situation, however, is reversed for s2 < s < s3. When s > s3, there is no noise that
decreases the weighted sum under the two constraints, while the weighted sum is still decreased by
adding a constant vector for no constraint case. When s > s4, the weighted sum cannot be decreased
by adding any noise for all the cases. Furthermore, Table 2 shows the optimal additive noises that
minimize the weighted sum under the cases of no and two constraints.Entropy 2017, 19, 278  13 of 23 
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Figure 3. The minimum noise modified weighted sums of the type I and II error probabilities obtained
under no constraint and two constraints, and the original weighted sum for different s when σ = 1 and
γ = s/2.

Table 2. The optimal additive noises that minimize the weighted sum under two constraints and no
constraint for various s where σ = 1 and γ = s/2.

s
Two Constraints No Constraints

n1 n2 η no

1.25 −1.3682 1.7327 0.2918 1.7474
1.75 −1.4408 1.6563 0.7265 −1.4408/1.6563
2.5 −1.6052 1.4690 0.6983 −1.6201
3.25 - - - −0.5866
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Figure 4. The type I and II error probabilities corresponding to the weighted sum in Figure 3 are shown
in (a) and (b), respectively.

Figure 5 shows the minimum noise modified weighted sums of type I and II error probabilities
versus γ for the cases of no constraint and two constraints, and the original weighted sum, when σ = 1
and s = 3. The corresponding type I and II error probabilities are depicted in Figure 6a,b, respectively.
As illustrated in Figure 5, when γ is close to zero, the original weighted sum Erx approaches to zero.
In such case, no additive noise exists to decrease the weighted sum. For the case of two constraints, the
improvement of the weighted sum first increases for γ1 < γ < γ2 and then decreases for γ2 < γ < γ3,
and no improvement can be obtained when γ > γ2. On the other hand, the minimum noise modified
weighted sum obtained under no constraint is smaller than that obtained under the two constraints for
γ1 < γ < γ3, and the difference between them first increases and then decreases for both γ1 < γ < γ2

and γ2 < γ < γ3. When γ > γ3, there still exists a constant vector that decreases the weighted sum, but
it may be not a suitable noise in the practical application according to the type II probability depicted
in Figure 6b. Furthermore, in order to study the results illustrated in Figures 5 and 6, Table 3 shows the
optimal additive noises that minimize the weighted sum for the cases of no and two constraints.
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Figure 5. The minimum noise modified weighted sums of the type I and II error probabilities obtained
under no constraint and two constraints, and the original weighted sum for different γ when σ = 1 and
s = 3.
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Figure 6. The type I and II error probabilities corresponding to the weighted sum in Figure 5 are shown
in (a) and (b), respectively.

Table 3. The optimal additive noises that minimize the weighted sum under two constraints and no
constraint for various γ where σ = 1 and s = 3.

γ
Two Constraints No Constraints

n1 n2 η no

0.050 - - - -
1.100 −2.1213 0.9341 0.2878 0.9691
1.425 −1.7947 1.2585 0.5355 −1.7957
2.250 −0.9693 2.0836 0.8867 −1.1763
3.375 - - - −0.5775

4.2. Gaussian Mixture Background Noise

Suppose that Θ is a random variable with following pdf:

v1(θ) = ρδ(θ − s) + (1− ρ)δ(θ + s) (45)

Therefore, we have Ω0 = {0} and Ω1 = {s,−s}. In the simulations, we set d0 = 1, d1 = 0,
d2 = −s2/4 and γ = 0, the detector is expressed as:

T(y) = y2 − s2

4
H1
>
<
H0

0 (46)

Moreover, we assume that v is a zero-mean symmetric Gaussian mixture noise with pdf of
pv(v) = ∑M

i=1 miψi(v− µi), where mi ≥ 0, ∑M
i=1 mi = 1 and:

ψi(v) =
1√

2πσ2
i

exp(− v2

2σ2
i
) (47)

Let M = 4 and the mean values of the symmetric Gaussian components are set as
[0.05 0.52 −0.52 −0.05] with corresponding weights [0.35 0.15 0.15 0.35]. In addition, the variances of
Gaussian components are the same, i.e., σi = σ for i = 0, . . . , 4. According to (12) and (14), the noise
modified type I error probability obtained by adding a constant vector n to x is calculated by:
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A0(n) =
4

∑
i=1

mi(Ψ(
s/2 + µi + n

σ
) + Ψ(

s/2− µi − n
σ

)) (48)

and the corresponding type II error probabilities for Θ = s and −s are respectively calculated as:

Bs(n) = 1−
4

∑
i=1

mi(Ψ(
3s/2 + µi + n

σ
) + Ψ(

−s/2− µi − n
σ

)) (49)

B−s(n) = 1−
4

∑
i=1

mi(Ψ(
−s/2 + µi + n

σ
) + Ψ(

3s/2− µi − n
σ

)) (50)

where Ψ(x) =
∫ ∞

x
1√
2π

exp(− t2

2σ2 )dt. Accordingly:

B1(n) = ρBs(n) + (1− ρ)B−s(n) (51)

Therefore, the original type I and type II error probabilities for Θ = s and−s are αx(φ; 0) = A0(0),
βx(φ; s) = Bs(0) and βx(φ;−s) = B−s(0), respectively.

Due to the symmetry property of v, one obtains Bs(0) = B−s(0). In this case, the original
average type II error probability is βx = B1(0) = ρβx(φ; s) + (1− ρ)βx(φ;−s) = Bs(0) = B−s(0).
The noise modified weighted sum of type I and average type II error probabilities corresponding
to the constant vector is expressed by Er(n) = c1 A0(n) + c2B1(n). The values of c1 and c2 are
still specified as βx/(αx + βx) and αx/(αx + βx), respectively. From Theorem 4 in Section 2.3,
the optimal additive noise that minimizes the weighted sum is a randomization with a pdf of
popt

n (n) = η1δ(n− n1) + η2δ(n− n2) + η3δ(n− n3), where ηi ≥ 0 for i = 1, . . . , 3, and ∑3
i=1 ηi = 1.

Figure 7 shows the detection performance of the original detector and the noise enhanced
detector that minimizes the weighted sum of type I and average type II error probabilities under
the constraints that αy(φ; 0) ≤ αo and max

θ∈Ω1
βy(φ; θ) ≤ βo, for different values of σ where s = 1 and

ρ = 0.6. The minimum achievable noise modified weighted sum is plotted in Figure 7a, and the
corresponding type I error probability and type II error probabilities for Θ = s and −s are depicted in
Figure 7b–d, respectively.

From Figure 7, the original weighted sums, type I error probabilities, and type II error probabilities
for Θ = s and −s increase as σ decreases towards zero. In Figure 7a, when σ is close to zero, the
weighted sum can be decreased significantly. With the increase of σ, the improvement obtained
by adding noise is reduced gradually to zero. In other words, the phenomenon of noise-enhanced
detection performance cannot occur when σ exceeds a certain value. In Figure 7b, the noise modified
type I error probability stays at 0.1500 for σ < 0.07 and then increases gradually to equal to the
original type I error probability. Moreover, the noise modified type II error probabilities for Θ = s
corresponding to the minimum weighted sum increases from zero to that of original detector, shown
in Figure 7c, while the type II error probabilities for Θ = −s of the noise enhanced detector is equal to
that of the original detector all the time. In fact, the type II error probability for Θ = s also reaches the
minimums under the constraints that αy(φ; 0) ≤ αo and max

θ∈Ω1
βy(φ; θ) ≤ βo in this example. In addition,

Table 4 offers the optimal additive noises that minimize the weighted sum for different values of σ to
explain the results in Figure 7. It should be noted that the optimal noise is not unique.y.



Entropy 2017, 19, 276 16 of 22

Entropy 2017, 19, 278  16 of 23 

 

(a) (b) 

(c) (d) 

Figure 7. The weighted sums, type I error probabilities, and type II error probabilities for sΘ =  
and s−  of the original detector and the noise enhanced detector for different σ  where 1s =  and 

0.6ρ =  shown in (a), (b), (c) and (d), respectively. 

From Figure 7, the original weighted sums, type I error probabilities, and type II error 
probabilities for sΘ =  and s−  increase as σ  decreases towards zero. In Figure 7a, when σ  is 
close to zero, the weighted sum can be decreased significantly. With the increase of σ , the 
improvement obtained by adding noise is reduced gradually to zero. In other words, the 
phenomenon of noise-enhanced detection performance cannot occur when σ  exceeds a certain 
value. In Figure 7b, the noise modified type I error probability stays at 0.1500 for 0.07σ <  and then 
increases gradually to equal to the original type I error probability. Moreover, the noise modified 
type II error probabilities for sΘ =  corresponding to the minimum weighted sum increases from 
zero to that of original detector, shown in Figure 7c, while the type II error probabilities for sΘ = −  
of the noise enhanced detector is equal to that of the original detector all the time. In fact, the type II 
error probability for sΘ =  also reaches the minimums under the constraints that ( ;0)y

oα φ α≤  and 

1

max ( ; )y
oθ

β φ θ β
∈Ω

≤  in this example. In addition, Table 4 offers the optimal additive noises that 

minimize the weighted sum for different values of σ  to explain the results in Figure 7. It should 
be noted that the optimal noise is not unique.  
  

0 0.05 0.1 0.15 0.2
0.08

0.1

0.12

0.14

0.16

0.18

0.2

σ

E
r

 

 

Erx

Ery

0 0.05 0.1 0.15 0.2
0.1

0.15

0.2

0.25

0.3

0.35

σ

α

 

 

αx(φ;0)

αy(φ;0)

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

σ

β

 

 

βx(φ;s)

βy(φ;s)

0 0.05 0.1 0.15 0.2
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

σ

β

 

 

βx(φ;-s)

βy(φ;-s)

Figure 7. The weighted sums, type I error probabilities, and type II error probabilities for Θ = s and −s
of the original detector and the noise enhanced detector for different σ where s = 1 and ρ = 0.6 shown
in (a), (b), (c) and (d), respectively

Table 4. The optimal additive noises that minimize the weighted sum under two constraints for various
σ where s = 1 and ρ = 0.6.

σ n1 n2 n3 η1 η2 η3

0.0001 0.2286 - - 1.0000 - -
0.02 0.2286 −0.2255 - 0.8413 0.1587 -
0.05 0.2287 −0.2208 0.2421 0.5310 0.3446 0.1244
0.08 0.2180 −0.2185 −0.2168 0.5943 0.2449 0.1608

Figure 8a demonstrates the weighted sums of type I and average type II error probabilities
of the original detector and the noise enhanced detector versus s, where σ = 0.08 and ρ = 0.6.
The corresponding type I error probability and type II error probabilities for Θ = s and −s are
depicted in Figure 8b–d, respectively. From Figure 8a, the weighted sum cannot be decreased under
the constraints on different error probabilities for s < s1 and s < s2. Conversely, there exists additive
noise under the constraints that reduces the weighted sum for s1 < s < s2, and the corresponding
improvement first increases and then decreases with the increase of s. Comparing Figure 8b with
Figure 8a, it is noted that the change of the noise modified type I error probability is similar to that of
the noise modified weighted sum. In Figure 8c, the noise modified type II error probability for Θ = s
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first decreases to the minimum and then increases as s increases, while the type II error probability
for Θ = −s of the noise modified detector is always equal to that of the original detector, shown in
Figure 8d. In addition, in order to further illustrate the results in Figure 8, Table 5 shows the optimal
noises that minimize the weighted sum under the case of two constraints.
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Figure 8. The weighted sums, type I error probabilities, and type II error probabilities for Θ = s and
−s of the original detector and the noise enhanced detector for different s where σ = 0.08 and ρ = 0.6
shown in (a), (b), (c) and (d), respectively.

Table 5. The optimal additive noises that minimize the weighted sum under two constraints for various
s where σ = 0.08 and ρ = 0.6.

s n1 n2 n3 η1 η2 η3

0.65 0.1613 −0.1613 - 0.6267 0.3733 -
0.75 0.2026 −0.2026 - 0.7949 0.2051 -
0.85 0.2148 −0.2149 -0.2150 0.8262 0.1300 0.0438
0.95 0.2195 −0.2196 -0.2190 0.7006 0.1916 0.1078

5. Conclusions

In this paper, a noise-enhanced detection problem has been investigated for a general composite
hypothesis testing. Under the constraints of type I and II error probabilities, the minimization of the
weighted sum of average type I and II error probabilities has been explored by adding an additive
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independent noise. The sufficient conditions for improvability of the weighted sum are provided, and
a simple algorithm to search the optimal noise is developed. Then some additional theoretical results
are made based on the specificity of the binary simple hypothesis testing problem. The studies on
different noise distributions confirm the theoretical analysis that the optimal additive noise indeed
minimizes the weighted sum under certain conditions. To be noted that, theoretical results can also be
extended to a broad class of noise enhanced optimization problems under two inequality constraints
such as the minimization of Bayes risk under the different constraints of condition risks for a binary
hypothesis testing problem.
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Appendix A. Proof of Theorem 1

Proof. Due to the convexity of Aθ∗(n) and according to the Jensen’s inequality, the type I error
probability in (4) is calculated as:

αy(φ; θ∗) = E{Aθ∗(n)} ≥ Aθ∗(E{n}) (A1)

The contradiction method is utilized to prove this theorem. Suppose that the detector can be
improved by adding noise. The improvability means that αy(φ; θ∗) ≤ αo for any θ∗ ∈ Ω0, and then
Aθ∗(E{n}) ≤ αo from (A1). Since E{n} ∈ Pn, Aθ∗(E{n}) ≤ αo implies Er(E{n}) ≥ Er(0) based on
the assumption in Theorem 1, (15) can be recalculated as:

Ery = E{Er(n)} ≥ Er(E{n}) ≥ Er(0) = Erx (A2)

where the first inequality holds according to the convexity of Er(n). From (A1) and (A2), the inequality
Ery < Erx cannot be achieved by adding any noise under the conditions presented in Theorem 1.
Therefore, the detector is nonimprovable, which contradicts the assumption. Similarly, the alternative
conditions for nonimprovability stated in the parentheses can also be proved. �

Appendix B. Proof of Theorem 2

Proof. According to the definitions in (9) and (10), improvability for a detector means that there
exists at least one pdf pn(n) to satisfy three conditions, i.e., Ery =

∫
RN pn(n)Er(n)dn < Er(0),∫

RN pn(n)Aθ(n)dn ≤ αo for any θ ∈ Ω0 and
∫
RN pn(n)Bθ(n)dn ≤ βo for any θ ∈ Ω1. Suppose that the

noise pdf pn(n) consists of L infinitesimal noise components, i.e., pn(n) = ∑L
l=1 λlδ(n− εl). The three

conditions can be rewritten as follows:

Ery =
L

∑
l=1

λlEr(εl) < Er(0) (A3)

L

∑
l=1

λl Aθ(εl) ≤ αo, ∀θ ∈ Ω0 (A4)

L

∑
l=1

λl Bθ(εl) ≤ βo, ∀θ ∈ Ω1 (A5)
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Since εl , l = 1, . . . , L, is infinitesimal, Er(εl), Aθ(εl) and Bθ(εl) can be expressed
approximately with Taylor series expansion as Er(0) + εT

l Er + 0.5εT
l Hεl , Aθ(0) + εT

l Aθ + 0.5εT
l HA

θ εl
and Bθ(0) + εT

l Bθ + 0.5εT
l HB

θεl , where Er(Aθ ,Bθ) and H(HA
θ ,HB

θ ) are the gradient and the Hessian
matrix of Er(x)(Aθ(x),Bθ(x)) around x = 0, respectively. Therefore, (A3)–(A5) are rewritten as:

L

∑
l=1

λlε
T
l Er + 0.5

L

∑
l=1

λlε
T
l Hεl < 0 (A6)

L

∑
l=1

λlε
T
l Aθ + 0.5

L

∑
l=1

λlε
T
l HA

θ εl ≤ αo − Aθ(0), ∀θ ∈ Ω0 (A7)

L

∑
l=1

λlε
T
l Bθ + 0.5

L

∑
l=1

λlε
T
l HB

θ εl ≤ βo − Bθ(0), ∀θ ∈ Ω1 (A8)

Let εl be expressed by εl = τlg, where g is a N-dimensional real vector and τl is an infinitesimal
real value, l = 1, . . . , L. Accordingly, one obtains:

L

∑
l=1

λlτlg
TEr + 0.5

L

∑
l=1

λlτ
2
l gTHg < 0 (A9)

L

∑
l=1

λlτlg
TAθ + 0.5

L

∑
l=1

λlτ
2
l gTHA

θ g ≤ αo − Aθ(0), ∀θ ∈ Ω0 (A10)

L

∑
l=1

λlτlg
TBθ + 0.5

L

∑
l=1

λlτ
2
l gTHB

θ g ≤ βo − Bθ(0), ∀θ ∈ Ω1 (A11)

Based on the definitions given in (19)–(24), (A9)–(A11) are simplified as:

(k · er(1)(x, g) + er(2)(x, g))
∣∣∣x=0 < 0 (A12)

(k · a(1)θ (x, g) + a(2)θ (x, g))

∣∣∣∣∣x=0 <
2(αo − Aθ(0))

∑L
l=1 λlτ

2
l

, ∀θ ∈ Ω0 (A13)

(k · b(1)θ (x, g) + b(2)θ (x, g))

∣∣∣∣∣x=0 <
2(βo − Bθ(0))

∑L
l=1 λlτ

2
l

, ∀θ ∈ Ω1 (A14)

where k = 2∑L
l=1 λlτl/∑L

l=1 λlτ
2
l . As αo = Aθ(0) for θ ∈ Λ0 and αo > Aθ(0) for θ ∈ Ω0Λ0, the

right-hand side of (A13) approaches to plus infinity for θ ∈ Ω0Λ0. Similarly, when βo = Bθ(0)
for θ ∈ Λ1 and βo > Bθ(0) for θ ∈ Ω1Λ1, the right-hand side of (A14) also goes to plus infinity
for θ ∈ Ω1Λ1. Therefore, we only need to consider the cases of θ ∈ Λ0 and θ ∈ Λ1. In doing so,
(A12)–(A14) are now:

(k · er(1)(x, g) + er(2)(x, g))
∣∣∣x=0 < 0 (A15)

(k · a(1)θ (x, g) + a(2)θ (x, g))
∣∣∣x=0 < 0, ∀θ ∈ Λ0 (A16)

(k · b(1)θ (x, g) + b(2)θ (x, g))
∣∣∣x=0 < 0, ∀θ ∈ Λ1 (A17)

It is obvious that k can be set as any real value by choosing appropriate λl and τl . As a result,
(A15)–(A17) can be satisfied by selecting a suitable value of k under each condition in Theorem 2.
That is:

(1) Inequalities (A15)–(A17) can be satisfied by setting k as a sufficiently large positive number, if

er(1)(x, g)
∣∣∣x=0 < 0 , a(1)θ0

(x, g)
∣∣∣x=0 < 0 , b(1)θ1

(x, g)
∣∣∣x=0 < 0 hold.
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(2) Inequalities (A15)–(A17) can be satisfied by setting k as a sufficiently large negative number, if

er(1)(x, g)
∣∣∣x=0 > 0 , ea(1)θ0

(x, g)
∣∣∣x=0 > 0 , b(1)θ1

(x, g)
∣∣∣x=0 > 0 hold.

(3) Inequalities (A15)–(A17) can be satisfied by setting k as zero, if er(2)(x, g)
∣∣∣x=0 < 0 ,

a(2)θ0
(x, g)

∣∣∣x=0 < 0 , b(2)θ1
(x, g)

∣∣∣x=0 < 0 hold. �

Appendix C. Proof of Theorem 3

Proof. Since I(t) and S(t) are second-order continuously differentiable around t = α̃, there exists
a ξ > 0 such that I ′′ (·) < 0 and S′′ (·) < 0 for ∆ = (α̃ − ξ, α̃ + ξ). If one adds a noise with pdf
pn̂(n) = 0.5δ(n− n1) + 0.5δ(n− n2), where max

θ∈Ω0
Aθ(n1) = α̃ + ξ and max

θ∈Ω0
Aθ(n2) = α̃ − ξ, to the

original observation x, the maximum values of corresponding noise modified type I and II error
probabilities are:

max
θ∈Ω0

E{Aθ(n̂)} ≤ E
{

max
θ∈Ω0

Aθ(n̂)
}
≤ 0.5(α̃ + ξ) + 0.5(α̃− ξ) = α̃ ≤ αo (A18)

max
θ∈Ω1

E{Bθ(n̂)} ≤ E
{

max
θ∈Ω1

Bθ(n̂)
}
≤ 0.5S(α̃ + ξ) + 0.5S(α̃− ξ) ≤ S(α̃) = β̃ ≤ βo (A19)

In addition:
E{Er(n̂)} = E{I(t)} = 0.5I(α̃ + ξ) + 0.5I(α̃− ξ) < I(α̃) (A20)

One obtains E{Er(n̂)} < Er(0) because I(α̃) ≤ Er(0) according to the definition of I(t). As a
result, the detector is improvable. �

Appendix D. Proof of Theorem 5

Proof. Part (1): If Qe ∩ Q1 6= ∅, any n1 ∈ Qe ∩ Q1 satisfies the constraints of A0(n1) ≤ αo and
B1(n1) ≤ βo based on the definition of Q1 and Ery

opt = Er(n1) = min
n

Er(n) < Er(0) according to the
definition of Qe.

Part (2): If Qe ∩ Q2 6= ∅ and Qe ∩ Q3 6= ∅ simultaneously, there exists n1 ∈ Qe ∩ Q2 and
n2 ∈ Qe ∩Q3 such that Er(n1) = Er(n2) = min

n
Er(n) based on the definition of Qe. In order to meet

the constraints that E{A0(n)} ≤ αo and E{B1(n)} ≤ βo, the noise components η, n1 and n2 should
satisfy the following two inequalities:

ηA0(n1) + (1− η)A0(n2) ≤ αo (A21)

ηB1(n1) + (1− η)B1(n2) ≤ βo (A22)

Consequently, η ≥ η1 = αo−A0(n2)
A0(n1)−A0(n2)

and η ≤ η2 = βo−B1(n2)
B1(n1)−B1(n2)

according to the definitions of

Q2 and Q3. If η1 ≤ η ≤ η2, the noise with pdf popt
n (n) = ηδ(n− n1) + (1− η)δ(n− n2) can minimize

E{Er(n)} and satisfy the two inequalities, and Ery
opt = ηEr(n1) + (1− η)Er(n2) = min

n
Er(n).

Part (3): If Qe ⊂ Q2, the optimal additive noise is not a constant vector, i.e., η 6= 1. Therefore, one
of n1 and n2 belongs to Q2 and the second one comes from Q1 or Q3. In addition, η, n1 and n2 should
also satisfy the two constraints in (A21) and (A22).

First, suppose that n1 ∈ Q2 and n2 ∈ Q1, then (A21) holds based on the definitions of Q1

and Q2. We should only consider the constraint in (A22), which implies η ≤ η2. It is true that
A0(n2) ≤ αo and B1(n2) ≤ βo according to the definition of Q1. If Er(n1) > Er(n2), we have
Er(n2) < Ery

opt = ηEr(n1) + (1− η)Er(n2), which contradicts with the definition of popt
n (n). Hence,

Er(n1) < Er(n2) and the minimum of E{Er(n)} is obtained when η = η2.
Next, suppose that n1 ∈ Q2 and n2 ∈ Q3. The two inequalities in (A21) and (A22) require that

η1 ≤ η ≤ η2. If Er(n1) > Er(n2), the minimum of E{Er(n)} is obtained when η = η1. In such
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case, there exists a noise with pdf pn̂(n) = ςpopt
n (n) + (1− ς)δ(n− ne) that satisfies E{A0(n̂)} ≤ αo

and E{B1(n̂)} ≤ βo simultaneously, where ne ∈ Qe and 0 ≤ ς ≤ 1. Therefore, E{Er(n̂)} = ςEry
opt+

(1− ς)Er(ne) < Ery
opt since Er(ne) = min

n
Er(n) < Ery

opt, which contradicts with the definition of

popt
n (n). As a result, Er(n1) < Er(n2) and the minimum of E{Er(n)} is obtained when η = η2.

When η = η2, one obtains E{B1(n)} = ηB1(n1) + (1 − η)B1(n2) = βo. In other words, the
minimum of E{Er(n)} is obtained when E{A0(n)} achieves the minimum and E{A0(n)}. Accordingly,
one obtains Ery

opt = c1α
y
opt + c2βo.

Part (4): The proof of Part (4) is similar to that of Part (3) and it is omitted here. �
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