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Abstract: Bilateral contract transaction among generation companies and large consumers is attracting
much attention in the electricity market. A large consumer can purchase energy from generation
companies directly under a bilateral contract, which can guarantee the economic interests of both
sides. However, in pursuit of more profit, the competitions in the transaction exist not only between
the company side and the consumer side, but also among generation companies. In order to maximize
its profit, each company needs to optimize bidding price to attract large consumers. In this paper,
a master–slave game is proposed to describe the competitions among generation companies and
large consumers. Furthermore, a Bayesian game approach is formulated to describe the competitions
among generation companies considering the incomplete information. In the model, the goal of
each company is to determine the optimal bidding price with Bayesian game; and based on the
bidding price provided by companies and the predicted spot price, large consumers decide their
personnel purchase strategy to minimize their cost. Simulation results show that each participant
in the transaction can benefit from the proposed game.

Keywords: bilateral contract; direct power purchase; incomplete information; Bayesian game;
master–salve game

1. Introduction

With the development of the smart grid and the deep reform of electricity market, the market
is becoming more and more active. Many kinds of transaction models among generation companies
and consumers have appeared in the market. The practice of direct power purchase transaction by
large consumers demonstrates that the electricity market is transforming from a single generation side
market to a bilateral market [1]. Compared with other electricity market mechanisms, the bilateral
market has its unique advantages. Bilateral contracts are crucial to the functioning of electricity
markets, because they allow both parties to have the price stability and certainty necessary to perform
long-term planning and to make rational and socially optimal investments. The revenue and cost
certainty associated with bilateral contracts presents a number of benefits to sellers and buyers. Ranked
roughly from near-term to longer-term, these benefits include: less volatile retail prices, mitigation of
market power, support for the development of new resources, and more cost-effective, environmentally
attractive resources in the long-term. In recent years, many countries have concentrated on the bilateral
market, such as Portugal, India, Spain, Turkey [2–6].

In the direct purchase transaction, bilateral contract transactions have become a research hotspot
in the electricity market field [7–9]. Many researchers have proposed different methods to formulate
optimal bilateral contracts among retailers and generators, such as mathematical program with
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equilibrium constraints [10] and stochastic linear programming [11]. Specifically, game-theoretic
methods have been employed extensively to solve this problem. Based on game theory, players in the
game must take other players’ strategies into consideration when making their own strategy in order
to maximize their profits. Since each participant in the bilateral contract transaction must consider
other participants’ strategies when optimizing its strategy, the application of game-theoretic methods
in the transaction is very reasonable. Generally, game-theoretic methods can be divided into complete
information game and incomplete information game (=also called Bayesian game) according to the
degree of disclosure of player’s information [12]. Each player in the complete information game shares
its own information with other players, while in Bayesian game, some private information of players
is not shared, such as the player’s payoff [13,14].

At present, the majority of existing literature on bilateral contract transactions focuses on game
theory with complete information. The authors in [15] studied the optimal strategies of a bilateral
contract based on a cooperative game among retailers and generators. The work of [16,17] proposed
a two-level game model to optimize purchasing and selling strategies of power retailers in the spot
market and bilateral contract market. While in [18], the authors developed a programming model
to maximize the profit of generation companies and large consumers by finding a game relationship
among companies and users. Reference [19] provided a high–low matching auction mechanism based
on the secondary trade of a bilateral contract so that each participant’s profit can be maximized by
constantly modifying strategies of price and energy amount. Authors in [20] proposed a master–slave
game model to optimize bidding price for multiple generation companies and purchase strategy for
large consumers. However, in reality, many players refuse to share private information with their
opponents; for example, the generation cost of a generator is a trade secret, and it is unrealistic to
assume such information is public. Therefore, it is necessary to study the optimization of bilateral
contract transactions with Bayesian game. Presently, the research on the electricity market with
incomplete information is mainly about the bidding strategies of generating companies [21–24],
while few studies focus on the bilateral contract transaction considering the situation of incomplete
information. Literature [21] found a bilevel optimization problem to determine the optimal bidding
strategies of generating companies considering the incomplete information of participants about cost
coefficients of opponents and their forecast errors. The author in [22] used the combination of PSO
(particle swarm optimization) and simulated annealing to achieve the optimal bidding strategies
of generating companies in an electricity market when the available information of generating
companies about their opponents is incomplete; a method proposed in [23] analyzes the competition
among transmission-constrained generating companies with incomplete information. Furthermore,
reference [24] studied the optimal strategy of generation expansion based on its incomplete information
on other generating companies.

In an open electricity market, there exist multiple generation companies and large consumers.
A generation company can sign the contract with multiple consumers, and consumers can also sign
with multiple generation companies. Accordingly, there is incentive competition among generation
companies for contract quantity. That is, each generation company wants to obtain appropriate
contract quantity to maximize their profit by competing contract price with other companies. In order
to solve the competition problem, a game model is proposed in this paper. Generation companies
can employ such a model to obtain their most appropriate bidding prices to optimize their trading
profits. However, since the bidding price and generation cost of each generation company is private
information. That is, any company only knows its profit function but does not know the profit
functions of other companies. Thus, each company must estimate its opponents’ information to
optimize its profit with Bayesian theory. For large consumers, according to the bidding price of
companies and predicted spot price, each consumer decides the contract quantity of electricity with
different generation companies. Based on the above analysis, the main contributions of this paper
can be summarized as follows: (1) according to the transaction process among generation companies
and large consumers, a master–slave game model is proposed, in which a Bayesian game is applied
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to describe the competition among companies; (2) the existence and uniqueness of Bayesian Nash
equilibrium is proved mathematically; (3) a co-evolution algorithm is proposed to search Bayesian
Nash equilibrium, and simulations are conducted to confirm the effectiveness and efficiency of the
proposed algorithm.

The remainder of this paper is organized as follows. In Section 2, a system model of generation
companies and large consumers is described in detail. Section 3 found the Bayesian game model with
incomplete information, proved the existence and uniqueness of Bayesian Nash equilibrium, and
proposed a co-evolution algorithm for the equilibrium. In Section 4, a numerical simulation is carried
out. Finally, conclusions are provided in Section 5.

2. System Model

This paper focuses on the bilateral contract transaction with multiple generation companies and
large consumers. Suppose that there are H time slots in a bilateral contract transaction. The transaction
contains I generation companies and J large consumers. Assume that the bidding price of company
i is

(
ai,j, bi

)
for consumer j [25], where ai,j is initial price and bi is a growth factor about contract

quantity of electricity. That is, when consumer j signs contract quantity qh
i,j from company i in

time slot h (h= 1, 2, · · · , H), the bidding price is ph
i,j = ai,j + biqh

i,j. After getting the bidding
price, large consumers decide the contract quantities with different companies. Note that bi in the
paper is constant for company i, and the decision variable is only ai,j. The decision relationship
for the master–slave game among multiple generation companies and large consumers is shown
in Figure 1. In the figure, ai =

(
ai,1, ai,2, · · · , ai,J

)
represents generation company i’s bidding

price set for all large consumers, a−i represents other companies’ bidding price except company i,
a−i,j =

(
a1,j, a2,j, . . . , ai−1,j, ai+1,j, . . . , aI,j

)
represents other companies’ bidding price for large consumer

j except company i, and ai,−j =
(
ai,1, ai,2, . . . , ai,j−1, ai,j+1, . . . , ai,J

)
represents the bidding price of

company i for all large consumers except consumer j. qi,j=
[
q1

i,j, q2
i,j, . . . , qH

i,j

]T
represents contract

quantity purchased by large consumer j from company i in H time slots, and qS,j =
[
q1

S,j, q2
S,j, . . . , qH

S,j

]T

represents energy quantity purchased by large consumer j in spot market in H time slots.
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Figure 1. Decision relationship for master–slave game among generators and large consumers.

2.1. Purchase Cost Model of Large Consumers

Based on the scenario we proposed, large consumers purchase energy from generation companies
and the spot market. That is, the purchase cost of large consumers includes two parts: one is paid
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to companies; the other is paid to the spot market. Accordingly, consumer i’s purchase cost from
generation companies is

H

∑
h=1

(aj + bTQh
j )

T
Qh

j (1)

where aj = [a1,j, a2,j, . . . , aI,j]
T; b = diag [b1, b2, . . . , bI ] is diagonal matrix; Qh

j =
[
qh

1,j, qh
2,j, · · · , qh

I,j

]T
.

Consumer i’s purchase cost from the spot market is

H

∑
h=1

ph
Sqh

S,j (2)

where ph
S is predicted spot price in time slot h. Therefore, the total purchase cost of consumer j can be

expressed as:
H

∑
h=1

(
(aj + bTQh

j )
T

Qh
j + ph

Sqh
S,j

)
(3)

Large consumers are the followers of generation companies and have to passively accept
the bidding price of companies. However, the purchase strategies of consumers have a great influence
on the profit of generation companies. According to the bidding price of companies and spot price,
the goal of each consumer is to minimize its purchase cost by optimizing purchase strategies. Therefore,
the optimization model of large consumer j can be expressed as

minimize
qh

j

H
∑

h=1

(
(aj + bTQh

j )
T

Qh
j + ph

Sqh
S,j

)
subject to qh

i,j ≥ 0
I

∑
i=1

qh
i,j + qh

S,j = Dh
j

qh
S,j ≥ 0

(4)

where Dh
j represents energy demand of consumer j in time slot h.

Generally, large consumers trading in the spot market will influence the spot price, and thus
will cause a game behavior among large consumers, which will lead to a more complex scenario.
Consequently, this paper assumes that the spot price has no relationship with the behavior of large
consumers in the spot market. Hence, for large consumers, the game-based problem of multi-objective
optimization is simplified, and it can be transformed into a single objective optimization problem
aiming at the minimization of purchasing cost. Actually, the spot price adopted in this paper is not
accurate because there are prediction errors according to historical data. Furthermore, historical data
about spot price has covered the transaction information among companies and consumers. Therefore,
it is reasonable to neglect the influence of purchase strategies on spot price. Additionally, this paper
assumes that a generation company has a unique bidding price for each large consumer. That is,
bidding price between a company and one consumer is only affected by this consumer’s purchase
strategy, which is irrelevant to other large consumers. Accordingly, game behavior among large
consumers for contract quantity is not existent, so the complexity of the bilateral contract transaction
can be simplified.

2.2. Profit Model of Generation Companies

Generation companies are the leader in the bilateral contract transaction. One generation company
can choose an optimal bidding price to maximize its profit by forecasting the purchase strategies of
large consumers. Here, owing to the difficult prediction of a generation company’s revenue in the
spot market, and because their bidding strategy can be made on the basis of the bilateral contract, this
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paper only considers the company’s profit in the bilateral contract transaction. Company i’s income is
the total purchase cost of all large consumers who purchase electricity from company i:

J

∑
j=1

(
ai,jE1Jqi,j + biqi,j

Tqi,j

)
(5)

where qi,j = [q1
i,j, q2

i,j, · · · , qH
i,j]

T, E1J is unit matrix with 1× J.
Company i’s generation cost can be expressed with a quadratic function; that is,AiE1J + Bi

(
J

∑
j=1

qi,j

)T
 J

∑
j=1

qi,j (6)

where Ai and Bi are coefficients of generation cost.
Consequently, the profit of generation company i can be calculated as:

J

∑
j=1

(
ai,jE1Jqi,j + biqi,j

Tqi,j

)
−

AiE1J + Bi

(
J

∑
j=1

qi,j

)T
 J

∑
j=1

qi,j (7)

In (7), based on the forecasted information about large consumers’ purchase strategies, generation i
optimizes the combination of bidding price ai =

(
ai,1, ai,2 . . . , ai,J

)
for all large consumers to maximize

its profit. For any strategy (ai,j, a−i,j), each large consumer will have a corresponding optimal strategy
q∗(ai,j, a−i,j). Accordingly, the profit of generation company i can be written as

fi(ai, a−i) =
J

∑
j=1

(
ai,jE1J − AiE1J

)
q∗i,j +

J

∑
j=1

bi

(
q∗i,j
)T

q∗i,j − Bi

(
J

∑
j=1

q∗i,j

)T J

∑
j=1

q∗i,j (8)

where a−i = (a1, a2, · · · , ai−1, ai+1, · · · , aI) represents the bidding price set of all generation
companies except i. Therefore, the problem of maximal profit for generation companies can be
expressed as:

maximize
ai

fi(ai, a−i)

subject to ai,j ∈ [Amin, Amax]
(9)

where Amin and Amax represents the lower and upper limit of bidding price, respectively.

3. Bayesian Game for Generation Companies

3.1. Bayesian Game Formulation

Bayesian game theory—put forward by Harsanyi [26]—is an important method of modeling
a game with incomplete information. In this paper, information about the energy demand of large
consumers is known to all generation companies. However, the bidding price and generation cost of
each company are private information. Compared with three essential factors (players, strategies, and
payoffs) of the complete game, a Bayesian game mainly has two more specific factors: the types of
players and the probability distribution of the types. In order to facilitate the following discussion,
we divide generation companies into different types according to the generation cost. Each company
has a type space which contains all possible types, and one type represents a kind of generation cost.
Furthermore, the probability of each type in the combination is known to other companies.

Based on the above analysis, we assume that the type space of generation i is T i with a generic type
ti ∈ T i. Then, T = T1 × T2 · · ·T I represents the type space combination for all generation companies
with a generic type combination t = [t1, · · · , ti, · · · tI ]. Company i knows its type ti, but does not know
other companies’ types. Therefore, company i will estimate its opponents’ types according to the
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probability distribution of the each type. We employ pi(t−i|ti) to express the conditional probability
about type combination t−i = [t1, · · · , ti−1, ti+1 · · · tI ] under the circumstance of company i with
type ti. According to the Bayesian formula, the following equation is given:

pi (t−i|ti) =
pi (t−i, ti)

pi (ti)
=

pi (t−i, ti)

∑
t−i∈T−i

pi (t−i, ti)
(10)

where T−i = T1 × · · · × T i−1 × T i+1 × · · · × T I represents the type space combination for company
i’s opponents and pi (t−i, ti) = pi (t) denotes a joint probability distribution of all communities with
type combination t. According to the Bayesian game theory, the incomplete game can be translated
into the complete games with imperfect information by players estimating the type combination of
other players and corresponding joint probability distribution. Therefore, a generation company’s
profit is the expected value of all profits for these complete games. Based on the profit function of a
generation company, the expected profit of company i with type ti can be calculated as:

EPi (ti) = ∑
t−i∈T−i

pi(t−i|ti)

 J

∑
j=1

(
ati

i,jE1Jq
ti
i,j + biq

ti
i,j

T
qti

i,j

)
−

Ati
i E1J + Bti

i

(
J

∑
j=1

qti
i,j

)T J

∑
j=1

qti
i,j

 (11)

where ati
i,j and qti

i,j are bidding price and contract quantity matrix corresponding to type ti, respectively.

Ati
i and Bti

i are coefficients of generation cost for company i with type ti. Our target is to schedule

strategy of bidding price ati
i =

(
ati

i,1, ati
i,2 · · · a

ti
i,J

)
based on the opponents’ strategies at−i

−i to maximize

expected payoff Function (11) until ati
i is unchanged with ati∗

i . Then,
[
ati∗

i , at−i∗
−i

]
is called Bayesian

Nash equilibrium, which can be defined as follows:
Bayesian Nash equilibrium

[
ati∗

i , at−i∗
−i

]
is such that for any generation company i,

EPi

(
ati∗

i , at−i∗
−i

)
≥ EPi

(
ati

i , at−i∗
−i

)
(12)

Once the equilibrium is reached, the expected payoff for any generation company i will be reduced
by changing from ati∗

i . Since the function is concave with respect to ati
i , Bayesian Nash equilibrium

exists [27,28]. To obtain the equilibrium ati∗
i of Function (11), we can translate it into the optimal

problem for searching the optimal solution of the following problem:

maximize
a

ti
i

EPi (ti) (13)

The corresponding constraint is Amin ≤ ai,j ≤ Amax.

3.2. Karush–Kuhn–Tucker (KKT) Conditions for Large Consumers

Before searching the Bayesian Nash equilibrium, purchase strategies of large consumers need to
be ascertained, which is regarded as the input data in the Bayesian game among generation companies.
Suppose that companies’ bidding price for consumer j is aj = [a1,j, a2,j, . . . , aI,j]

T at time slot h and the
corresponding spot price is ph

S. Then, the purchase cost of large consumers is

minimize
qh

j

(aj + bTQh
j )

TQh
j + ph

Sqh
S,j (14)

Since problem (14) is a nonlinear optimization problem, the optimal solution of such a problem
must satisfy the conditions of first-order optimization, called KKT (Karush–Kuhn–Tucker) conditions.
The KKT conditions of optimization problem (14) are
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ai,j + 2biqh
i,j − λi − u = 0

λi ≥ 0, qh
i,j ≥ 0, λiqh

i,j = 0

}
∀i = (1, 2, . . . , I)

ph
S − λ− u = 0

λ ≥ 0, qh
S,j ≥ 0, λqh

S,j = 0
qh

1,j + . . . + qh
I,j + qh

S,j = Dh
j

(15)

where λ and u are Lagrange multipliers. To solve problem (15), we introduce the NCP (nonlinear
complementarity problem) function [29,30]. Accordingly, (15) can be rewritten as follows:

ai,j + 2biqh
i,j − λh

i,j − uh + εh
i,j = 0 (qh

i,j : ∀i ∈ I)

λh
i,j + qh

i,j −
√

λh
i,j

2
+ qh

i,j
2
= 0 (λh

i,j : ∀i ∈ I)

εh
i,j + q̄i,j − qh

i,j −
√

λh
i,j

2
+
(

q̄i,j − qh
i,j

)2
= 0 (εh

i,j : ∀i ∈ I)

ph
S,j − λh

S,j − uh = 0

λh
S,j + qh

S,j −
√

λh
S,j

2
+ qh

S,j
2
= 0

qh
1,j + . . . + qh

I,j + qh
S,j − Dh

j = 0

(16)

where ε is slack variable. Consumer j’s optimal purchase strategy Qh∗
j corresponding to ah

j can be
obtained by solving equation (16). Similarly, the optimal purchase strategies of other large consumers
can also be obtained.

3.3. Co-Evolution Algorithm for Bayesian Nash Equilibrium

After knowing the optimal purchase strategies of all large consumers, the master–slave game
degenerates into a Bayesian game. Bayesian Nash equilibrium can be searched with a co-evolution
algorithm [31–33]. The mapping relation between a co-evolution algorithm and a Bayesian game
can be founded as: Nash equilibrium→ ecosystem; players→ species; strategy set→ population;
strategies → individuals. Based on the above mapping relation, the process for searching Bayesian
Nash equilibrium is shown as follows:

(1) Establish species zi corresponding to each generation company, and then establish population
zt

i according to each type of each company, where t represents type number of company i;
assume that ztn

i is a genetic individual in the population zt
i .

(2) Since species zi and population zt
i only represent a part of the global solution, it is necessary to

evaluate individual ztn
i with information of other species z−i. Accordingly, we choose a special

individual ztR
i to represent the information of species zi in the global solution. Suppose that the

present number of evolution is S, then the fitness function of individual ztn
i in species zi can be

designed as

fS
(
ztn

i
)
= ∑

t−i∈T−i

pi(t−i)

 J
∑

j=1

(
ztn

i,jE1Jqt
i,j + biqt

i,j
Tqt

i,j

)
−

At
i E1J + Bt

i

(
J

∑
j=1

qt
i,j

)T
J

∑
j=1

qt
i,j

 (17)

(3) As for the selection method of individual ztR
i , the mechanism of elite is adopted in the paper. That

is, ztR
i for species zi in the Sth evolution is the individual who has the highest fitness value in the

(S− 1)th evolution:
ztR

i (S) = f−1
S−1(max fS−1(z

tn
i )) (18)

(4) Run step (2) and (3) and obtain fitness values of each individual for each species via standard
genetic algorithm, and then determine ztR

i .
(5) Repeat steps (2)–(4) until the maximum number of evolution Smax is reached or ztR

i is unchanged.
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When ztR
i for all populations in all species is not changed any more, it demonstrates that the

ecosystem has converged. Then, it can be considered that all possible combinations of all species has
reached a optimal response and Bayseian Nash equilibrium is obtained. Accordingly, the flowchart of
the above process is presented in Figure 2.

 For generation company i (i=1,2,..,I),

 initialize species zi, population    , 

 Individual    , let S = 1 and

t
iz

 For large consumer j (j=1,2,..,J)

optimize      with KKT conditions

Nash equilibrium

Yes

tn
iz

S = Smax ?

,i jq

1(1)tR t
i iz z

     For each population    

 chose special individual 

 according    1 max ( )( 1) tntR
ii

f z Sz S f  

( 1)tR
iz S 

t
iz

 Caculate fitness

 of each individual

( ( ))tn
if z S 　

( )tn
iz S

 Evolve each population 

  using standard genetic  

 algorithm, get ( 1)tn
iz S 

S = S + 1

No

( 1) ( ) ?tR tR
i iz S z S 

No

Iteration end

Yes

Figure 2. Flowchart of the co-evolution algorithm. KKT: Karush–Kuhn–Tucker.

4. Simulation Results

Based on the proposed Bayesian game model, a simulation was carried out to verify the effectiveness
of the game approach and the efficiency of the proposed algorithm. In simulation illustrations,
the optimal bidding price of each generation company will be obtained, and the convergence of
co-evolution algorithm will also be presented. By performing this simulation, it will be verified that
the proposed game approach can solve the problem of bidding price for generation companies in the
bilateral transaction.
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In the simulation, assume that there are three generation companies and three large consumers.
These large consumers need to make a bilateral contract transaction with generation companies for
a month. Based on off-peak loads, mid-peak loads, and on-peak loads in a whole day, the classification
of daily time spans is shown in Table 1 [34]. The price in the spot market generally varies with the
load level, which has high value in peak hours and low value in off-peak hours. Since the load
can be predicted based on the historical data, we assume that the spot price in a month has been
predicted, which is shown in Figure 3. For simplicity, we have divided a month into 90 time slots.
Corresponding to the 90 time slots, we assume that three large consumers have forecasted their energy
demand in these time slots, which is shown in Figure 4. All of the above-referred price is made up
according to the current situation of China’s electricity industry, and the energy demand of large
consumers is based on the electricity consumption of the chlor-alkali industry and the electrolytic
aluminum industry. Since the generation cost of a company is a trade secret, we assume that each
generation company only knows their own generation cost but do not know their opponents’ cost.
In the case study, suppose that each company has a type space with three types according to generation
cost. Coefficients of generation cost A and B are different with each type. Although generation
cost is not public information, the probability of each type in the combination is known to other
companies. Here, we assume that the probability of type 1 and 2 for any company is equal to 0.3,
and the probability of type 3 is equal to 0.4. Consequently, the joint probability distribution of all
communities with any type combination can be deduced. For example, when the types of three
companies are type 2, type 1, and type 3, then the joint probability distribution for such a type
combination is p (t1 = 2, t2 = 1, t3 = 3) = 0.3 × 0.3 × 0.4 = 0.036. Other parameters related to the
simulation are shown in Table 2. The parameters in the co-evolution algorithm are set as follows: the
evolution of each population is based on the standard genetic algorithm; each population contains
50 individuals; crossover probability is 0.90 and mutation probability is 0.05; maximum number of
evolution Smax = 180.

Table 1. Classification of daily time spans.

Time Spans Hours of the Day

Off-peak 1, 2, 3, 4, 5, 6, 7, 8
Mid-peak 9, 10, 15, 16, 17, 18, 23, 24
On-Peak 11, 12, 13, 14, 19, 20, 21, 22
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Figure 3. Energy price in spot market.
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Figure 4. Energy demand of large consumers.

Table 2. Type space of generation company and corresponding parameters.

Company Type A B b Amin Amax p
(U/MWh) ((U/MWh)2) ((U/MWh)2) (U/MWh) (U/MWh)

1 320 0.4 0.8 350 500 0.3

a 2 352 0.36 0.8 350 500 0.3

3 338 0.5 0.8 350 500 0.4

1 330 0.5 1.0 350 500 0.3

b 2 370 0.45 1.0 350 500 0.3

3 350 0.03 1.0 350 500 0.4

1 340 0.3 0.6 350 500 0.3

c 2 360 0.25 0.6 350 500 0.3

3 320 0.35 0.6 350 500 0.4

Based on the above parameters, the Bayesian game among generation companies and large
consumers in the bilateral contract transaction can be solved with the proposed algorithm. After
some calculations, we can obtain the Bayesian Nash equilibrium about bidding price of the generation
companies. Consequently, the contract price of generation companies with different types is presented
in Table 3. Since generation companies with different types have different cost models, contract price
is different when the Nash equilibrium is reached. One can see that generation companies with
different types have different bidding price strategies. Accordingly, large consumers will have different
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strategies for contract quantity. Since each generation company has a type space with three types, there
are 33 type combinations. Under each type combination, every large consumer will have a specific
purchase strategy. This means that there are total 27 kinds of optimal purchase strategies. We have
given the results of optimal purchase strategies for three large consumers in Table A1 in Appendix A.
In order to facilitate the analysis, the type combination (1, 2, 3) is taken as an example. Note that
combination (1, 2, 3) means company a belongs to type 1, company b belongs to type 2, and company
c belongs to type 3. From Table A1, we can see that the contract quantities of generation company a
with three large consumers are 5015.67 MWh, 4767.08 MWh, and 4405.43 MWh, respectively; contract
quantities of generation company b with three large consumers are 2783.09 MWh, 2257.09 MWh, and
1888.22 MWh, respectively; contract quantities of generation company c with three large consumers
are 5484.05 MWh, 5217.74 MWh, and 4743.57 MWh, respectively.

Table 3. The optimal bidding price strategies (U/MWh).

Company Type Consumer 1 Consumer 2 Consumer 3

1 362.45 354.60 355.26

a 2 391.19 380.65 382.11

3 369.32 365.69 367.17

1 365.17 359.90 361.34

b 2 402.24 397.19 399.43

3 399.35 381.87 382.10

1 385.90 374.85 376.45

c 2 410.67 399.17 402.18

3 366.31 358.13 359.79

Figure 5 shows the daily purchase strategies of three large consumers in a month. One can see that
each consumer will purchase the majority of energy via bilateral contract transaction with generation
companies because the bidding price is cheaper than spot price. Furthermore, since large consumer 2
has a higher demand than the other 2 consumers, it purchases more energy from spot market than
other consumers. The reason is that bidding price increases linearly with the increasing of contract
quantity, and the price will be more expensive than spot price if consumer 2 purchases more energy
via contract transaction. Additionally, according to the bidding price and contract quantity, the profit
of each generation company can be obtained. After some calculation, the profits of three companies
are shown as follows: 1,085,865 yuan for company a; 750,980 yuan for company b; 1,014,123 yuan
for company c. In the initial situation without game optimization, the profits of three companies are
1,054,800 yuan, 674,595 yuan, and 962,340 yuan, respectively. Comparing the results of two situations,
one can see that the profit of company a has increased 2.9%, the profit of company b has increased
11.3%, and the profit of company c has increased 5.4%. Therefore, each generation company has
obtained more profit when Bayesian game is employed to optimize the strategy of bidding price.

In order to analyze the difference between complete information game and Bayesian game,
we take the case with complete information into consideration. That is, the type of each generation
company is known to all companies. For the purposes of comparison, the generation cost of each
company in the complete game is the same with the data of type 1 in the Bayesian game. The optimal
strategies of bidding price under the case with complete information game are shown in Table 4.
The contract quantities of each generation company with three large consumers are shown in Figure 6.
From the figure, we can see that the contract quantities of generation company a with three large
consumers are 4974.24 MWh, 4513.58 MWh, and 4110.63 MWh, respectively; contract quantities of
generation company b with three large consumers are 3890.30 MWh, 3431.61 MWh, and 3126.21 MWh,
respectively; contract quantities of generation company c with three large consumers are 4416.57 MWh,
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4513.10 MWh, and 3928.38 MWh, respectively. After some calculation, the profits of the three companies
are shown as follows: 1,109,395 yuan for company a; 772,444 yuan for company b; 1,021,038 yuan
for company c. One can see that the profit of each generation company is reduced compared with
the results of the complete game. The decrease rates are 2.2% for company a, 2.9% for company b,
and 0.7% for company c. The results demonstrate that the incomplete information is a disadvantage
for each generation company, just from the perspective of profit. However, since the generation cost
function is a commercial secret which needs to be protected, each generation company would not
unveil the function to other competitors. Thus, it has practical significance to study the competition
among generation companies with incomplete information.

The convergence characteristic of the co-evolution algorithm is shown in Figure 7. It can be seen
from the figure that a generation company with different types tends to be smooth when population is
evolved to the 10th generation. When the population is evolved to 24th generation, the profit of each
company is not changed any more and has reached an equilibrium (the Nash equilibrium) among
three companies.
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Figure 5. Daily purchase strategies of large consumers.

Table 4. The optimal strategies of bidding price with complete information (U/MWh).

Company Consumer 1 Consumer 2 Consumer 3

a 363.20 355.80 356.75
b 365.18 359.78 360.36
c 396.42 376.02 377.67
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Figure 6. Contract quantity of each generation company with three large consumers in the complete game.
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5. Conclusions

In this paper, we proposed a scenario in which generation companies and large consumers can have
energy transaction directly via bilateral contract. Based on the scenario, we presented a master–slave
game for generation companies and large consumers, and a Bayesian game for generation companies
is also formulated. Generation companies in the Bayesian game lack the information about other
companies’ types, so each company needs to evaluate its opponents’ information based on the type
space combination and the corresponding probability distribution. Then, a co-evolution algorithm is
employed to search the Bayesian Nash equilibrium. In the simulation, we have compared the bidding
price strategy and profit of generation companies in three situations which are the case without game,
the case with incomplete information, and the case with complete information. Simulation results
demonstrated that the profit of generation companies was more than that in the initial situation.
However, the profit of generation companies in the Bayesian game was influenced by the incomplete
information compared to the situation of complete information.
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Appendix A. Results of Optimal Purchase Strategies for Three Large Consumers

Table A1. The optimal purchase strategies of large consumers with different type combination (MWh).

Type Company Consumers Type Company Consumers

Combination 1 2 3 Combination 1 2 3

a 4854.09 4555.05 4168.93 a 4175.14 3842.23 3464.32

(1,1,1) b 3760.87 3405.54 3061.54 (2,2,3) b 2925.55 2377.20 2058.60

c 4783.59 4563.14 3981.81 c 5779.30 5372.17 4962.63

a 4994.53 4692.75 4383.03 a 3822.11 3389.97 2981.15

(1,1,2) b 3873.22 3515.70 3232.82 (2,3,1) b 4110.44 3984.17 3578.06

c 4415.49 3816.26 3181.75 c 4919.85 4479.31 3972.91

a 4716.82 4527.74 4111.67 a 3950.31 3524.35 3181.15

(1,1,3) b 3651.06 3383.69 3015.73 (2,3,2) b 4264.28 4145.42 3818.07

c 5142.51 4947.63 4407.83 c 4392.34 3688.84 3116.52

a 5124.98 4773.64 4442.60 a 3768.90 3361.37 2928.56

(1,2,1) b 2809.03 2265.58 1921.25 (2,3,3) b 4048.33 3949.85 3514.96

c 5144.77 4854.60 4346.71 c 5361.45 4877.56 4411.56

a 5262.37 4873.78 4616.48 a 3826.16 3383.29 3064.31

(1,2,2) b 2906.61 2354.59 2075.82 (3,1,1) b 4012.91 3643.84 3326.66

c 4711.05 4105.90 3555.28 c 5203.66 44960.30 4423.68

a 5015.67 4764.08 4405.43 a 3935.67 3461.92 3208.95

(1,2,3) b 2783.09 2257.09 1888.22 (3,1,2) b 4122.42 3722.47 3471.30

c 5484.05 5217.74 4743.57 c 4835.31 4229.80 3658.71

a 4761.07 4342.83 3981.75 a 3735.76 3380.35 3035.13

(1,3,1) b 3872.83 3785.04 3337.39 (3,1,3) b 3922.51 3640.90 3297.48

c 4659.57 4280.18 3732.25 c 5530.30 5315.08 4810.32

a 4912.06 4484.77 4181.25 a 4015.51 3532.74 3268.57

(1,3,2) b 4051.47 3974.30 3603.38 (3,2,1) b 3036.04 2502.11 2199.52

c 4159.13 3483.50 2858.90 c 5519.23 5209.39 4764.10

a 4638.49 4304.84 3922.47 a 4090.46 3588.79 3378.51

(1,3,3) b 3816.23 3734.39 3258.35 (3,2,2) b 3117.41 2564.38 2321.68

c 5052.99 4692.89 4191.61 c 5076.91 4483.53 3997.83

a 3977.67 3633.05 3213.26 a 3949.21 3541.30 3258.02

(2,1,1) b 3954.63 3530.26 3223.33 (3,2,3) b 3011.98 2511.62 2187.79

c 5106.52 4771.00 4251.45 c 5835.23 5545.00 5128.74

a 4122.99 3755.65 3418.30 a 3729.56 3181.95 2867.78

(2,1,2) b 4059.26 3618.53 3370.95 (3,3,1) b 4233.25 4129.60 3701.27

c 4658.31 4021.91 3458.01 c 5042.65 4624.73 4096.12

a 3898.76 3617.82 3167.32 a 3827.89 3276.63 3017.47

(2,1,3) b 3888.97 3519.29 3190.25 (3,3,2) b 4397.13 4287.41 3950.75

c 5482.39 5141.34 4657.14 c 4554.60 3859.22 3275.74

a 4217.57 3841.49 3487.04 a 3663.77 3165.33 2830.62

(2,2,1) b 2950.90 2376.61 2076.77 (3,3,3) b 4186.74 4101.91 3639.33

c 5394.40 5021.13 4579.98 c 5427.46 5007.91 4518.17

a 4313.62 3931.25 3647.20

(2,2,2) b 3027.74 2448.41 2204.90

c 4915.50 4274.78 3787.63
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