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Abstract: We study the convexity or concavity of certain trace functions for the deformed logarithmic
and exponential functions, and in this way obtain new trace inequalities for deformed exponentials
that may be considered as generalizations of Peierls–Bogolyubov’s inequality. We use these results to
improve previously-known lower bounds for the Tsallis relative entropy.
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1. Introduction

In statistical mechanics and in quantum information theory, the calculation of the partition
function Trexp H of the Hamiltonian H of a physical system is an important issue, but the computation
is often difficult. However, it may be simplified by first computing a related quantity Trexp A, where
A is an easier-to-handle component of the Hamiltonian. Usually, the Hamiltonian is written as a sum
H = A + B of two operators, and the Peierls–Bogolyubov inequality states that

log
Trexp(A + B)

Trexp A
≥ Tr exp(A)B

Trexp A
, (1)

which then provides information about the difficult-to-calculate partition function. In this paper, we
give generalizations of Peierls–Bogolyubov’s inequality in terms of the so-called deformed exponential
and logarithmic functions. We formulate the results for operators on a finite dimensional Hilbert space
H, but note that the results with proper modifications also extend to infinite dimensional spaces.

Main Theorem. Let A, B ∈ B(H) be self-adjoint operators, and let ϕ be a positive functional on B(H).

(i) If −∞ < q < 1 and r ≥ q, and both A and A + B are bounded from above by −(q− 1)−1, then

logr Trexpq(A + B)− logr Tr expq A ≥
(
Trexpq A

)r−2Tr(expq A)2−qB.

(ii) If −∞ < q ≤ 0 and r ≥ q, and both A and A + B are bounded from above by −(q− 1)−1, then

logr ϕ
(
expq(A + B)

)
− logr ϕ

(
expq A

)
≥ ϕ

(
expq A

)r−2
ϕ
(
dexpq(A)B

)
.

(iii) If 1 < q ≤ 2 and r ≥ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr Trexpq(A + B)− logr Trexpq A ≥ (Trexpq A)r−2Tr(expq A)2−qB.
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(iv) If 3
2 ≤ q ≤ 2 and r ≥ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr ϕ
(
expq(A + B)

)
− logr ϕ(expq A) ≥ ϕ

(
expq A

)r−2
ϕ
(
dexpq(A)B

)
.

(v) If q ≥ 2 and r ≤ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr ϕ
(
expq(A + B)

)
− logr ϕ(expq A) ≤ ϕ

(
expq A

)r−2
ϕ
(
dexpq(A)B

)
.

If in particular ϕ is the trace, this inequality reduces to

logr Trexpq(A + B)− logr Trexpq A ≤ (Trexpq A)r−2Tr(expq A)2−qB.

In Section 5.2, we give explicit formulae for the Fréchet differential operators dexpq(A) in the
parameter ranges q ≤ 0 and q ≥ 3/2. Note that the left-hand sides in the above theorem may be
written as

ϕ
(
expq(A + B)

)r−1 − ϕ(expq A)r−1

r− 1
,

where ϕ in (i) and (iii) is replaced by the trace. If we in (iii) let q tend to one, we obtain the inequality

logr Trexp(A + B)− logr Trexp A ≥ Tr exp(A)B(
Trexp A

)2−r

for r > 1 and arbitrary self-adjoint operators A and B. If we furthermore let r tend to one, we recover
Peierls–Bogolyubov’s inequality (1).

Furuichi ([1], Corollary 3.2) proved (iii) in the case r = q by very different methods. It may
be instructive to compare the above results with the first author’s study [2] of the deformed
Golden–Thompson trace inequality.

In Theorem 6, we obtain another variant Peierls–Bogolyubov type of inequality, and in Theorem 9,
we improve previously known lower bounds for the Tsallis relative entropy.

The Peierls–Bogolyubov inequality has been widely used in statistical mechanics and quantum
information theory. Recently, Bikchentaev [3] proved that the Peierls–Bogolyubov inequality characterizes
the tracial functionals among all positive functionals on a C∗-algebra. Moreover, Carlen and Lieb in [4]
combined this inequality with the Golden–Thompson inequality to discover sharp remainder terms in
some quantum entropy inequalities.

Deformed Exponentials

The deformed logarithm logq is defined by setting

logq x =


xq−1 − 1

q− 1
q 6= 1

log x q = 1

for x > 0. The deformed logarithm is also denoted as the q-logarithm. The inverse function is called
the q-exponential. It is denoted by expq, and is given by the formula

expq x =


(x(q− 1) + 1)1/(q−1), x > −1/(q− 1), q > 1

(x(q− 1) + 1)1/(q−1), x < −1/(q− 1), q < 1

exp x q = 1.
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The q-logarithm is for q > 1 a bijection of the positive half-line onto the open interval (−(q− 1)−1, ∞),
and for q < 1, a bijection of the positive half-line onto the open interval (−∞,−(q− 1)−1). Furthermore,

d
dx

logq(x) = xq−2 and
d

dx
expq(x) = expq(x)

2−q .

Note also that

logq x− logq y =
xq−1 − yq−1

q− 1

for x, y > 0. If q tends to one, then the q-logarithm and the q-exponential functions converge,
respectively, toward the logarithmic and the exponential functions.

2. Preliminaries

Proposition 1. Let f be a real positive function defined in the cone B(H)+ of positive definite operators acting
on a Hilbert spaceH, and assume f is homogeneous of degree p 6= 0.

(i) If f is convex and p > 0, then f 1/p is convex.
(ii) If f is convex and p < 0, then f 1/p is concave.

(iii) If f is convex and p < 0 and r > 0, then f r is convex.
(iv) If f is concave and p > 0, then f 1/p is concave.
(v) If f is concave and p < 0, then f 1/p is convex.

(vi) If f is concave and p > 0 and r < 0, then f r is convex.

Proof. Assume first that f is a convex function. The level set

L = {x ∈ B(H)+ | f (x) ≤ 1}

is then convex. Take x, y ∈ B(H)+ and assume p > 0. Let c and d be any choice of positive numbers
such that f (x)1/p < c and f (y)1/p < d. We note that c−1x, d−1y ∈ L, and obtain

f (x + y)1/p = (c + d) f
( c

c + d
· x

c
+

d
c + d

· y
d

)1/p
≤ c + d.

Therefore, f (x + y)1/p ≤ f (x)1/p + f (y)1/p, and by homogeneity, we conclude that f 1/p is convex.
If p < 0, we choose c, d > 0 such that f (x)1/p > c and f (y)1/p > d. This is possible because f is
assumed to be positive. Since the exponent is negative, we obtain f (x) < cp and f (y) < dp, and
therefore by homogeneity

f (c−1x) = c−p f (x) < 1 and f (d−1y) = d−p f (y) < 1.

It follows that c−1x, d−1y ∈ L, and thus

f (x + y)1/p = (c + d) f
( c

c + d
· x

c
+

d
c + d

· y
d

)1/p
≥ c + d,

where we again used that the exponent is negative. Therefore, f (x + y)1/p ≥ f (x)1/p + f (y)1/p, and
by homogeneity, we conclude that f 1/p is concave. This proves (i) and (ii). Under the assumptions
in (iii), we proceed as under (ii) to obtain

f (x + y)1/p ≥ c + d.

By homogeneity and since the exponent rp is negative, we obtain the inequality

f
(x + y

2

)r
≤
( c + d

2

)rp
≤ crp + drp

2
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implying convexity of f r. We obtain (iv), (v), and (vi) by a variation of the reasoning used to obtain
(i), (ii), and (iii).

Proposition 2. Consider the function
G(A) =

(
TrAp)1/r

defined in positive definite operators. Then,

(i) G is concave for r ≤ p < 0,
(ii) G is convex for p < 0 and r > 0,

(iii) G is concave for 0 < p ≤ 1 and r ≥ p,
(iv) G is convex for p ≥ 1 and 0 < r ≤ p.
(v) G is convex for 0 < p ≤ 1 and r < 0.

Proof. Since the real function t→ tp is convex in positive numbers for p ≤ 0 and p ≥ 1 and concave
for 0 ≤ p ≤ 1, it is well known that the trace function A→ TrAp retains the same properties. A historic
account of this result may be found in ([5], Introduction). By (ii) and (i) in Proposition 1, we thus
obtain that the function

A→
(
TrAp)1/p

is concave for p < 0 and convex for p ≥ 1. Furthermore, since the real function t → tp/r is concave
and increasing for r ≤ p < 0, we derive (i) in the assertion. Part (ii) then follows by Proposition 1 (iii),
and Part (iii) follows from Proposition 1 (iv) by noting that 0 < p/r ≤ 1. Part (iv) follows from
Proposition 1 (i) by noting that p/r ≥ 1, and part (v) finally follows from Proposition 1 (vi).

Note that (Tr Ap)1/p for p ≥ 1 is the Schatten p-norm of the positive definite matrix A.
The convexity in this case may also be derived by noting that a norm satisfies the triangle inequality
and is positively homogeneous.

Proposition 3. Let B ∈ B(H) be an arbitrary operator and consider the function

F(A) =
(
Tr B∗ApB

)1/r

defined in positive definite operators. Then,

(i) F is concave for −1 ≤ p < 0 and r ≤ p,
(ii) F is convex for −1 ≤ p < 0 and r > 0,

(iii) F is concave for 0 < p ≤ 1 and r ≥ p,
(iv) F is convex for 1 ≤ p ≤ 2 and 0 < r ≤ p,
(v) F is convex for 0 < p ≤ 1 and r < 0.

Proof. By continuity, we may assume BB∗ invertible. Since the function t→ tp is operator convex for
−1 ≤ p ≤ 0 and for 1 ≤ p ≤ 2, it follows that the trace function A → Tr B∗ApB is convex for these
parameter values. It then follows by (ii) and (i) in Proposition 1 that the function

A→ (Tr B∗ApB)1/p

is concave for −1 ≤ p < 0 and convex for 1 ≤ p ≤ 2. Furthermore, since the real function
t → tp/r is concave and increasing for r ≤ p < 0, we derive part (i) in the assertion. Part (ii)
then follows by Proposition 1 (iii). Parts (iii) to (v) now follow by minor variations of the reasoning in
the preceding theorem.
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2.1. Some Deformed Trace Functions

Theorem 4. Consider the function
G(A) = logr Tr expq(A)

defined in self-adjoint A > −(q− 1)−1 for q > 1, and in self-adjoint A < −(q− 1)−1 for q < 1.

(i) If −∞ < q < 1 and r ≥ q, then G is convex,
(ii) If 1 < q ≤ 2 and r ≥ q, then G is convex,

(iii) If q ≥ 2 and r ≤ q, then G is concave.

Proof. Note that the conditions on A ensure that A(q − 1) + 1 > 0 for both q < 1 and q > 1.
By calculation, we obtain

G(A) = logr Tr expq(A)

=
1

r− 1

((
Tr(A(q− 1) + 1)1/(q−1)

)r−1
− 1
)

.

Under the assumptions in (i), we obtain

1
r− 1

≤ 1
q− 1

< 0

for q ≤ r < 1. By Proposition 2(i) and since the factor (r− 1)−1 is negative, it follows that G is convex.
If r > 1 then (r− 1)−1 > 0 and the convexity of G follows by Proposition 2 (ii). The case r = 1 follows
by continuity. This proves the first statement. Under the assumptions in (ii) we obtain

1
q− 1

≥ 1 and 0 <
1

r− 1
≤ 1

q− 1
,

and thus G is convex by Proposition 2 (iv). Under the assumptions in (iii) we first consider the case
r > 1 and obtain

0 <
1

q− 1
≤ 1 and

1
r− 1

≥ 1
q− 1

,

and thus G is concave by Proposition 2 (iii). If r < 1, then we use Proposition 2(v) to obtain that
(r− 1)G is convex. Since r− 1 < 0, we conclude that G is also concave in this case. The case r = 1
follows by continuity.

Theorem 5. Let B be arbitrary and consider the function

F(A) = logr Tr B∗ expq(A)B

defined in self-adjoint A > −(q− 1)−1 for q > 1, and in self-adjoint A ≤ −(q− 1)−1 for q < 1.

(i) If −∞ < q ≤ 0 and r ≥ q, then F is convex,
(ii) If 3

2 ≤ q ≤ 2 and r ≥ q, then F is convex,
(iii) If q ≥ 2 and r ≤ q, then F is concave.

Proof. By calculation, we obtain

F(A) = logr Tr B∗ expq(A)B

=
1

r− 1

((
Tr B∗(A(q− 1) + 1)1/(q−1)B

)r−1
− 1
)

.
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Under the assumptions in (i), we obtain

−1 ≤ 1
q− 1

< 0 and
1

r− 1
≤ 1

q− 1

for q ≤ r < 1. By Proposition 3 (i) and since the factor (r− 1)−1 is negative, it follows that F is convex.
If r > 1 then (r− 1)−1 > 0 and the convexity of F follows by Proposition 3 (ii). The case r = 1 follows
by continuity. This proves the first statement. Under the assumptions in (ii), we obtain

1 ≤ 1
q− 1

≤ 2 and
1

r− 1
≤ 1

q− 1
,

and thus F is convex by Proposition 3 (iv). The last case is argued as in the preceding theorem by
considering the cases r > 1 and r < 1 separately.

Note that there is a gap between 0 and 3/2 for the values of the parameter q in the above theorem.
This is unavoidable for a general operator B.

3. Peierls–Bogolyubov-Type Inequalities

We first obtain a variant Peierls–Bogolyubov-type inequality as a consequence of Proposition 2.
Take positive definite operators A, B ∈ B(H) and define the function

g(t) = G(A + tB) =
(
Tr (A + tB)p)1/r t ∈ [0, 1].

Since g(t) is convex for p ≥ 1 and 0 < r ≤ p, we obtain the inequality

g(1)− g(0) ≥ g(t)− g(0)
t

0 < t ≤ 1 (2)

for these parameter values. By concavity, we obtain the opposite inequality for the parameter values
0 < p ≤ 1 and r ≥ p, and for the parameter values r ≤ p < 0.

Theorem 6. Let A, B ∈ B(H) be positive definite operators.

(i) For p ≥ 1 and 0 < r ≤ p, we have the inequality

(
Tr (A + B)p)1/r −

(
TrAp)1/r ≥ p

r
(
Tr Ap)(1−r)/rTrAp−1B.

(ii) For 0 < p ≤ 1 and r ≥ p, and for r ≤ p < 0, we have the opposite inequality

(
Tr (A + B)p)1/r −

(
Tr Ap)1/r ≤ p

r
(
Tr Ap)(1−r)/rTr Ap−1B.

Proof. With the parameter values in (i), we may let t tend to zero in (2) and obtain the inequality
g(1)− g(0) ≥ g′(0). We note that g(1)− g(0) is the left-hand side in the desired inequality. Furthermore,

g′(0) = d
(
Tr Ap)1/rB =

1
r
(Tr Ap)(1−r)/r d

(
Tr Ap)B

=
1
r
(Tr Ap)(1−r)/rTrd(Ap)B =

p
r
(Tr Ap)(1−r)/rTr Ap−1B,

where we used the chain rule for Fréchet differentiation, the linearity of the trace, and the formula
in ([6], Theorem 2.2). This proves case (i). Case (ii) follows by virtually the same argument using the
opposite inequality in (2).
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We then explore consequences of Theorem 4. If −∞ < q < 1, we take self-adjoint operators
A, B ∈ B(H) such that both A and A + B are bounded from above by −(q− 1)−1. For t ∈ [0, 1], we
note that A + tB = (1− t)A + t(A + B) < −(q− 1)−1 such that (q− 1)(A + tB) + 1 > 0. The function

h(t) = logr Trexpq(A + tB) t ∈ [0, 1] (3)

is thus well-defined and convex for −∞ < q < 1 and r ≥ q. Therefore,

h(1)− h(0) ≥ h(t)− h(0)
t

0 < t ≤ 1 (4)

for these parameter values.
For q > 1, we take self-adjoint operators A, B ∈ B(H) such that both A and A + B are bounded

from below by−(q− 1)−1. For t ∈ [0, 1], we note that A+ tB = (1− t)A+ t(A+ B) > −(q− 1)−1 such
that (q− 1)(A + tB) + 1 > 0. The function defined in (3) is thus well-defined. It is convex for 1 < q ≤ 2
and r ≥ q, and it is concave for q ≥ 2 and r ≤ q. In the first case, we thus retain the inequality in (4),
while the inequality is reversed in the latter case.

Theorem 7. Let A, B ∈ B(H) be self-adjoint operators.

(i) If −∞ < q < 1 and r ≥ q, and both A and A + B are bounded from above by −(q− 1)−1, then

logr Trexpq(A + B)− logr Tr expq A ≥
(
Trexpq A

)r−2Tr(expq A)2−qB.

(ii) If 1 < q ≤ 2 and r ≥ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr Trexpq(A + B)− logr Trexpq A ≥
(
Trexpq A

)r−2Tr(expq A)2−qB.

(iii) If q ≥ 2 and r ≤ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr Trexpq(A + B)− logr Tr expq A ≤
(
Trexpq A

)r−2Tr(expq A)2−qB.

Proof. With the parameter values in (i) we may let t tend to zero in (4) and obtain the inequality
h(1)− h(0) ≥ h′(0). We note that h(1)− h(0) is the left-hand side in the desired inequality. Furthermore,

h′(0) = d
(
logr Trexpq A

)
B = (Trexpq A)r−2 d

(
Trexpq A

)
B

= (Trexpq A)r−2Tr dexpq(A)B = (Trexpq A)r−2Trexp′q(A)B

= (Trexpq A)r−2Tr(expq A)2−qB,

where we used the chain rule for Fréchet differentiation, the derivatives of the deformed logarithmic
and exponential functions, the linearity of the trace, and the formula in ([6], Theorem 2.2). This proves
case (i). The other cases follow by a variation of this reasoning.

By a similar line of arguments as in the two previous theorems, we finally obtain the following
consequences of Theorem 5.

Theorem 8. Let C ∈ B(H) be arbitrary and A, B ∈ B(H) be self-adjoint.

(i) If −∞ < q ≤ 0 and r ≥ q, and both A and A + B are bounded from above by −(q− 1)−1, then

logr TrC∗ expq(A + B)C− logr TrC∗ expq(A)C ≥
(
TrC∗ expq(A)C

)r−2TrC∗
(
dexpq(A)B

)
C.
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(ii) If 3
2 ≤ q ≤ 2 and r ≥ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr TrC∗ expq(A + B)C− logr TrC∗ expq(A)C ≥
(
TrC∗ expq(A)C

)r−2TrC∗
(
dexpq(A)B

)
C.

(iii) If q ≥ 2 and r ≤ q, and both A and A + B are bounded from below by −(q− 1)−1, then

logr TrC∗ expq(A + B)C− logr TrC∗ expq(A)C ≤
(
TrC∗ expq(A)C

)r−2TrC∗
(
dexpq(A)B

)
C.

Proof. We follow a similar path as in the proof of Theorem 7 and consider the function

h(t) = logr TrC∗ expq(A + tB)C t ∈ [0, 1] (5)

which by Theorem 5 is convex for the parameter values in (i). We obtain by an argument similar to
the one given in the proof of Theorem 7 that h(1)− h(0) ≥ h′(0), and we note that h(1)− h(0) is the
left-hand side in the desired inequality. Furthermore,

h′(0) = d
(
logr TrC∗ expq(A)C

)
B

= (TrC∗ expq(A)C)r−2 d
(
TrC∗ expq(A)C

)
B

= (TrC∗ expq(A)C)r−2TrC∗
(
dexpq(A)B

)
C,

where we used the chain rule for Fréchet differentiation, the derivative of the deformed logarithmic
function, and the linearity of the trace. This proves case (i). Since the function h in (5) is convex for the
parameter values in (ii) and concave for the parameter values in (iii), these cases follow by virtually
the same line of arguments as in (i).

Note that (iii) in Theorem 8 is a generalization of (iii) in Theorem 7. Since C is arbitrary, we may
in the above theorem replace the trace by any other positive functional on B(H). The main theorem
now follows from Theorem 7 and Theorem 8.

4. The Tsallis Relative Entropy

In this section, we study lower bounds for the (generalized) Tsallis relative entropy. For basic
information about the Tsallis entropy and the Tsallis relative entropy, we refer the reader to
references [7,8].

The Tsallis relative entropy Dp(X | Y) is for positive definite operators X, Y ∈ B(H) and p ∈ [0, 1)
defined by setting

Dp(X | Y) =
Tr(X− XpY1−p)

1− p
= Tr Xp(log2−p X− log2−p Y).

By letting p tend to one, this expression converges to the relative quantum entropy

U(X | Y) = Tr X(log X− log Y)

introduced by Umegaki [9]. It is known ([10], Proposition 2.4) that the Tsallis relative entropy is
non-negative for states. This also follows directly from the following:

Lemma 1. Let ρ and σ be states. Then,
Tr ρ1−pσp ≤ 1

for 0 ≤ p ≤ 1.
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Proof. Consider states ρ and σ, and let E ⊆ [0, 1] be the set of exponents p such that Trρ1−pσp ≤ 1.
We take p, q ∈ E and obtain

Tr ρ1−(p+q)/2σ(p+q)/2 = Tr ρ(1−p)/2ρ(1−q)/2σp/2σq/2

= Tr σp/2ρ(1−p)/2ρ(1−q)/2σq/2 = Tr(ρ(1−p)/2σp/2)∗ρ(1−q)/2σq/2

≤
(
Tr(ρ(1−p)/2σp/2)∗ρ(1−p)/2σp/2)1/2(Tr(ρ(1−q)/2σq/2)∗ρ(1−q)/2σq/2)1/2

=
(
Tr ρ1−pσp)1/2(Tr ρ1−qσq)1/2 ≤ 1,

where we used Cauchy–Schwarz’ inequality. This shows that E is midpoint-convex. Since E is also
closed and 0, 1 ∈ E, we conclude that E = [0, 1].

Theorem 9. Let q ∈ (0, 1] and take p ≤ q. Then, for positive definite operators X, Y ∈ B(H), the inequality

Tr X− (Tr X)p(TrY)1−p

1− p
≤ Dq(X | Y)

is valid, where by convention D1(X | Y) = U(X | Y).

Proof. Let X, Y ∈ B(H) be positive definite operators and take 1 < q ≤ 2 and r ≥ q. By setting

A = logq X and B = logq Y− logq X

we obtain self-adjoint A, B such that both A and A+ B are bounded from below by−(q− 1)−1. We may
thus apply (ii) in Theorem 7 and obtain after a little calculation the inequality

Tr X− (Tr X)2−r(TrY)r−1

r− 1
≤ Tr X2−q(logq X− logq Y).

By setting p = 2− r and renaming q by 2− q, we obtain the stated inequality for q ∈ (0, 1] and
p ≤ q.

The lower bound of the Tsallis relative entropy Dq(X | Y) in Theorem 9 was obtained
in ([10], Theorem 3.3) in the special case p = q. The family of lower bounds given above is in
general not an increasing function in the parameter p, and may therefore—depending on Tr X and
TrY—provide better lower bounds.

5. Various Fréchet Differentials

In order to obtain a more detailed understanding of the bounds obtained in the Main Theorem, we
need to provide explicit formulae for the Fréchet differential operator dexpq in the parameter ranges
q ≤ 0 and q ≥ 3/2. The integral representation

tp =
sin pπ

π

∫ ∞

0

t
t + λ

λp−1 dλ t > 0 (6)

valid for 0 < p < 1 is well-known. Since t→ tp is operator monotone, this representation may be quite
easily derived by calculating the representing measure; e.g., ([11], Theorem 5.5). Furthermore, since by
an elementary calculation

d
(

x
x + λ

)
h = λ(x + λ)−1h(x + λ)−1,
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we obtain the integral representation

d(xp)h =
sin pπ

π

∫ ∞

0
(x + λ)−1h(x + λ)−1λp dλ, 0 < p < 1 (7)

valid for positive definite x. Since by (6) we have

tp−1 =
sin pπ

π

∫ ∞

0

1
t + λ

λp−1 dλ t > 0 (8)

for 0 < p < 1 and

d
(

1
x + λ

)
h = (x + λ)−1h(x + λ)−1,

we obtain the integral representation

d(xp)h =
sin(p + 1)π

π

∫ ∞

0
(x + λ)−1h(x + λ)−1λp dλ, −1 < p < 0 (9)

valid for positive definite x. By using the rule for the Fréchet differential of a product, or by an
elementary direct calculation, we obtain the general identity

d(xp+1)h = hxp + x d(xp)h, (10)

which combined with (7) provides a formula for the Fréchet differential of xp for 1 < p < 2. If h is
self-adjoint, the formula in (10) may be written in the form

d(xp+1)h =
hxp + xph

2
+ d(xp)

xh + hx
2

which is manifestly self-adjoint.

5.1. The Deformed Logarithm

By setting t = 1 in (6), we obtain

1 =
sin pπ

π

∫ ∞

0

λp−1

1+ λ
dλ

and thus

tp − 1 =
sin pπ

π

∫ ∞

0

(
t(1+ λ)

t + λ
− 1
)

λp−1

1+ λ
dλ =

sin pπ

π

∫ ∞

0

t− 1
t + λ

λp

1+ λ
dλ

for 0 < p < 1 and t > 0. We therefore obtain the following integral representation of the
deformed logarithm

logq t =
tq−1 − 1

q− 1
=

sin(q− 1)π
(q− 1)π

∫ ∞

0

t− 1
t + λ

λq−1

1+ λ
dλ t > 0 (11)

valid for 1 < q < 2. Since by an elementary calculation

d
(

x− 1
x + λ

)
h = (1+ λ)(x + λ)−1h(x + λ)−1

we derive the formula

dlogq(x)h =
sin(q− 1)π
(q− 1)π

∫ ∞

0
(x + λ)−1h(x + λ)−1λq−1 dλ (12)
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valid for positive definite x and 1 < q < 2. Note that

dlogq(x)h =
1

q− 1
d(xq−1)h (13)

for all q 6= 1 by the definition of the deformed logarithm. If we in formula (12) let q tend to 1, we obtain

dlog(x)h =
∫ ∞

0
(x + λ)−1h(x + λ)−1 dλ

as expected. If we instead set h = 1, we recover the classical integral

tq−2 =
sin(q− 1)π
(q− 1)π

∫ ∞

0

λq−1

(t + λ)2 dλ

valid for t > 0 and 1 < q < 2.

5.2. The Deformed Exponential

We next derive integral representations for the deformed exponential in the parameter ranges
q ≤ 0 and q ≥ 3/2. We first note that

dexpq(x)h = (q− 1) d
(
y1/(q−1))h, y = x(q− 1) + 1

defined in x > −(q− 1)−1 for q > 1, and defined in x < −(q− 1)−1 for q < 1. We divide the analysis
into six cases:

1. If q < 0, then −1 < (q− 1)−1 < 0 and we may calculate d(y1/(q−1))h by the formula in (9).
2. If q = 0, then d(y1/(q−1))h = d(y−1)h = −y−1hy−1.
3. If q = 3

2 , then d(y1/(q−1))h = d(y2)h = yh + hy.
4. If 3

2 < q < 2, then (q− 1)−1 = p + 1 for some p ∈ (0, 1), and we may calculate d(y1/(q−1))h by
the formulae in (7) and (10).

5. If q = 2, then d(y1/(q−1))h = h.
6. If q > 2, then 0 < (q− 1)−1 < 1 and we may calculate d(y1/(q−1))h by the formula in (7).

Let q be arbitrary and take x in the domain of expq . Then

Trdexpq(x)h = Trexpq(x)
2−qh.

Likewise,
dexpq(x)h = expq(x)

2−qh

for commuting x and h.
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