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Abstract: In this paper, a general formula for the capacity region of a general interference
channel with two pairs of users is derived, which reveals that the capacity region is the union
of a family of rectangles. In the region, each rectangle is determined by a pair of spectral inf-mutual
information rates. The presented formula provides us with useful insights into the interference
channels in spite of the difficulty of computing it. Specially, when the inputs are discrete, ergodic
Markov processes and the channel is stationary memoryless, the formula can be evaluated by the
BCJR (Bahl-Cocke-Jelinek-Raviv) algorithm. Also the formula suggests that considering the structure
of the interference processes contributes to obtaining tighter inner bounds than the simplest
one (obtained by treating the interference as noise). This is verified numerically by calculating
the mutual information rates for Gaussian interference channels with embedded convolutional codes.
Moreover, we present a coding scheme to approach the theoretical achievable rate pairs. Numerical
results show that the decoding gains can be achieved by considering the structure of the interference.

Keywords: capacity region; interference channel; information spectrum; limit superior/inferior in
probability; spectral inf-mutual information rate

1. Introduction

In wireless communications, since the electromagnetic spectrum is limited, frequency bands
are often simultaneously used by several radio links that are not completely isolated [1]. When
several pairs of senders and receivers share a common communication medium, the transmission
of information from one sender to the corresponding receiver interferes with communications between
the other senders and their receivers. This communication model is called interference channel (IC),
which was firstly defined by Shannon in [2] and furthered by Ahlswede in [3]. A basic problem for the
IC is to determine the rate pairs at which information can be reliably transmitted over the channel,
that is, the capacity region. However, the problem of characterizing this region has been open for over
40 years. The capacity regions are known only in some special cases, such as strong, very strong and
deterministic interference channels [4–7]. In decades, the researchers provided various inner and outer
bounds of the capacity region for the general IC. For instance, two outer bounds on the capacity region
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of the Gaussian interference channel (GIFC) were derived in [8]. The first bound unifies and improves
the outer bounds of Sato [9] and Carleial [10]. The second bound follows directly from the outer bounds
in [11,12], which is deduced by considering a degraded GIFC and is even better than the first one for
certain weak GIFCs. In 1981, Han and Kobayashi [5] proposed the best inner bound (the so-called HK
region), which has been simplified by Kramer and Chong et al. in their independent works [13,14].
By introducing the idea of approximation, Etkin, Tse and Wang [15] showed that HK region [5] is
within one bit of the capacity region for the GIFC.

In [16,17], a new computational model for the two-user GIFC was proposed, in which one pair
of users (called primary users) are constrained to use a fixed encoder and the other pair of users (called
secondary users) are allowed to optimize their code. The accessible capacity of the secondary users
is defined as the maximum rate at which the secondary users can communicate reliably without
degrading the performance of the primary users. Usually, the accessible capacity is higher than
the maximum rate when treating the interference as noise, which is because the structure of the
interference from the primary link has been taken into consideration in the computation, as is consistent
with the spirit of [18,19]. However, in the computation of the accessible capacity [17], the primary link
is allowed to have a non-neglected error probability. This makes the accessible capacity lower than
the capacity region. As a result, the fixed-code constraints on the primary users will be relaxed in this
paper. Namely, a pair of transmission rates at which both links can be asymptotically error-free will
be calculated.

This paper is concerned with a more general IC, which is characterized by a sequence of transition
probabilities (see Figure 1). By adopting the information spectrum approach [20,21], we present
a general formula for the capacity region of the two-user general IC. From the formula, it can be seen
that the capacity region is the union of a family of rectangles, in which each rectangle is determined
by a spectral inf-mutual information rate pair. The information spectrum approach, which is based
on the limit superior/inferior in probability of a sequence of random variables, has been proved to be
powerful in characterizing the limit behavior of a general source/channel. For instance, in [20,22],
Han and Verdú proved that the minimum compression rate for a general source equals its spectral
sup-entropy rate and the maximum transmission rate for a general point-to-point channel equals its
spectral inf-mutual information rate with an optimized input process. Also, the information spectrum
approach can be used to derive the capacity region of a general multiple access channel [23]. For more
applications of the information spectrum approach, see [21] and the references therein.
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Figure 1. General interference channel W.

The structure of the paper is as follows. In Section 2, the definition of a general IC and the concept
of the spectral inf-mutual information rate are introduced. Section 3.1 introduces the general formula
for the capacity region proposed in [24]; while, in Section 3.2, a trellis-based algorithm is presented to
compute the rate pairs for a stationary memoryless IC with discrete ergodic Markov sources. Section 3.3
presents the numerical results for a GIFC with binary-phase shift-keying (BPSK) modulation. Section 4
provides the detection and decoding algorithms for channels with structured interference. Section 5
concludes this paper.

In this paper, a random variable is denoted by an upper-case letter, say X, while its realization
and sample space are denoted by x and X , respectively. The sequence of random variables with length
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n are denoted by Xn, while its realization is denoted by x ∈ X n or xn ∈ X n. We use PX(x) to denote
the probability mass function (pmf) of X if it is discrete or the probability density function (pdf) of X if
it is continuous.

2. Basic Definitions and Problem Statement

2.1. General IC

As shown in Figure 1, a general interference channel W can be characterized by input alphabets
X1, X2, output alphabets Y1, Y2 and a sequence W = {Wn(·, ·|·, ·)}∞

n=1, in which Wn : X n
1 ×X n

2 →
Yn

1 ×Yn
2 is a probability transition matrix. That is, for all n,

Wn(y1, y2|x1, x2) ≥ 0

∑
y1∈Yn

1 ,y2∈Yn
2

Wn(y1, y2|x1, x2) = 1.

The marginal distributions Wn
1 , Wn

2 of the Wn are given by

Wn
1 (y1|x1, x2) = ∑

y2∈Yn
2

Wn(y1, y2|x1, x2), (1)

Wn
2 (y2|x1, x2) = ∑

y1∈Yn
1

Wn(y1, y2|x1, x2). (2)

Definition 1. An (n, M(1)
n , M(2)

n , ε
(1)
n , ε

(2)
n ) code for the interference channel W consists of the

following essentials:

(a) message sets:

M(1)
n = {1, 2, . . . , M(1)

n }, for Sender 1

M(2)
n = {1, 2, . . . , M(2)

n }, for Sender 2

(b) sets of codewords:

{x1(1), x1(2), . . . , x1(M(1)
n )} ⊆ X n

1 , for Encoder 1

{x2(1), x2(2), . . . , x2(M(2)
n )} ⊆ X n

2 , for Encoder 2

For Sender 1 to transmit message i, Encoder 1 outputs the codeword x1(i). Similarly, for Sender 2 to
transmit message j, Encoder 2 outputs the codeword x2(j).

(c) collections of decoding sets:

B1 = {B1i ⊆ Yn
1 }i=1,...,M(1)

n
, for Decoder 1

B2 = {B2j ⊆ Yn
2 }j=1,...,M(2)

n
, for Decoder 2

where Yn
1 =

M(1)
n⋃

i=1
B1i, B1i

⋂B1i′ = ∅ for i 6= i′ and Yn
2 =

M(2)
n⋃

j=1
B2j, B2j

⋂B2j′ = ∅ for j 6= j′. That is,

B1 and B2 are the disjoint partitions of Yn
1 and Yn

2 determined in advance, respectively. After receiving
y1, Decoder 1 outputs î whenever y1 ∈ B1î. Similarly, after receiving y2, Decoder 2 outputs ĵ whenever
y2 ∈ B2 ĵ.



Entropy 2017, 19, 270 4 of 18

(d) probabilities of decoding errors:

ε
(1)
n = 1

M(1)
n M(2)

n

M(1)
n

∑
i=1

M(2)
n

∑
j=1

Wn
1 (Bc

1i|x1(i), x2(j)),

ε
(2)
n = 1

M(1)
n M(2)

n

M(1)
n

∑
i=1

M(2)
n

∑
j=1

Wn
2 (Bc

2j|x1(i), x2(j)),

where “c” denotes the complement of a set. Here we have assumed that each message of i ∈ M(1)
n and

j ∈ M(2)
n is produced independently with uniform distribution.

Remark 1. It is optimal to minimize the probability of errors so that the decoding sets B1i and B2j are defined
according to the the maximum likelihood decoding [25]. Namely,

î = arg max
i

Pr{y1|x1(i)}

and
ĵ = arg max

j
Pr{y2|x2(j)}

are selected as the estimates of the transmitted messages by the two receivers, respectively.

Definition 2. A rate pair (R1, R2) is achievable if there exists a sequence of (n, M(1)
n , M(2)

n , ε
(1)
n , ε

(2)
n ) codes

such that

lim
n→∞

ε
(1)
n = 0 and lim

n→∞
ε
(2)
n = 0,

lim inf
n→∞

log M(1)
n

n
≥ R1 and lim inf

n→∞

log M(2)
n

n
≥ R2.

Definition 3. The set of all achievable rates is called the capacity region of the interference channel W, which is
denoted by C(W).

2.2. Preliminaries of Information-Spectrum Approach

We introduce the notions in [21] as follows.

Definition 4 (liminf in probability). For a sequence of random variables {Zn}∞
n=1,

p- lim inf
n→∞

Zn 4= sup{β| lim
n→∞

Pr{Zn < β} = 0}.

Definition 5. If two random variables sequences X1 = {Xn
1}∞

n=1 and X2 = {Xn
2}∞

n=1 satisfy that

PXn
1 Xn

2
(x1, x2) = PXn

1
(x1)PXn

2
(x2) (3)

for all x1 ∈ X n
1 , x2 ∈ X n

2 and n, they are called independent and denoted by X1⊥X2.

Similar to [20], we give

Definition 6. Let SI
4
= {(X1, X2)|X1⊥X2}. Given an (X1, X2) ∈ SI , for the interference channel W, we define

the spectral inf-mutual information rate by
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I(X1; Y1) ≡ p- lim inf
n→∞

1
n

log
PYn

1 |X
n
1
(Yn

1 |Xn
1 )

PYn
1
(Yn

1 )
, (4)

I(X2; Y2) ≡ p- lim inf
n→∞

1
n

log
PYn

2 |Xn
2
(Yn

2 |Xn
2 )

PYn
2
(Yn

2 )
, (5)

where

PYn
1 |X

n
1
(y1|x1) = ∑

x2,y2

PXn
2
(x2)Wn(y1, y2|x1, x2), (6)

PYn
2 |Xn

2
(y2|x2) = ∑

x1,y1

PXn
1
(x1)Wn(y1, y2|x1, x2). (7)

3. The Capacity Region of General IC

In this section, we firstly present without proof the formula for the capacity region C(W)

of the general IC derived in [24]. Also the algorithm to compute achievable rate pairs is presented.

3.1. The Main Theorem

Theorem 1. The capacity region C(W) of the interference channel W is given by

C(W) =
⋃

(X1,X2)∈SI

RW(X1, X2), (8)

whereRW(X1, X2) is defined as the collection of all (R1, R2) satisfying that

0 ≤ R1 ≤ I(X1; Y1), (9)

0 ≤ R2 ≤ I(X2; Y2). (10)

3.2. The Algorithm to Compute Achievable Rate Pairs

Theorem 1 provides a general formula for the capacity region of a general IC. However, it is
usually difficult to compute the spectral inf-mutual information rates given in (9) and (10). In order to
get insights into the interference channels, we make the following assumptions:

(1) the channel is stationary and memoryless, that is, the transition probability of the channel can be
written as

Wn(y1, y2|x1, x2) =
n

∏
i=1

W(y1,i, y2,i|x1,i, x2,i);

(2) sources are restricted to be stationary and ergodic discrete Markov processes.

With the above assumptions, the spectral inf-mutual information rates are reduced as

I(X1; Y1) = lim
n→∞

1
n

I(Xn
1 ; Yn

1 ), (11)

I(X2; Y2) = lim
n→∞

1
n

I(Xn
2 ; Yn

2 ), (12)

which can be evaluated by the Monte Carlo method [26–28] using BCJR algorithm [29] over a trellis.
Actually, any stationary and ergodic discrete Markov source can be depicted by a time-invariant trellis.
That is, a trellis section can uniquely specify the source. A trellis section is composed of left (or starting)
states and right (or ending) states, which are connected by branches in between. For example, Source
x1 can be specified by a trellis T1 as follows.

• Both the left and right states are selected from the set S1 = {0, 1, ..., |S1| − 1};
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• Each branch is represented by a three-tuple b = (s−1 (b), x1(b), s+1 (b)), where s−1 (b) is the left state,
s+1 (b) is the right state, and the symbol x1(b) ∈ X1 is the associated label. We also assume that
a branch b is uniquely determined by s−1 (b) and x1(b);

• At time t = 0, the source starts from state s1,0 ∈ S1. If at time t − 1 (t > 0), the source is in
the state s1,t−1 ∈ S1, then at time t (t > 0), the source generates a symbol x1,t ∈ X1 according to
the conditional probability P(x1,t|s1,t−1) and goes into a state s1,t ∈ S1 such that (s1,t−1, x1,t, s1,t)

is a branch. Obviously, when the source runs from time t = 0 to t = n, a sequence x1,1, x1,2, ..., x1,n
is generated. The Markov property says that

P(x1,t|x1,1, ..., x1,t−1, s1,0) = P(x1,t|s1,t−1).

So the probability of a given sequence x1,1, x1,2, ..., x1,n with the initial state s1,0 can be factored as

P(x1,1, x1,2, ..., x1,n|s1,0) =
n

∏
t=1

P(x1,t|s1,t−1).

Similarly, we can represent x2 by a trellis T2 with the state set S2 = {0, 1, ..., |S2| − 1}. Each branch
is denoted by b = (s−2 (b), x2(b), s+2 (b)), where s−2 (b) is the left state, s+2 (b) is the right state and
the symbol x2(b) ∈ X2 is the associated label. Assume that source x2 starts from the state s2,0 ∈ S2.
If at time t− 1 (t > 0), the source is in the state s2,t−1 ∈ S2, then at time t (t > 0), the source generates
a symbol x2,t ∈ X2 according to the conditional probability P(x2,t|s2,t−1) and goes into a state s2,t ∈ S2

such that (s2,t−1, x2,t, s2,t) is a branch. The probability of a given sequence x2,1, x2,2, ..., x2,n can be
factored as

P(x2,1, x2,2, ..., x2,n|s2,0) =
n

∏
t=1

P(x2,t|s2,t−1).

For simplicity, the initial states have been fixed as s1,0 = 0 and s2,0 = 0, which can be removed
from the equations.

Next we focus on the evaluation of lim
n→∞

1
n I(Xn

1 ; Yn
1 ), while lim

n→∞
1
n I(Xn

2 ; Yn
2 ) can be estimated

similarly. Specifically, we can express the limit as

lim
n→∞

1
n

I(Xn
1 ; Yn

1 ) = lim
n→∞

1
n

H(Yn
1 )− lim

n→∞

1
n

H(Yn
1 |Xn

1 ), (13)

where lim
n→∞

1
n H(Yn

1 ) and lim
n→∞

1
n H(Yn

1 |Xn
1 ) can be estimated by similar methods (For continuous y1,

the computations of lim
n→∞

1
n h(Yn

1 ) and lim
n→∞

1
n h(Yn

1 |Xn
1 ) can be implemented by substituting pdf for pmf).

As an example, we show how to compute lim
n→∞

1
n H(Yn

1 ). According to the Shannon-McMillan-Breiman

theorem [30], it can be seen that, with probability 1,

lim
n→∞

− 1
n

log P(yn
1 ) = lim

n→∞

1
n

H(Yn
1 ),

where yn
1 stands for (y1,1, y1,2, ..., y1,n). Then evaluating lim

n→∞
1
n H(Yn

1 ) is converted to computing

lim
n→∞

− 1
n

log P(yn
1 ) ≈ −

1
n

log

(
n

∏
t=1

P(y1,t|yt−1
1 )

)
= − 1

n

n

∑
t=1

log P(y1,t|yt−1
1 )

for a sufficiently long typical sequence yn
1 . Here, the key is to compute the conditional probabilities

P(y1,t|yt−1
1 ) for all t. Since both y1 and y2 are hidden Markov sequences, this can be done by performing

the BCJR algorithm over the following product trellis.

• The product trellis has the state set S = S1 × S2, where “×” denotes Cartesian product.
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• Each branch is represented by a four-tuple b = (s−(b), x1(b), x2(b), s+(b)), where s−(b) =

(s−1 (b), s−2 (b)) is the left state, s+(b) = (s+1 (b), s+2 (b)) is the right state. Then x1(b) ∈ X1

and x2(b) ∈ X2 are the associated labels in branch b such that (s−1 (b), x1(b), s+1 (b)) and
(s−2 (b), x2(b), s+2 (b)) are branches in T1 and T2, respectively.

• At time t = 0, the sources start from state s0 = (s1,0, s2,0) ∈ S . If at time t− 1 (t > 0), the sources
are in the state st−1 = (s1,t−1, s2,t−1) ∈ S , then at time t (t > 0), the sources generate symbols
(x1,t ∈ X1, x2,t ∈ X2) according to the conditional probability P(x1,t|s1,t−1)P(x2,t|s2,t−1) and go
into a state st = (s1,t, s2,t) ∈ S2 such that (st−1, x1,t, x2,t, st) is a branch.

The following description shows how to compute P(y1,t|yt−1
1 ) by performing the BCJR algorithm.

Given the received sequence y1, we define

• Branch metrics: To each branch bt = {st−1, x1,t, x2,t, st}, we assign a metric

ρ(bt)
4
= P(bt|st−1)P(y1,t|x1,tx2,t) (14)

= P(x1,t|s1,t−1)P(x2,t|s2,t−1)P(y1,t|x1,tx2,t), (15)

In the computation of lim
n→∞

1
n H(Yn

1 |Xn
1 ), the metric is replaced by P(bt|st−1, x1,t)P(y1,t|x1,tx2,t).

• State transition probabilities: The transition probability from st−1 to st is defined as

γt(st−1, st)
4
= P(st, y1,t|st−1) (16)

= ∑
bt :s−(bt)=st−1,s+(bt)=st

ρ(bt). (17)

• Forward recursion variables: We define the a posteriori probabilities

αt(st)
4
= P(st|yt

1), t = 0, 1, ...n. (18)

Then
P(y1,t|yt−1

1 ) = ∑
st−1,st

α(st−1)γt(st−1, st), (19)

where the values of αt(st) can be computed recursively by

αt(st) =
∑st−1

αt−1(st−1)γt(st−1, st)

∑st−1,st αt−1(st−1)γt(st−1, st)
. (20)

In summary, the algorithm to estimate the entropy rate lim
n→∞

1
n H(Yn

1 ) is described as follows.

Algorithm 1.

1. Initializations: Choose a sufficiently large number n. Set the initial state of the trellis to be s0 = 0.
The forward recursion variables are initialized as α0(s) = 1 if s = 0 and otherwise α0(s) = 0.

2. Simulations for Sender 1: Generate a Markov sequence x1 = (x1,1, x1,2, ..., x1,n) according to the trellis
T1 of source x1.

3. Simulations for Sender 2: Generate a Markov sequence x2 = (x2,1, x2,2, ..., x2,n) according to the trellis
T2 of source x2.

4. Simulations for Receiver 1: Generate the received sequence y1 according to the transition probability
Wn(y1, y2|x1, x2).

5. Computations:

(a) For t = 1, 2, ..., n, compute the values of P(y1,t|yt−1
1 ) and αt(st) recursively according to

Equations (19) and (20).
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(b) Evaluate the entropy rate

lim
n→∞

1
n

H(Yn
1 ) = −

1
n

n

∑
t=1

log P(y1,t|yt−1
1 ).

Similarly, we can evaluate the entropy rate lim
n→∞

1
n H(Yn

1 |Xn
1 ). Therefore, we obtain the achievable

rate I(X1; Y1) = lim
n→∞

1
n I(Xn

1 ; Yn
1 ).

3.3. Numerical Results

We consider the GIFC as shown in Figure 2, where the channel inputs x1(i) and x2(j) are BPSK
sequences with power constraints P1 and P2, respectively; the additive noises n1 and n2 are sequences
of independent and identically distributed (i.i.d.) standard Gaussian random variables, which are
assumed to be independent of the the channel inputs x1(i) and x2(j); constant

√
a represents the gain

of the interference link; the channel outputs y1 and y2 are

y1 = x1(i) +
√

ax2(j) + n1, (21)

y2 = x2(j) +
√

ax1(i) + n2. (22)

Encoder1

Encoder2

i

j
2y

1y

Decoder2

Decoder1 î

ĵ

a

1n

2
n

(i)1x

(j)2x

a

Figure 2. Symmetric Gaussian interference channel.

We assume that x1 and x2 are the outputs from two (possibly different) generalized trellis
encoders driven by independent and uniformly distributed (i.u.d.) input sequences, as proposed
in [16]. As examples, we consider two input processes. One is referred to as “UnBPSK”, standing for
an i.u.d. BPSK sequence; the other is referred to as “CcBPSK”, standing for an output sequence from
the convolutional encoder with the generator matrix G(D) = [1 + D + D2 1 + D2] driven by an i.u.d.
input sequence.

When Sender 1 uses CcBPSK and Sender 2 uses UnBPSK, the trellis representation of the scheme
can be seen in Figure 3. The numerical results are presented in Figure 4. There are three rectangles,
OECH, ODBG and OFAI, each of which is determined by a pair of spectral inf-mutual information
rates. Specifically, the rectangle OECH corresponds to the case when both senders use UnBPSK as
inputs; the rectangle ODBG corresponds to the case when Sender 1 uses UnBPSK as input and Sender 2
uses CcBPSK as input; and the rectangle OFAI corresponds to the case when Sender 1 uses CcBPSK as
input and Sender 2 uses UnBPSK as input. The point “A” can be achieved by a coding scheme, in which
Sender 1 uses a binary linear (coset) code concatenated with the convolutional code and Sender 2
uses a binary linear code, while the point “B” can be achieved similarly. By time-sharing scheme,
the points on the line “AB” can be achieved. The point “C” states the limit when the two senders
use binary linear codes but take the interference as an i.u.d. additive (BPSK) noise. It is obvious that
the area of the pentagonal region ODBAI is greater than that of the rectangle OECH, which hints that
the bandwidth-efficiency can be potentially improved by knowing the structure of the interference.
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Figure 3. The trellis section of (CcBPSK, UnBPSK) with 32 branches. For each branch b, s−(b) and
s+(b) are the left state and the right state, respectively; while the associated symbols x1(b) and x2(b)
are the transmitted signals at Sender 1 and Sender 2, respectively.
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Figure 4. The evaluated achievable rate pairs of a specific Gaussian interference channel (GIFC), where
P1 = P2 = 7.0 dB and a = 0.5. The rectangle OECH with legend “(UnBPSK, UnBPSK)” corresponds
to the case when both senders use UnBPSK as inputs; the rectangle ODBG with legend “(UnBPSK,
CcBPSK)” corresponds to the case when Sender 1 uses UnBPSK as input and Sender 2 uses CcBPSK
as input; and the rectangle OFAI with legend “(CcBPSK, UnBPSK)” corresponds to the case when
Sender 1 uses CcBPSK as input and Sender 2 uses UnBPSK as input.

4. Decoding Algorithms for Channels with Structured Interference

The purpose of this section has two-folds. The first is to show the decoding gain achieved by
taking into account the structure of the interference. The second is to present a coding scheme to
approach the point “B” in Figure 4.

4.1. A Coding Scheme

We design a coding scheme using Kite codes (The main reason that we choose Kite codes is that it
is convenient to set up the code rates. Actually, given data length, the code rates of Kite codes can be
“continuously” varying from 0.1 to 0.9 with satisfactory performance, as shown in [31,32].). Kite codes
are a class of low-density parity-check (LDPC) codes, which can be decoded using the sum-product
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algorithm (SPA) [33,34]. As shown in Figure 5, Sender 1 uses a Kite code (with a parity-check matrix
H1) and Sender 2 uses a Kite code (with a parity-check matrix H2) concatenated with the convolutional
code with the generator matrix

G(D) = [1 + D + D2 1 + D2].

Encoding: For Sender 1, a binary sequence u1 = (u1,1, u1,2, ..., u1,L1) of length L1 is encoded
by a Kite code into a coded sequence c1 = (c1,1, c1,2, ..., c1,N) of length N. For Sender 2, a binary
sequence u2 = (u2,1, u2,2, ..., u2,L2) of length L2 is firstly encoded by a Kite code into a sequence
v2 = (v2,1, v2,2, ..., v2,N′) of length N′ and then the sequence v2 is encoded by the convolutional code
with the generator matrix G(D) into a coded sequence c2 = (c2,1, c2,2, ..., c2,N) of length N.

Modulation: The codewords ck are mapped into the bipolar sequences xk = (xk,1, xk,2, ..., xk,N)

with xk,i =
√

Pk(1− 2ck,i) (k = 1, 2), where Pk is the power. Then we transmit xk for k = 1, 2 over
the interference channel.

Decoding: After receiving y1, Receiver 1 tries to recover the transmitted message u1. Similarly,
after receiving y2, Receiver 2 tries to recover the transmitted message u2. We will consider several
decoding algorithms in the next subsection to recover the transmitted messages.

K1

K2

u1

a

au2

Kite encoder

C

v2

Kite 

encoder

Covolutional 

encoder

x1

x2

y1

y2

M1

M2

c1

c2

n1

n2

Figure 5. A coding scheme for the two-user GIFC.

4.2. Decoding Algorithms

In this subsection, depending on the knowledge about the interference, we design four
decoding schemes, including “knowing only the power of the interference”, “knowing the signaling
of the interference”, “knowing the CC” and “knowing the whole structure”. We focus on the decoding
of Receiver 1, while the decoding of Receiver 2 can be implemented similarly (There is no decoding
scheme “Knowing the CC” for User 2 because User 1 has no convolutional structure). All these
decoding algorithms will be described as message processing/passing algorithms over normal graphs [35].

4.2.1. Message Processing/Passing Algorithms over Normal Graphs

Figure 6 shows a normal graph consisting of edges and vertices, which represent variables and
subsystem constraints, respectively. Let Z = {Z1, Z2, · · · , Zn} be n distinct random variables that
form a subsystem S(0). A normal subgraph with edges representing Z and a vertex S(0) representing
the constraints can be used to depict the subsystem. Each half-edge (ending with a dongle) may
potentially be coupled to some half-edge in other subsystems. For instance, Z1 and Zm are displayed to
be connected to subsystems S(1) and S(m), respectively. We call the corresponding edge full-edge.
A message is associated with each edge, which is defined as the pmf/pdf of the corresponding

variable. As in [36], we use the notation P(S(i)→S(0))
Zi

(z) to denote the message from S(i) to S(0). In

particular, we use the notation P(|→S(0))
Zi

(z) to represent the initial messages “driving” the subsystem

S(0). For example, such initial messages can be the a priori probabilities from the source or the a
posteriori probabilities computed from the channel observations. Assume that all messages to S(0) are
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available. The vertex S(0), as a message processor, delivers the outgoing message with respect to any
given Zi by computing the likelihood function

P(S(0)→S(i))
Zi

(z) ∝ Pr
{

S(0) is satisfied |Zi = z
}

, z ∈ Z (23)

by considering all the available messages and the system constraints. Since the computation

of the likelihood function is irrelevant to the incoming message P(S(i)→S(0))
Zi

(z), we claim that

P(S(0)→S(i))
Zi

(z) is exactly the so-called extrinsic message.

S(1) Z1

S(0)

Z2

Z3 Z4

S(m)Zm

Z6

...
Zn Z7

Figure 6. A normal graph of a general (sub)system.

4.2.2. Knowing Only the Power of the Interference

The decoding scheme for “knowing only the power of the interference” is the simplest one, which
can be described as a message processing/passing algorithm over the normal graph as shown in
Figure 7a. In this scheme, the interference from Sender 2 is treated as a Gaussian distribution with mean
zero and variance aP2, where “P2” is the power and “a” is the square of interference coefficient. That is,
Receiver 1 assumes that X2,j ∼ N (0, aP2) for j = 1, 2, · · · , N. Since N1,j ∼ N (0, 1) for j = 1, 2, · · · , N,
the decoding algorithm is initialized by the initial messages as follows

P(Σ1→K1)
C1,j

(c) = Pr
{

C1,j = c|y1, X2,j ∼ N (0, aP2), j = 1, 2, · · · , N
}

∝
1√

2π(1 + aP2)
exp

{
−
[y1,j −

√
P1(1− 2c)]2

2(1 + aP2)

}
, c ∈ F2

(24)

for j = 1, 2, · · · , N. Then the decoding algorithm uses SPA to compute iteratively the extrinsic messages
P(K1→|)

U1,i
and P(K1→Σ1)

C1,j
. Once these are done, we make the following decisions:

û1,i =

{
0, if P(|→K1)

U1,i
(0)P(K1→|)

U1,i
(0) > P(|→K1)

U1,i
(1)P(K1→|)

U1,i
(1),

1, otherwise.
(25)

ĉ1,j =

{
0, if P(Σ1→K1)

C1,j
(0)P(K1→Σ1)

C1,j
(0) > P(Σ1→K1)

C1,j
(1)P(K1→Σ1)

C1,j
(1),

1, otherwise.
(26)

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N. The details about the decoding algorithm are shown as below.

1 11

2

1

1
1

(a)

K1

T1

U1

N1

Y1

K2

U2

C1

V2

(b)

Figure 7. The normal graphs: (a) stands for the normal graph of “knowing only the power
of the interference” and “knowing the signaling of the interference” for Decoder 1; (b) stands for
the normal graph of “knowing the CC” and “knowing the whole structure” for Decoder 1.
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Algorithm 2 (“knowing only the power of the interference”).

• Initialization:

1. Initialize P(|→K1)
U1,i

(u) = 1
2 for i = 1, 2, · · · , L1 and u ∈ F2.

2. Compute P(Σ1→K1)
C1,j

(c) for j = 1, 2, · · · , N and c ∈ F2 according to (24).

3. Set a maximum iteration number J and iteration variable j = 1.

• Repeat while j ≤ J:

1. Compute extrinsic messages P(K1→|)
U1,i

and P(K1→Σ1)
C1,j

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N
using SPA.

2. Make decisions according to (25) and (26). Denote û1 =
(
û1,1, û1,2, · · · , û1,L1

)
and

ĉ1 = (ĉ1,1, ĉ1,2, · · · , ĉ1,N).
3. Compute the syndrome S1 = ĉ1 ·HT

1 . If S1 = 0, output û1 and ĉ1 and exit the iteration.
4. Set j = j + 1. If S1 6= 0 and j > J, report a decoding failure.

• End decoding.

4.2.3. Knowing the Signaling of the Interference

The decoding algorithm for this scheme is almost the same as Algorithm 2, see Figure 7a.
The difference is that X2,j ∼ B(1/2) (Bernoulli-1/2 distribution. Strictly speaking, X2,j is a shift/scaling

version of B(1/2).) for j = 1, 2, · · · , N. So the computation of P(Σ1→K1)
C1,j

(c) is changed into

P(Σ1→K1)
C1,j

(c) = Pr
{

C1,j = c|y1, X2,j ∼ B(1/2), j = 1, 2, · · · , N
}

∝
1
2

1√
2π

exp

{
−
[
y1,j −

√
P1(1− 2c)−

√
aP2
]2

2

}

+
1
2

1√
2π

exp

{
−
[
y1,j −

√
P1(1− 2c) +

√
aP2
]2

2

}
,

c ∈ F2

(27)

Then the decoding algorithm of “knowing the signaling of the interference” can be shown
as below.

Algorithm 3 (“knowing the signaling of the interference”).

• Initialization:

1. Initialize P(|→K1)
U1,i

(u) = 1
2 for i = 1, 2, · · · , L1 and u ∈ F2.

2. Compute P(Σ1→K1)
C1,j

(c) for j = 1, 2, · · · , N and c ∈ F2 according to (27).

3. Set a maximum iteration number J and iteration variable j = 1.

• Repeat while j ≤ J:

1. Compute extrinsic messages P(K1→|)
U1,i

and P(K1→Σ1)
C1,j

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N
using SPA.

2. Make decisions according to (25) and (26), respectively.
3. Compute the syndrome S1 = ĉ1 ·HT

1 . If S1 = 0, output û1 and ĉ1 and exit the iteration.
4. Set j = j + 1. If S1 6= 0 and j > J, report a decoding failure.

• End decoding.
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4.2.4. Knowing the CC

“Knowing the CC” means that Decoder 1 knows the structure of the convolutional code.
This scheme can be described as a message processing/passing algorithm over the normal graph as
shown in Figure 7b. Actually, the vertex T1 is a combination of three subsystems, convolutional
encoder, modulation and GIFC constraint, which can be specified by a trellis T with parallel
branches [16]. Therefore, the BCJR algorithm can be used to compute the extrinsic messages P(T1→K1)

C1,j
(c)

for j = 1, 2, · · · , N over the trellis T . Since the structure of Kite code for Sender 2 is unknown,
the constraint of vertex K2 is inactive. In this case, the pmf of variable V2,k (k = 1, 2, · · · , N′) is assumed
to be Bernoulli-1/2 distribution. There are two strategies to implement the BCJR algorithm. One is
called “BCJR-once”, in which the BCJR algorithm is performed only once. The other strategy is called
“BCJR-repeat”, in which the BCJR algorithm is performed more than once. In this scheme, the decoding
decisions on C1,j are modified into

ĉ1,j =

{
0, if P(T1→K1)

C1,j
(0)P(K1→T1)

C1,j
(0) > P(T1→K1)

C1,j
(1)P(K1→T1)

C1,j
(1),

1, otherwise,
(28)

for j = 1, 2, · · · , N. These two decoding procedures are described in Algorithms 4 and 5, respectively.

Algorithm 4 (BCJR-once).

• Initialization:

1. Initialize pmf P(K1→T1)
C1,j

(c) = 1
2 and P(|→T1)

C2,j
(c) = 1

2 for j = 1, 2, · · · , N, c ∈ F2 and P(|→T1)
V2,k

(v) =
1
2 for k = 1, 2, · · · , N′, v ∈ F2.

2. Compute extrinsic messages P(T1→K1)
C1,j

(c) for j = 1, 2, · · · , N, c ∈ F2 using BCJR algorithm over
the parallel branch trellis T .

3. Set a maximum iteration number J and iteration variable j = 1.

• Repeat while j ≤ J:

1. Compute extrinsic messages P(K1→|)
U1,i

and P(K1→T1)
C1,j

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N using SPA.

2. Make decisions according to (25) and (28).
3. Compute the syndrome S1 = ĉ1 ·HT

1 . If S1 = 0, output û1 and ĉ1 and exit the iteration.
4. Set j = j + 1. If S1 6= 0 and j > J, report a decoding failure.

• End Decoding

Algorithm 5 (BCJR-repeat).

• Initialization:

1. Initialize pmf P(K1→T1)
C1,j

(c) = 1
2 and P(|→T1)

C2,j
(c) = 1

2 for j = 1, 2, · · · , N, c ∈ F2 and P(|→T1)
V2,k

(v) =
1
2 for k = 1, 2, · · · , N′, v ∈ F2.

2. Set a maximum iteration number J and iteration variable j = 1.

• Repeat while j ≤ J:

1. Compute extrinsic messages P(T1→K1)
C1,j

(c) for j = 1, 2, · · · , N, c ∈ F2 using BCJR algorithm over
the parallel branch trellis T .

2. Compute extrinsic messages P(K1→|)
U1,i

and P(K1→T1)
C1,j

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N
using SPA.
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3. Make decisions according to (25) and (28).
4. Compute the syndrome S1 = ĉ1 ·HT

1 . If S1 = 0, output û1 and ĉ1 and exit the iteration.
5. Set j = j + 1. If S1 6= 0 and j > J, report a decoding failure.

• End Decoding

4.2.5. Knowing the Whole Structure

The scheme “knowing the whole structure” for Receiver 1 can also be described as a message
processing/passing algorithm over the normal graph shown in Figure 7b. Since knowing the whole
structure of the interference, Receiver 1 can decode iteratively utilizing the structure of both users.
Using the BCJR algorithm, P(T1→K1)

C1,j
(c) and P(T1→K2)

V2,k
(v) are computed simultaneously over the parallel

branch trellis T . The iterative decoding algorithm is presented in Algorithm 6.

Algorithm 6 (“knowing the whole structure”).

• Initialization:

1. Initialize pmf P(K1→T1)
C1,j

(c) = 1
2 and P(|→T1)

C2,j
(c) = 1

2 for j = 1, 2, · · · , N, c ∈ F2 and

P(K2→T1)
V2,k

(v) = 1
2 for k = 1, 2, · · · , N′, v ∈ F2.

2. Set a maximum iteration number J and iteration variable j = 1.

• Repeat while j ≤ J:

1. Compute extrinsic messages P(T1→K1)
C1,j

(c) for j = 1, 2, · · · , N, c ∈ F2 and P(T1→K2)
V2,k

(v) for

k = 1, 2, · · · , N′, v ∈ F2 using BCJR algorithm over the parallel branch trellis T .

2. Compute extrinsic messages P(K1→|)
U1,i

and P(K1→T1)
C1,j

for i = 1, 2, · · · , L1 and j = 1, 2, · · · , N
using SPA.

3. Compute extrinsic messages P(K2→T1)
V2,k

(v) for k = 1, 2, · · · , N′, v ∈ F2 using SPA.
4. Make decisions according to (25) and (28).
5. Compute the syndrome S1 = ĉ1 ·HT

1 . If S1 = 0, output û1 and ĉ1 and exit the iteration.
6. Set j = j + 1. If S1 6= 0 and j > J, report a decoding failure.

• End Decoding

4.3. Numerical Results

In this subsection, simulation results of the decoding algorithms are shown and analyzed.
Simulation parameters of Figures 8 and 9 are presented in Table 1. In these two figures, we let
the power constraints of two senders be same, that is, P1 ≡ P2 = P. Here, “Gaussian" stands for the
scheme “knowing only the power of the interference”, “BPSK” stands for the scheme “knowing the
signaling of the interference”, “BCJR1” stands for the scheme “BCJR-once”, “CONV” stands for the
scheme “BCJR-repeat” and “Know All Structure” stands for the scheme “knowing the whole structure”.
Figure 8 shows the error performance of Receiver 1. From Figure 8, we can see that, for Receiver 1,
more details of the structure of the interference are known, better performance is obtained, that is,
the decoding gains get larger. Similarly, Figure 9 gives the error performance of Receiver 2, where the
scheme “knowing the whole structure” still has the best performance and the decoding gain can be
achieved by taking into account the structure of the interference.
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Figure 8. The error performance of Receiver 1. “Gaussian” stands for the scheme “knowing only the power
of the interference”, “BPSK” stands for the scheme “knowing the signaling of the interference”, “BCJR1”
stands for the scheme “BCJR-once”, “CONV” stands for the scheme “BCJR-repeat” and “Know All
Structure” stands for the scheme “knowing the whole structure”.
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Figure 9. The error performance of Receiver 2. “Gaussian” stands for the scheme “knowing only the
power of the interference”, “BPSK” stands for the scheme “knowing the signaling of the interference”
and “Know All Structure” stands for the scheme “knowing the whole structure”.

Table 1. Parameters of the bit error rate (BER) performance simulations.

Parameters Values

Square of interference coefficient a 0.5
Maximum iteration number J 200

Kite Code of Sender 1 N = 10000, L1 = 8782
Kite Code of Sender 2 N′ = 5000, L2 = 4862

Generator matrix G(D) [1 + D + D2 1 + D2]
Code rate pair (R1, R2) (0.8782, 0.4862)
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As we said before, another objective in this section is to find out a code rate pair nearest to
the point “B” in Figure 4 with bit error rate (BER) performance of 10−4. So we do the simulations with
different code rate pairs. In the simulations, we adopt the scheme “knowing the whole structure” and
gradually decrease the code rates from the point “B” with a step length 0.01. Simulation parameters
for different code rate pairs are listed in Table 2, while the simulation results are presented using a 3D
graph in Figure 10. From the figure, it is obvious that as the code rates of two users are decreasing,
the BER also decreases. Finally, we find that the “best” code rate pair is (0.71, 0.48) for User 1 and
User 2. The theoretical value of the point “B” is about (0.878, 0.486). So we can see that the gap between
the result using our decoding scheme and the theoretical value is small.

Table 2. Parameters of the simulations for different code rate pairs.

Parameters Values

Square of interference coefficient a 0.5
Maximum iteration number J 200

Code length N of Kite Code of Sender 1 10000
Code length N′ of Kite Code of Sender 2 5000

Generator matrix G(D) [1 + D + D2 1 + D2]
Step length 100

Range of message length L1 7100 ∼ 8800
Range of message length L2 4000 ∼ 4900

Figure 10. Error performance of two users with different code rate pairs (R1, R2). Blue plane represents
BER level, green surface stands for the error performance of Receiver 1 and red surface stands for
the error performance of Receiver 2.

5. Conclusions

The paper showed that the capacity region of the two-user general IC is the union of a family
of rectangles. Each rectangle is defined by a pair of spectral inf-mutual information rates associated
with two independent input processes. When the channel is stationary memoryless and the inputs
are discrete Markov, we can calculate the defined pair of rates. We can also conclude that taking into
account the structure of the interference processes can improve the simplest inner bounds (obtained by
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treating the interference as noise). Also, a concrete coding scheme to approach the theoretical achievable
rate pairs was presented, which showed that the decoding gain can be achieved by considering
the structure of the interference.
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