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1. Introduction

The notions of entropy and mutual information are fundamental concepts in information
theory [1]; they are used as measures of information obtained from a realization of the considered
experiments. The standard approach in information theory is based on the Shannon entropy [2].
Consider a finite measurable partition A of probability space (Ω, S, P) with probabilities p1, ..., pn

of the corresponding elements of A. We recall that the Shannon entropy of A is the number
H(A) = −∑n

i=1 F(pi), where the function F : [0, ∞)→ < is defined by F(x) = x log x, if x > 0,
and F(0) = 0. Perhaps a crucial point in applications of the Shannon entropy in another scientific
field presents the discovery of Kolmogorov and Sinai [3] (see also [4,5]). They showed an existence
of non-isomorphic Bernoulli shifts describing independent repetition of random spaces with finite
numbers of results. If two dynamical systems are isomorphic, they have the same Kolmogorov-Sinai
entropy. So Kolmogorov and Sinai constructed two Bernoulli shifts with different entropies, hence
non-isomorphic. It is natural that the mentioned modification of entropy has been used in many
mathematical structures. In [6], we have generalized the notion of Kolmogorov–Sinai entropy to
the case when the considered probability space is a fuzzy probability space (Ω, M, µ) defined by
Piasecki [7]. This structure can serve as an alternative mathematical model of probability theory for
the situations where the observed events are described unclearly, vaguely (so called fuzzy events).
Other fuzzy generalizations of Shannon’s and Kolmogorov–Sinai’s entropy can be found e.g., in [8–17].
It is known that there are many possibilities for defining operations with fuzzy sets; an overview can
be found in [18]. It should be noted that while the model presented in [6] was based on the Zadeh
connectives [19], in our recently published paper [14], the Lukasiewicz connectives were used to define
the fuzzy set operations. In [20], the mutual information of fuzzy partitions of a given fuzzy probability
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space (Ω, M, µ) has been defined. It was shown that the entropy of fuzzy partitions introduced and
studied in [6] can be considered as a special case of their mutual information.

In classical information theory the mutual information is a special case of a more general quantity
called Kullback–Leibler divergence (K–L divergence for short), which was originally introduced by
Kullback and Leibler in 1951 [21] (see also [22]) as the divergence between two probability distributions.
It plays an important role, as a mathematical tool, in the stability analysis of master equations [23] and
Fokker–Planck equations [24], and in isothermal equilibrium fluctuations and transient nonequilibrium
deviations [25] (see also [24,26]). In [27], we have introduced the concept of K–L divergence for the
case of fuzzy probability spaces.

A natural generalization of some family of fuzzy sets is the notion of an MV algebra introduced
by Chang [28]. An MV algebra is an algebraic structure which models the Lukasiewicz multivalued
logic, and the fragment of that calculus which deals with the basic logical connectives “and”, “or”, and
“not”, but in a multivalued context. MV algebras play a similar role in the multivalued logic as Boolean
algebras in the classical two-valued logic. Recall also that families of fuzzy sets can be embedded
to suitable MV algebras. MV algebras have been studied by many authors (see e.g., [29–33]) and,
of course, there are also many results about the entropy on this structure (cf. [34,35]). The theory of
fuzzy sets is a rapidly and massively developing area of theoretical and applied mathematical research.
In addition to MV algebras, generalizations of MV algebras as D-posets (cf. [36–38]), effect algebras
(cf. [39]), or A-posets (cf. [40,41]) are currently subject of intensive research. Some results about the
entropy on these structures can be found e.g., in [42–44].

A special class of MV algebras is a class of product MV algebras. They have been introduced
independently in [45] from the point of view of probability theory, and in [46] from the point of view
of mathematical logic. Product MV algebras have been studied e.g., in [47,48]. A suitable theory of
entropy of Kolmogorov type for the case of product MV algebras has been constructed in [35,49,50].

The purpose of this contribution is to define, using the results concerning the entropy in product
MV algebras, the concepts of mutual information and Kullback–Leibler divergence for the case of
product MV algebras and to study properties of the suggested measures. The main results of the
contribution are presented in Sections 3 and 4. In Section 3 the notions of mutual information and
conditional mutual information in product MV algebras are introduced and basic properties of the
suggested measures are proved, inter alia, the data processing inequality for conditionally independent
partitions. In Section 4 we define the Kullback–Leibler divergence in product MV algebras and its
conditional version and examine the algebraic properties of the proposed measures. Our results are
summarized in the final section.

2. Basic Definitions, Notations and Facts

In this section, we recall some definitions and basic facts which will be used in the following ones.
An MV algebra [30] is a system (M, ⊕, ⊗, ∗, 0, 1), where M is a non-empty set, ⊕, ⊗ are binary
operations on M, ∗ is a unary operation on M and 0, 1 are fixed elements of M, such that the following
conditions are satisfied:

(i) a⊕ b = b⊕ a;
(ii) a⊕ (b⊕ c) = (a⊕ b)⊕ c;
(iii) a⊕ 0 = a;
(iv) a⊕ 1 = 1;
(v) (a∗)∗ = a;
(vi) 0∗ = 1;
(vii) a⊕ a∗ = 1;
(viii) (a∗ ⊕ b)∗ ⊕ b = (a⊕ b∗)∗ ⊕ a;
(ix) a⊗ b = (a∗ ⊕ b∗)∗.
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An example of MV algebra is the real interval [0, 1] equipped with the operations x ⊕ y =

min(1, x + y), x⊗ y = max(0, x + y− 1). It is interesting that any MV algebra has a similar structure.
In fact, by the Mundici theorem [33] any MV algebra can be represented by a lattice-ordered Abelian
group (shortly Abelian l-group). Recall that an Abelian l-group is an algebraic system (G, +, ≤),
where (G, +) is an Abelian group, (G, ≤) is a partially ordered set being a lattice and a ≤ b implies
a + c ≤ b + c.

Let (G, +, ≤) be an Abelian l-group, 0 be a neutral element of (G, +) and u ∈ G, u > 0.
On the interval [0, u] = {h ∈ G; 0 ≤ h ≤ u} we define the following operations: a∗ = u− a, a⊕ b =

(a + b) ∧ u; a⊗ b = (a + b− u) ∨ 0. Then the system MG = ([0, u], ⊕, ⊗, ∗, 0, u) becomes an MV
algebra. The Mundici theorem states that to any MV algebra M there exists an Abelian l-group G with
a strong unit u (i.e., to every a ∈ G there exists n ∈ N with the property a ≤ nu) such that M ∼= MG.

In this contribution we shall consider MV algebras with a product. We recall that the definition of
product MV algebra is based on Mundici’s categorical representation of MV algebra by an Abelian
l-group, i.e., the sum in the following definition of product MV algebra, and subsequently in the next
text, means the sum in the Abelian l-group associated to the given MV algebra. Similarly, the element
u is a strong unit of this group. More details can be found in [45,46].

Definition 1. A product MV algebra is a couple (M, ·), where M is an MV algebra and · is a commutative
and associative operation on M satisfying the following conditions:

(i) for any a ∈ M, u · a = a;
(ii) if a, b, c ∈ M, a + b ≤ u, then c · a + c · b ≤ u, and c · (a + b) = c · a + c · b.

In addition, we shall consider a finitely additive state defined on a product MV algebra.

Definition 2 [30]. Let (M, ·) be a product MV algebra. A map m : M→ [0, 1] is said to be a state if the
following properties are satisfied:

(i) m(u) = 1;
(ii) if a = ∑n

i=1 ai, then m(a) = ∑n
i=1 m(ai).

In product MV algebras a suitable entropy theory has been provided in [35,49,50]. In the following
we present the main idea and some results of this theory which will be used in the contribution.

Definition 3. By a partition in a product MV algebra (M, ·) we mean a finite collectionA = {a1, ..., an} ⊂ M
such that ∑n

i=1 ai = u.

Let m be a state on a product MV algebra (M, ·). In the set of all partitions of (M, ·) the relation
≺ is defined in the following way: Let A = {a1, ..., an} and B = {b1, ..., bk} be two partitions of
(M, ·). We say that B is a refinement of A (with respect to m), and write A ≺ B, if there exists a
partition I(1), I(2), ..., I(n) of the set {1, 2, ..., k} such that m(ai) = ∑

j∈I(i)
m(bj), for every i = 1, 2, ..., n.

Given two partitions A = {a1, ..., an} and B = {b1, ..., bk} of (M, ·), their join A ∨ B is defined as

the system A ∨ B =
{

ai · bj; i = 1, ..., n, j = 1, ..., k
}

, if A 6= B, and A ∨ A = A. Since
n
∑

i=1

k
∑

j=1
ai · bj

=
n
∑

i=1
ai ·

k
∑

j=1
bj = u · (

k
∑

j=1
bj) =

k
∑

j=1
bj = u, the systemA∨B is a partition of (M, ·), too. IfA1,A2, ...,An

are partitions in a product MV algebra (M, ·), then we put ∨n
i=1Ai = A1 ∨A2 ∨ ...∨An.

Let A = {a1, ..., an} be a partition in a product MV algebra (M, ·) and m be a state on (M, ·).
Then the entropy of A with respect to m is defined by Shannon’s formula:

Hm(A) =−∑n
i=1 F(m(ai)), (1)
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where:

F : [0, ∞)→ <, F(x) =

{
x log x, if x > 0;
0, if x = 0.

If A = {a1, ..., an} and B = {b1, ..., bk} are two partitions of (M, ·), then the conditional entropy
of A given B is defined by:

Hm(A/B)= −
n

∑
i=1

k

∑
j=1

m(ai · bj) · log
m(ai · bj)

m(bj)
.

In accordance with the classical theory the log is to the base 2 and the entropy is expressed in
bits. Note that we use the convention (based on continuity arguments) that x log x

0 = ∞ if x > 0,
and 0 log 0

x = 0 if x ≥ 0.

Example 1. Consider any product MV algebra (M, ·) and a state m defined on M. Then the set E = { u} is
a partition of (M, ·) such that E ≺ A for any partition A of (M, ·). Its entropy is Hm(E) = 0. Let a ∈ M
such that m(a) = p, where p ∈ (0, 1). Evidently, m(u − a) = 1 − p, and the set A = {a, u− a} is
a partition of (M, ·). The entropy Hm(A) = −p log p − (1 − p) log(1 − p). In particular, if p = 1

2 ,
then Hm(A) = log 2 = 1 bit.

The entropy and the conditional entropy of partitions in a product MV algebra satisfy all properties
analogous to properties of Shannon’s entropy of measurable partitions in the classical case; the proofs
can be found in [35,49,50]. We present those that will be further exploited. LetA, B, C be any partitions
of a product MV algebra (M, ·). Then the following properties hold: (E1) Hm(A) ≥ 0; (E2) B ≺ C
implies Hm(A/C) ≤ Hm(A/B); (E3) Hm(A∨ B /C) = Hm(A /C) + Hm(B /C ∨ A); (E4) Hm(A∨ B)
= Hm(A) + Hm(B/A); (E5) Hm(A∨ B /C) ≤ Hm(A /C) + Hm(B /C).

3. Mutual Information of Partitions in Product MV Algebras

In this section the results concerning the entropy in product MV algebras are used in developing
information theory for the case of product MV algebras. We define the notions of mutual information
and conditional mutual information of partitions in a product MV algebra and prove basic properties
of the proposed measures.

Definition 4. Let A, B be partitions in a given product MV algebra (M, ·). Then we define the mutual
information of A and B by the formula:

Im(A , B) =Hm(A)−Hm(A/B). (2)

Remark 1. As a simple consequence of (E4) we get:

Im(A , B) =Hm(A) + Hm(B)− Hm(A∨ B). (3)

Subsequently we see that Im(A , A) = Hm(A), i.e., the entropy of partitions in product MV algebras can
be considered as a special case of their mutual information. Moreover, we see that Im(A , B) = Im(B , A),
and hence we can also write:

Im(A , B) =Hm(B)− Hm(B /A). (4)

Example 2. Consider the measurable space (Ω, S), where Ω is the unit interval [0, 1], and S is the
σ-algebra of all Borel subsets of [0, 1]. Let F be the family of all S-measurable functions f : Ω→ [0, 1]
(i.e., [α, β] ⊂ [0, 1]⇒ f−1([α, β]) ∈ S ). F is the so called full tribe of fuzzy sets [30] (see also [14,29]); it is
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closed also under the natural product of fuzzy sets and represents a special case of product MV algebras. On
the product MV algebra F we define a state m by the formula m( f ) =

∫ 1
0 f (x)dx, for every f ∈ F. Evidently,

the sets A = {x, 1− x} and B =
{

x2, 1− x2} are two partitions of F with the m-state values 1
2 , 1

2 and
1
3 , 2

3 of the corresponding elements of A and B, respectively. By simple calculations we obtain the entropy
Hm(A) = log 2 = 1 bit, and the entropy Hm(B) = − 1

3 · log 1
3 −

2
3 · log 2

3 = 0.9183 bit. The join of A and B
is the system A∨ B =

{
x3, x2(1− x), x(1− x2), (1− x)(1− x2)

}
with the m-state values 1

4 , 1
12 , 1

4 , 5
12 of

the corresponding elements. The entropy of A∨ B is the number:

Hm(A∨ B) = −
1
4
· log

1
4
− 1

12
· log

1
12
− 1

4
· log

1
4
− 5

12
· log

5
12

= 1.8250 bit.

Since:

Hm(A/B) = −m
(

x3
)
· log

m(x3)

m(x2)
−m

(
x(1− x2)

)
· log

m(x(1− x2))

m(1− x2)

−m
(
(1− x) x2

)
· log

m((1− x) x2)

m(x2)
−m

(
(1− x) (1− x2)

)
· log

m((1− x) (1− x2))

m(1− x2)

= −1
4
· log

1
4
1
3
− 1

4
· log

1
4
2
3
− 1

12
· log

1
12
1
3
− 5

12
· log

5
12
2
3

= 0.9067 bit,

the mutual information of A and B is the number:

Im(A , B) =Hm(A)−Hm(A/B) = 1− 0.9067 = 0.0933 bit.

We can also see that Equation (3) is fulfilled:

Hm(A) + Hm(B)− Hm(A∨ B) = 1 + 0.9183 − 1.8250 = 0.0933 bit.

In the following we will use the assertions of Propositions 1 and 2.

Proposition 1. If A = {a1, ..., an} and B = {b1, ..., bk} are two partitions of (M, ·), then we have:

(i) m(ai) =
k
∑

j=1
m(ai · bj), for i = 1, 2, ..., n;

(ii) m(bj) =
n
∑

i=1
m(ai · bj), for j = 1, 2, ..., k.

Proof. By the assumption
k
∑

j=1
bj = u, therefore, according to Definitions 1 and 2, we get:

m(ai) = m(u · ai) = m((
k

∑
j=1

bj) · ai) = m(
k

∑
j=1

(bj · ai)) =
k

∑
j=1

m (ai · bj), for i = 1, 2, ..., n.

The equality (ii) could be obtained in the same way. �

From the following proposition it follows that, for every partitions A, B of (M, ·), the set A∨ B
is a common refinement of A and B.

Proposition 2. A ≺ A∨ B, for every partitions A, B of (M, ·).
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Proof. Assume that A = {a1, ..., an} and B = {b1, ..., bk}. Since the set A ∨ B is indexed by
{(i, j); i = 1, ..., n, j = 1, 2, ..., k}, we put I(i) = {(i, 1), ..., (i, k)}, i = 1, 2, ..., n. In view of Proposition 1,
we have:

m(ai) =
k

∑
j=1

m(ai · bj) = ∑
(l,j)∈I(i)

m(al · bj), for i = 1, 2, ..., n.

However, this indicates that A ≺ A∨ B. �

Theorem 1. For any partitions A, B and C in a product MV algebra (M, ·), we have:

Im(A ∨ B , C) ≥ Im(A , C) .

Proof. By Equation (2) and the properties (E3) and (E4), we get:

Im(A ∨ B , C) =Hm(A∨ B)−Hm(A ∨ B / C)
= Hm(A) +Hm(B/A)−Hm(A/C)−Hm(B/C ∨A)

= Im(A , C)+Hm(B/A)−Hm(B/C ∨A).

According to Proposition 2 A ≺ C ∨A, and therefore by (E2) Hm(B/A) ≥ Hm(B/C ∨A). It follows
the inequality:

Im(A ∨ B , C)≥ Im(A , C). �

Proposition 3. If A = {a1, ..., an} and B = {b1, ..., bk} are two partitions of (M, ·), then:

Im(A , B) =
n

∑
i=1

k

∑
j=1

m(ai · bj) · log
m(ai · bj)

m(ai) ·m(bj)
. (5)

Proof. Since by Proposition 1 it holds:

m(ai) =
k

∑
j=1

m(ai · bj), for i = 1, 2, ..., n,

we get:

Im(A , B) =−
n
∑

i=1
m(ai) · log m(ai) +

n
∑

i=1

k
∑

j=1
m(ai · bj) · log

m(ai ·bj)

m(bj)

= −
n
∑

i=1

k
∑

j=1
m(ai · bj) · log m(ai) +

n
∑

i=1

k
∑

j=1
m(ai · bj) · log

m(ai ·bj)

m(bj)

=
n
∑

i=1

k
∑

j=1
m(ai · bj) ·

[
log

m(ai ·bj)

m(bj)
− log m(ai)

]
=

n
∑

i=1

k
∑

j=1
m(ai · bj) · log

m(ai ·bj)

m(ai)·m(bj)
. �

Definition 5. Two partitions A = {a1, ..., an} and B = {b1, ..., bk} of (M, ·) are called statistically
independent, if m(ai · bj) = m(ai) ·m(bj), for i = 1, 2, ..., n, j = 1, 2, ..., k.

Theorem 2. Let A, B be partitions in a product MV algebra (M, ·). Then Im(A , B) ≥ 0 with the equality if
and only if the partitions A, B are statistically independent.
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Proof. Assume that A = {a1, ..., an} and B = {b1, ..., bk}. Then using the inequality log x ≤ x − 1,
which is valid for all real numbers x > 0, with the equality if and only if x = 1, we get:

m(ai · bj) · log
m(ai) ·m(bj)

m(ai · bj)
≤ m(ai · bj) ·

[
m(ai) ·m(bj)

m(ai · bj)
− 1

]
= m(ai) ·m(bj)−m(ai · bj).

The equality holds if and only if
m(ai)·m(bj)

m(ai ·bj)
= 1, i.e., when m(ai · bj) = m(ai) ·m(bj). Therefore

using Equation (5) and Proposition 1 we have:

−Im(A , B) =
n
∑

i=1

k
∑

j=1
m(ai · bj) · log

m(ai)·m(bj)

m(ai ·bj)
≤

n
∑

i=1

k
∑

j=1

[
m(ai) ·m(bj)−m(ai · bj)

]
=

n
∑

i=1

k
∑

j=1
m(ai) ·m(bj)−

n
∑

i=1

k
∑

j=1
m(ai · bj)=

n
∑

i=1
m(ai) ·

k
∑

j=1
m(bj)−

n
∑

i=1
m(ai)

= m(
n
∑

i=1
ai) ·m(

k
∑

j=1
bj)−m(

n
∑

i=1
ai)= m(u) ·m(u)−m(u) = 1 · 1− 1 = 0.

It follows that Im(A , B) ≥ 0 with the equality if and only if m(ai · bj) = m(ai) · m(bj), for i =
1, 2, ..., n, j = 1, 2, ..., k, i.e., when the partitions A, B are statistically independent. �

From Theorem 2 it follows subadditivity and additivity of entropy in a product MV algebra,
as shown by the following theorem.

Theorem 3 (Subadditivity and additivity of entropy). For arbitrary partitions A, B in a product MV algebra
(M, ·), it holds Hm(A∨ B) ≤ Hm(A) + Hm(B) with the equality if and only if the partitions A, B are
statistically independent.

Proof. It follows by Equation (3) and Theorem 2. �

Theorem 4. For arbitrary partitions A, B in a product MV algebra (M, ·), it holds Hm(A/B) ≤ Hm(A)
with the equality if and only if the partitions A, B are statistically independent.

Proof. The assertion is a simple consequence of Equation (2) and Theorem 2. �

Definition 6. LetA, B and C be partitions in a given product MV algebra (M, ·). Then the conditional mutual
information of A and B given C is defined by the formula

Im(A , B / C) =Hm(A / C)− Hm(A / B ∨ C). (6)

Remark 2. Notice that the conditional mutual information is nonnegative, because by the property (E2)
Hm(A / C) ≥ Hm(A / B ∨ C).

Theorem 5. For any partitions A, B and C in a product MV algebra (M, ·), we have:

Im(A , B ∨ C) = Im(A , C) + Im(A , B / C) = Im(A , B) + Im(A , C / B).

Proof. Let us calculate:

Im(A , C) + Im(A , B / C)= Hm(A)− Hm(A / C) + Hm(A / C)− Hm(A / B ∨ C)
= Hm(A)− Hm(A / B ∨ C) =Im(A , B ∨ C).
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In a similar way we obtain also the second equality. �

Theorem 6 (Chain rules). Let A1,A2, ...,An and C be partitions in a product MV algebra (M, ·). Then, for
n = 2, 3, ..., the following equalities hold:

(i) Hm(A1 ∨A2 ∨ ...∨ An) = Hm(A1) + ∑n
i=2 Hm(Ai/ ∨i−1

k=1 Ak);

(ii) Hm
(
∨n

i=1 Ai/C) = Hm(A1 /C) + ∑n
i=2 Hm(Ai/(∨ i−1

k=1Ak) ∨ C);
(iii) Im(∨n

i=1Ai, C) = Im(A1, C) + ∑n
i=2 Im(Ai, C/ ∨i−1

k=1Ak).

Proof. (i) By the property (E4) we have:

Hm(A1 ∨ A2) =Hm(A1) + Hm(A2/A1).

By (E3) and (E4) we get:

Hm(A1 ∨ A2 ∨A3) = Hm(A1)+Hm(A2 ∨A3 /A1)

= Hm(A1) + Hm(A2/A1) + Hm(A3/A2 ∨A1)

= Hm(A1) + ∑3
i=2 Hm(Ai/ ∨i−1

k=1 Ak).

Now let us suppose that the result is true for a given n ∈ N. Then:

Hm(A1 ∨A2 ∨ ...∨ An ∨An+1) = Hm(A1 ∨A2 ∨ ...∨ An) + Hm(An+1/A1 ∨A2 ∨ ...∨ An)

= Hm(A1) + ∑n
i=2 Hm(Ai/∨i−1

k=1Ak) + Hm(An+1/A1 ∨A2 ∨ ...∨ An)

= Hm(A1) + ∑n+1
i=2 Hm(Ai/∨i−1

k=1Ak).

(ii) For n = 2, using (E3) we obtain:

Hm(A1 ∨ A2/C) = Hm(A1/C) + Hm(A2/A1 ∨ C).

Suppose that the result is true for a given n ∈ N. Then:

Hm(A1 ∨A2 ∨ ...∨ An ∨An+1/C) = Hm(∨n
i=1Ai/C) + Hm(An+1/A1 ∨ ...∨An ∨ C)

= Hm(A1/C) + ∑n
i=2 Hm(Ai/(∨i−1

k=1Ak) ∨ C) + Hm(An+1/(∨n
k=1Ak) ∨ C)

= Hm(A1/C) + ∑n+1
i=2 Hm(Ai/(∨i−1

k=1Ak) ∨ C).

(iii) By Equation (2), the equalities (i) and (ii) of this theorem, and Equation (6), we obtain:

Im(∨n
i=1Ai, C) = Hm(∨n

i=1Ai)−Hm(∨n
i=1Ai/C)

= Hm(A1) + ∑n
i=2 Hm(Ai/ ∨i−1

k=1 Ak)−Hm(A1 /C)−∑n
i=2 Hm(Ai/(∨ i−1

k=1Ak) ∨ C)

= Im(A1, C) + ∑n
i=2(Hm (Ai/∨i−1

k=1Ak)−Hm(Ai/ (∨i−1
k=1Ak) ∨ C)

)
= Im(A1, C) + ∑n

i=2 Im(Ai, C /∨i−1
k=1Ak). �

Definition 7. Let A, B and C be partitions in a product MV algebra (M, ·). We say that A is conditionally
independent to C given B (and write A → B → C ) if Im(A , C / B) = 0.

Theorem 7. For partitions A, B and C in a product MV algebra (M, ·), A → B → C if and only if
C → B → A .
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Proof. Let A → B → C. Then 0 = Im(A , C / B) = Hm(A / B)− Hm(A / B ∨ C) . Therefore by
(E4) we get:

Hm(A / B) = Hm(A / B ∨ C) = Hm(A ∨ B ∨ C)− Hm(B ∨ C).

Let us calculate:

Im(C , A / B) = Hm(C / B)− Hm(C / A ∨ B)
= Hm(C ∨ B)− Hm(B) − Hm(A ∨ B ∨ C) + Hm(A ∨ B)

= Hm(A ∨ B)− Hm(B)− Hm(A / B) = Hm(A / B)− Hm(A / B) = 0.

The results means that C → B → A. The reverse implication is evident. �

Remark 3. According to the above theorem, we may say that A and C are conditionally independent given B
and write A ↔ B ↔ C instead of A → B → C .

Theorem 8. Let A, B and C be partitions in a given product MV algebra (M, ·) such that A → B → C.
Then we have:

(i) Im(A∨ B , C) = Im(B , C);
(ii) Im(B , C) = Im(C , A)+ Im(C , B / A);
(iii) Im(A,B/C) ≤ Im(A, B);
(iv) Im(A, B) ≥ Im(A, C) (data processing inequality).

Proof. (i) By the assumption we have Im(A , C / B) = 0. Hence using the chain rule for the mutual
information (Theorem 6 (iii)), we obtain:

Im(A∨ B , C) =Im(B ∨A , C) =Im(B , C)+Im(A , C / B) =Im(B , C).

(ii) By the equality (i) of this theorem and Theorem 5, we can write:

Im(B , C) =Im(A∨ B , C) = Im(C,B ∨A) = Im(C,A) + Im(C,B/A) .

(iii) From (ii) it follows the inequality Im(B , C) ≥Im(C , B / A). Interchanging A and C (we can
do it based on Theorem 7) we obtain:

Im(A, B) ≥ Im (A,B/C).

(iv) By the assumption we have Im(A , C / B) = 0. Therefore by Theorem 5 we get:

Im(A , B ∨ C) = Im(A , B) + Im(A , C / B) = Im(A , B).

Thus by the same theorem we can write:

Im(A, B) = Im(A , B ∨ C) = Im(A , C) + Im(A , B / C).

Since Im(A,B/C) ≥ 0, it holds Im(A, B) ≥ Im(A, C). �

In the following, a concavity of entropy Hm(A) and concavity of mutual information Im(A, B) as
functions of m are studied. We recall, for the convenience of the reader, the definitions of convex and
concave function:
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A real-valued function f is said to be convex over an interval [a, b] if for every x1, x2 ∈ [a, b] and
for any real number α ∈ [0, 1]:

f (αx1 + (1− α)x2) ≤ α f (x1) + (1− α) f (x2).

A real-valued function f is said to be concave over an interval [a, b] if for every x1, x2 ∈ [a, b] and
for any real number α ∈ [0, 1]:

f (αx1 + (1− α)x2) ≥ α f (x1) + (1− α) f (x2).

In the following, we will use the symbol F to denote the family of all states on a given product
MV algebra (M, ·). It is easy to prove the following proposition:

Proposition 4. If m1, m2 ∈ F, then, for every real number α ∈ [0, 1], αm1 + (1− α)m2 ∈ F.

Theorem 9 (Concavity of entropy). Let A be a partition in a given product MV algebra (M, ·). Then, for every
m1, m2 ∈ F, and every real number α ∈ [0, 1], the following inequality holds:

α Hm1(A)+(1− α)Hm2(A) ≤ Hα m1+(1−α)m2
(A).

Proof. Assume that A = {a1, ..., an}. Since the function F is convex, we get:

α Hm1(A) + (1− α) Hm2(A)= − α
n

∑
i=1

F(m1(ai))−(1− α)
n

∑
i=1

F(m2(ai))

= −
n

∑
i=1

(α F(m1(ai)) + (1− α) F(m2(ai)))≤ −
n

∑
i=1

F(α m1(ai) + (1− α)m2(ai))

= −
n

∑
i=1

F((α m1 + (1− α)m2)(ai)) = Hα m1+(1−α)m2
(A),

which proves that the entropy m 7→ Hm(A) is a concave function on the family F. �

In the proof of concavity of mutual information Im(A , B) we will need the assertion of Proposition
5. First, we introduce the following notation. Let m be a state on a product MV algebra (M, ·), a, b ∈ M.
Then we denote:

.
m(a/b) =

{
m(a·b)
m(b) , if m(b) > 0;

0, if m(b) = 0.

Proposition 5. If A = {a1, ..., an} and B = {b1, ..., bk} are two partitions of (M, ·), then

Hm(B /A) = −
n

∑
i=1

k

∑
j=1

m(ai) · F(
.

m(bj/ai)). (7)

Proof. Let us calculate:

−
n

∑
i=1

k

∑
j=1

m(ai) · F(
.

m(bj/ai)) = − ∑
i: m(ai)>0

k

∑
j=1

m(ai) · F
(m(bj · ai)

m(ai)

)

= − ∑
i: m(ai)>0

k

∑
j=1

m(ai) ·
m(bj · ai)

m(ai)
· log

m(bj · ai)

m(ai)
= − ∑

i: m(ai)>0

k

∑
j=1

m(bj · ai) · log
m(bj · ai)

m(ai)

= −
n

∑
i=1

k

∑
j=1

m(bj · ai) · log
m(bj · ai)

m(ai)
= Hm(B /A).
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In the last step, we used the implication m(ai) = 0⇒ m(bj · ai) = 0 which follows from the

equality m(ai) =
k
∑

j=1
m(ai · bj) shown in Proposition 1. �

Remark 4. By Proposition 5 there exists cij = −F(
.

m(bj/ai)) ≥ 0 such that

Hm(B /A) =
n

∑
i=1

k

∑
j=1

cij ·m(ai).

Definition 8. Let A = {a1, ..., an}, B = {b1, ..., bk} be two partitions of (M, ·). Put

K =
{

m ∈ F; Hm(B /A) = ∑n
i=1 ∑k

j=1 cij ·m(ai)
}

.

Theorem 10 (Concavity of mutual information). The mutual information m 7→ Im(A , B) is a concave function
on the family K.

Proof. By Equation (4) we can write:

Im(A , B) =Hm(B)− Hm(B /A).

In view of Theorem 9 and Remark 4, the function m 7→ Im(A , B) is the sum of two concave
functions on the family K: m 7→ Hm(B), and m 7→ −Hm(B /A). Since the sum of two concave
functions is itself concave, we have the statement. �

4. Kullback–Leibler Divergence in Product MV Algebras

In this section we introduce the concept of Kullback–Leibler divergence in product MV algebras.
We prove basic properties of this measure; in particular, Gibb’s inequality. Finally, using the notion of
conditional Kullback–Leibler divergence we establish a chain rule for Kullback–Leibler divergence
with respect to additive states defined on a given product MV algebra. In the proofs we use the
following known log-sum inequality: for non-negative real numbers x1, x2, ..., xn, y1, y2, ..., yn, it holds:

n

∑
i=1

xi · log
xi
yi
≥ (

n

∑
i=1

xi) · log
∑n

i=1 xi

∑n
i=1 yi

(8)

with the equality if and only if xi
yi

is constant. Recall that we use the convention that x log x
0 = ∞ if

x > 0, and 0 log 0
x = 0 if x ≥ 0.

Definition 9. Let m1, m2 be states defined on a given product MV algebra (M, ·), and A = {a1, ..., an} be
a partition of (M, ·). Then we define the Kullback–Leibler divergence DA(m1 ‖ m2) by:

DA(m1‖m2)= ∑n
i=1 m1(ai) · log

m1(ai)

m2(ai)
.

Remark 5. It is obvious that DA(m ‖ m) = 0. The Kullback–Leibler divergence is not a metric in a true sense
since it is not symmetric, i.e., the equality DA(m1 ‖ m2) = DA(m2 ‖ m1) is not necessarily true (as shown in
the following example), and does not satisfy the triangle inequality.
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Example 3. Consider any product MV algebra (M, ·) and two states m1, m2 defined on M. Let a ∈ M such
that m1(a) = p, and m2(a) = q, where p, q ∈ (0, 1). Evidently, m1(u− a) = 1− p, m2(u− a) = 1− q,
and the set A = {a, u− a} is a partition of (M, ·). Let us calculate:

DA(m1‖m2)= p · log
p
q
+ (1− p) · log

1− p
1− q

, and DA(m2‖m1)= q · log
q
p
+ (1− q) · log

1− q
1− p

.

If p = q, then DA(m1 ‖ m2) = DA(m2 ‖ m1) = 0. If p = 1
2 , q = 1

4 , then we have:

DA(m1‖m2)=
1
2
· log

1
2
1
4
+

1
2
· log

1
2
3
4
=

1
2
· log 2 +

1
2
· log

2
3
= 0. 207519 bit,

and:

DA(m2‖m1)=
1
4
· log

1
4
1
2
+

3
4
· log

3
4
1
2
=

1
4
· log 2 +

3
4
· log

3
2
= 0.188722 bit.

The result means that DA(m1 ‖ m2) 6= DA(m2 ‖ m1), in general.

Theorem 11. Let m1, m2 be states defined on a product MV algebra (M, ·), andA = {a1, ..., an} be a partition
of (M, ·).Then DA(m1 ‖ m2) ≥ 0 (Gibb’s inequality) with the equality if and only if m1(ai) = m2(ai),
for i = 1, 2, ..., n.

Proof. If we put xi = m1( ai) and yi = m2( ai), for i = 1, 2, ..., n, then x1, x2, ..., xn, y1, y2, ..., yn are
non-negative real numbers such that ∑n

i=1 xi = 1 and ∑n
i=1 yi = 1. Indeed, ∑n

i=1 xi = ∑n
i=1 m1(ai)

= m1(∑n
i=1 ai) = m1(u) = 1; analogously we obtain ∑n

i=1 yi = 1. Thus, using the log-sum inequality
we can write:

DA(m1‖m2)= ∑n
i=1 m1(ai) · log

m1(ai)

m2(ai)
= ∑n

i=1 xi · log
xi
yi

≥
(
∑n

i=1 xi

)
· log

∑n
i=1 xi

∑n
i=1 yi

= 1 · log
1
1
= 0

with the equality if and only if m1(ai)
m2(ai)

= α for i = 1, 2, ..., n, where α is constant. Taking the sum for
all i = 1, 2, ..., n, we obtain ∑n

i=1 m1(ai) = α∑n
i=1 m2(ai), which implies that α = 1. This means that

DA(m1 ‖ m2) = 0 if and only if m1(ai) = m2(ai), for i = 1, 2, ..., n. �

Theorem 12. Let A be a partition of (M, ·) and ν be a state on (M, ·) uniform over A. Then, for the entropy
of A with respect to any state m from F, we have:

Hm(A) =log cardA −DA(m‖ν).

Proof. Assume that A = {a1, ..., an}. Then ν(ai) =
1
n , for i = 1, 2, ..., n. Let us calculate:

DA(m‖ν)= ∑n
i=1 m(ai) · log

m(ai)

ν(ai)
= ∑n

i=1 m(ai) · log
m(ai)

1
n

= ∑n
i=1 m(ai) ·

(
log m(ai)− log n−1

)
= ∑n

i=1 m(ai) · log m(ai) + log n = log cardA− Hm(A). �

As a consequence we obtain the following property of entropy of partitions in product
MV algebras.

Corollary 1. For any partition A of (M, ·), it holds Hm(A) ≤ log cardA, with the equality if and only if m is
uniform over the partition A.
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Proof. Assume that A = {a1, ..., an} and consider a state ν on (M, ·) uniform over A, i.e., it holds ν(ai)

= 1
n , for i = 1, 2, ..., n. Then, by Theorem 12 we get:

DA(m‖ν) = log cardA− Hm(A).

Since by Theorem 11 DA(m ‖ ν) ≥ 0, it holds the inequality:

Hm(A) ≤ log cardA.

Further, by Theorem 11 DA(m ‖ ν) = 0 if and only if m(ai) = ν(ai), for i = 1, 2, ..., n. This means
that the equality Hm(A) = log cardA holds if and only if m(ai) =

1
n , for i = 1, 2, ..., n. �

Theorem 13 (Convexity of K–L divergence). Let A be a partition in a product MV algebra (M, ·). The K–L
divergence DA(m1 ‖ m2) is convex in the pair (m1, m2), i.e., if (m′1, m′2), (m

′′
1 , m′′2 ) are pairs of states from F,

then, for any real number α ∈ [0, 1], the following inequality holds:

DA(αm′1 + (1− α)m′′1 ‖αm′2 + (1− α)m′′2 ) ≤αDA(m′1‖m′2)+(1− α)DA(m
′′
1 ‖m

′′
2 ). (9)

Proof. Assume that A = {a1, ..., an} and fix i ∈ {1, 2, ..., n}. Putting x1 = αm′1(ai), x2 = (1− α)m′′1 (ai),
y1 = αm′2(ai), y2 = (1− α)m′′2 (ai) in the log-sum inequality, we obtain:

(
αm′1(ai)+(1− α)m′′1 (ai)

)
· log

αm′1(ai) + (1− α)m′′1 (ai)

αm′2(ai) + (1− α)m′′2 (ai)

≤ αm′1(ai) · log
αm′1(ai)

αm′2(ai)
+(1− α)m′′1 (ai)· log

(1− α)m′′1 (ai)

(1− α)m′′2 (ai)
.

Summing these inequalities over i = 1, 2, ..., n, we obtain the inequality (9). �

The result of Theorem 13 is illustrated in the following example.

Example 4. Consider the product MV algebra F from Example 2 and the real functions F1, F2, F3, F4 defined by
F1(x) = x, F2(x) = x2, F3(x) = x3, F4(x) = x4, for every x ∈ <. On the product MV algebra F we define
the states m1, m2, m3, m4 by the following formulas:

m1( f ) =
∫ 1

0
f (x)dF1(x) =

∫ 1

0
f (x)dx, f ∈ F;

m2( f ) =
∫ 1

0
f (x)dF2(x) =

∫ 1

0
f (x)2xdx, f ∈ F;

m3( f ) =
∫ 1

0
f (x)dF3(x) =

∫ 1

0
f (x)3x2dx, f ∈ F;

m4( f ) =
∫ 1

0
f (x)dF4(x) =

∫ 1

0
f (x)4x3dx, f ∈ F.

In addition, we will consider the partition A = {x, 1− x} of F. It is easy to calculate that it has the
m1-state values 1

2 , 1
2 ; the m2-state values 2

3 , 1
3 ; the m3-state values 3

4 , 1
4 ; and the m4-state values 4

5 , 1
5 of the

corresponding elements. In the previous theorem we put α = 0.2. We will show that:

DA(0.2m1 + 0.8m3‖0.2m2 + 0.8m4) ≤0.2DA(m1‖m2)+ 0.8DA(m3‖m4). (10)
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Let us calculate:

DA(m1‖m2) =
1
2
· log

1
2
2
3
+

1
2
· log

1
2
1
3
= 0.085 bit;

DA(m3‖m4) =
3
4
· log

3
4
4
5
+

1
4
· log

1
4
1
5
= 0.01065 bit;

DA(0.2m1 + 0.8m3‖0.2m2 + 0.8m4) = 0.7 · log
0.7

0.7733
+ 0.3 · log

0.3
0.2267

= 0.020682 bit.

Since 0.020682 ≤ 0.2 · 0.085 + 0.8 · 0.01065 = 0.02552, the inequality (10) holds.

In the final part, we define the conditional Kullback–Leibler divergence and, using this notion,
we establish the chain rule for Kullback–Leibler divergence.

Definition 10. Let m1, m2 be states on a given product MV algebra (M, ·) and A = {a1, ..., an},
B = {b1, ..., bk} be two partitions of (M, ·). Then we define the conditional Kullback–Leibler divergence
DB/A(m1 ‖ m2) by:

DB/A(m1‖m2)= ∑n
i=1 m1(ai)∑k

j=1
.

m1(bj/ai) · log
.

m1(bj/ai)
.

m2(bj/ai)
.

Theorem 14 (Chain rule for K–L divergence). Let m1, m2 be states on a given product MV algebra (M, ·).
If A, B are two partitions of (M, ·), then:

DA∨B(m1‖m2)= DA(m1‖m2)+ DB/A(m1‖m2). (11)

Proof. Assume that A = {a1, ..., an} and B = {b1, ..., bk}. We will consider the following two cases:
(i) there exists i0 ∈ {1, ..., n} such that m2(ai0) = 0; (ii) m2(ai) > 0 for i = 1, 2, ..., n. In the first case,
both sides of Equation (11) are equal to ∞, thus the equality holds. Let us now assume that m2(ai) > 0,
for i = 1, 2, ..., n. We get:

DA(m1‖m2)+DB/A(m1‖m2)

= ∑n
i=1 m1(ai) · log m1(ai)

m2(ai)
+∑n

i=1 m1(ai)∑k
j=1

.
m1(bj/ai) · log

.
m1(bj/ai)
.

m2(bj/ai)

= ∑
i:m1(ai)>0

k
∑

j=1
m1(ai · bj) · log m1(ai)

m2(ai)
+ ∑

i:m1(ai)>0
∑k

j=1 m1(ai · bj) · log
.

m1(bj/ai)
.

m2(bj/ai)

= ∑
i:m1(ai)>0

k
∑

j=1
m1(ai · bj) ·

(
log m1(ai)

m2(ai)
+ log

.
m1(bj/ai)
.

m2(bj/ai)

)
= ∑

i:m1(ai)>0

k
∑

j=1
m1(ai · bj) · log

m1(ai)
.

m1(bj/ai)

m2(ai)
.

m2(bj/ai)
= ∑

i:m1(ai)>0

k
∑

j=1
m1(ai · bj) · log

m1(ai ·bj)

m2(ai ·bj)

=
n
∑

i=1

k
∑

j=1
m1(ai · bj) · log

m1(ai ·bj)

m2(ai ·bj)
= DA∨B(m1‖m2).

In the last step, analogously as in the proof of Proposition 5, we used the implication

m1(ai) = 0⇒ m1(ai · bj) = 0 which follows from the equality m1(ai) =
k
∑

j=1
m1(ai · bj) shown in

Proposition 1. �

In the following example, we illustrate the result of the previous theorem.
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Example 5. Consider the product MV algebra F and the partitions A = {x, 1− x}, B =
{

x2, 1− x2} of the
product MV algebra F from Example 2. In addition, let m1, m2 be the states on F, defined in Example 4. Then
the partitions A and B have the m1-state values 1

2 , 1
2 and 1

3 , 2
3 of the corresponding elements, respectively, and

the m2-state values 2
3 , 1

3 and 1
2 , 1

2 of the corresponding elements, respectively. The join of partitions A and B
is the system A∨ B =

{
x3, x2(1− x), x(1− x2), (1− x)(1− x2)

}
; it has the m1-state values 1

4 , 1
12 , 1

4 , 5
12 ,

and the m2-state values 2
5 , 1

10 , 4
15 , 7

30 of the corresponding elements. By simple calculations we obtain:

DA(m1‖m2) = 0.085 bit, DA∨B(m1‖m2) = 0.134 bit, DB/A(m1‖m2) = 0.049 bit.

It is possible to verify that DA∨B(m1 ‖ m2) = DA(m1 ‖ m2) +DB/A(m1 ‖ m2).

5. Discussion

In this paper, we have extended the study of entropy in product MV algebras. The main aim
of the paper was to introduce, using known results concerning the entropy in product MV algebras,
the concepts of mutual information and Kullback–Leibler divergence for the case of product MV
algebras and examine algebraic properties of the proposed measures. Our results have been presented
in Sections 3 and 4.

In Section 3 we have introduced the notions of mutual information and conditional mutual
information of partitions of product MV algebras and proved some basic properties of the suggested
measures. It was shown that the entropy of partitions of product MV algebras can be considered as a
special case of their mutual information. Specifically, it was proved that from the properties of mutual
information it follows subadditivity and additivity of entropy (Theorem 3). Theorem 6 provides
the chain rule for mutual information. In addition, the data processing inequality for conditionally
independent partitions in product MV algebras is proved. Moreover, a concavity of mutual information
has been studied.

In Section 4 the notion of Kullback–Leibler divergence in product MV algebras was introduced
and the basic properties of this measure were shown. In particular, a convexity of Kullback–Leibler
divergence with respect to additive states defined on a given product MV algebra is proved. Theorem 11
admits interpretation of Kullback–Leibler divergence as a measure of how different two states on a
common product MV algebra (over the same partition) are. The relationship between KL-divergence
and entropy is provided in Theorem 12: the more a state m ∈ F diverges from the state ν ∈ F uniform
overA (over the same partitionA) the lesser the entropy Hm(A) is and vice versa. Finally, a conditional
version of the Kullback–Leibler divergence in product MV algebras has been defined and the chain
rule for Kullback–Leibler divergence with respect to additive states defined on a given product MV
algebra has been established.

Notice that in [14] (see also [29,30]) the entropy on a full tribe F of fuzzy sets has been studied.
The tribe F is closed also under the natural product of fuzzy sets and it represents a special case of
product MV algebras. Accordingly, the theory presented in this contribution can also be applied for
the mentioned case of tribes of fuzzy sets.

In [51–55] a more general fuzzy theory—intuitionistic fuzzy sets (IF-sets for short) has been
developed. While a fuzzy set is a mapping µA : Ω→ [0, 1] (where the considered fuzzy set is
identified with its membership function µA), the Atanassov IF-set is a pair A = (µA, νA) of functions
µA, νA : Ω→ [0, 1] with µA + νA ≤ 1. The function µA is interpreted as a membership function
of IF-set A, and the function νA as a non-membership function of IF-set A. Evidently, any fuzzy set
µA : Ω→ [0, 1] can be considered as an IF-set A = (µA, 1− µA). Any result holding for IF-sets is
applicable also to fuzzy sets. Of course, the opposite implication is not true; the theory of intuitionistic
fuzzy sets presents a non-trivial generalization of the fuzzy set theory. So IF-sets present possibilities
for modeling a larger class of real situations. Note that some results about the entropy on IF-sets can
be found e.g., in [56–59]. These results could be used in developing information theory for the case
of IF-sets.
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To give a possibility to applied MV algebra results also to families of IF-experiments, one can
use the Mundici characterization of MV algebras. In the family of IF-sets it is natural to define
the partial ordering relation ≤ in the following way: if A = (µA, νA), and B = (µB, νB) are two
IF-sets, then A ≤ B if and only if µA ≤ µB, and νA ≥ νB. Namely, in the fuzzy case µA ≤ µB
implies νA = 1− µA ≥ 1− µB = νB. Therefore we can consider the Abelian l-group (<2, +, ≤)
putting A + B = (µA + µB, 1− (1− νA + 1− νB)) = (µA + µB, νA + νB − 1) with the zero element
0 = (0, 1). (In fact, A + 0 = (µA, νA) + (0, 1) = (µA, νA) = A.) The partial ordering ≤ in the l-group
(<2, +, ≤) is defined by the prescription A ≤ B if and only if µA ≤ µB, and νA ≥ νB. Then a suitable
MV algebra is e.g., the system M = {(µA, νA); (0, 1) ≤ (µA, νA) ≤ (1, 0)}. Moreover, this MV
algebra is a product MV algebra with the product defined byA · B = (µA · µB, 1− (1− νA) · (1− νB))

= (µA · µB, νA + νB − νA · νB). The presented MV algebra approach gives a possible elegant and
practical way for obtaining new results also in the intuitionistic fuzzy case. We note that this approach
was used to construct the Kolmogorov-type entropy theory for IF systems in [58], drawing on entropy
results for product MV-algebras published in [35,49,50]. In this way it is also possible to develop the
theory of information and K–L divergence for IF-sets.
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