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Abstract: Event-based runoff–pollutant relationships have been the key for water quality
management, but the scarcity of measured data results in poor model performance, especially
for multiple rainfall events. In this study, a new framework was proposed for event-based non-point
source (NPS) prediction and evaluation. The artificial neural network (ANN) was used to extend the
runoff–pollutant relationship from complete data events to other data-scarce events. The interpolation
method was then used to solve the problem of tail deviation in the simulated pollutographs.
In addition, the entropy method was utilized to train the ANN for comprehensive evaluations.
A case study was performed in the Three Gorges Reservoir Region, China. Results showed that the
ANN performed well in the NPS simulation, especially for light rainfall events, and the phosphorus
predictions were always more accurate than the nitrogen predictions under scarce data conditions.
In addition, peak pollutant data scarcity had a significant impact on the model performance.
Furthermore, these traditional indicators would lead to certain information loss during the model
evaluation, but the entropy weighting method could provide a more accurate model evaluation.
These results would be valuable for monitoring schemes and the quantitation of event-based NPS
pollution, especially in data-poor catchments.
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1. Introduction

Non-point source (NPS) pollution has resulted in the deterioration of water bodies and has become
a major environmental threat among most counties [1,2]. The quantification of the rainfall–runoff
process and the resulting NPS pollutants is essential for developing mitigation strategies, which are
the basis for watershed management [3]. The rainfall process is the major driving force for NPS, thus
rainfall-runoff-pollutant (R-R-P) relationships have become the focus of watershed research [4,5]. Many
studies have been conducted in the fields of rainfall–runoff relationships but have rarely involved the
runoff–pollutant relationship, especially for the event-based estimation of NPS loads [6–8].

The NPS processes can be expressed from the event-step to long-term steps. Event-based NPS
exports and the resulting change in water quality can provide detailed features of the NPS, which is
more appropriate for the design of storm-based management practices [9]. Models are developed to
construct the runoff–pollutant relationship, and the discrepancies of the collected measured data in
different rainfall patterns would have a considerable influence on the model construction. Identifying
the correlation among the series of rainfall, runoff and pollutant loads for multiple rainfall events is
inevitable for NPS model construction. Although many models are well suited for offline water quality
analyses, Soil and Water Assessment Tool (SWAT) is more representative than any other models [10].
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However, owing to limited human resources, data scarcity has become one of the key barriers to
establish the R-R-P relationship, especially for event-based process [11,12]. Thus, the application of
watershed models such as SWAT for assessing NPS pollution is also limited by temporal resolution
which ranges from annual to sub-hourly averages. The SWAT model usually operates continuously
at a daily time step, which ensures that the long-term impacts of NPS can be quantified. Sub-daily
calculations of runoff, erosion, and sediment transport are also available in new version of SWAT
by sub-daily rainfall input and Green and Ampt method, though few attempts have reached to that
higher temporal resolution. In the future, we would develop other more appropriate models to
solve this problem. Currently, acceptable rainfall and streamflow data sets are more readily available,
especially because of the recent development of data centers and satellite data observations. However,
hourly or sub-hourly flow data for high-frequency time series are still limited, especially with respect
to event-based hydrological studies for data-poor regions [7]. Water quality records, which are
based on periodic monitoring by human resources, are thus even scarcer. Therefore, data scarcity
for NPS predictions is unavoidable for multiple-rainfall event simulations. Typically, we collected
samples during multiple rainfall events in the monitoring process but discarded some of events from
further analysis, especially for light rainfall, for which only a few data points exist. This treatment of
incomplete data would result in the loss of information, especially for multiple rainfall events among
data-scarce regions.

Currently, statistical models have been widely used to estimate rainfall–runoff relationships for
its ease of application without considering a large amount of delicate formulas and parameters [13].
For example, unit hydrographs (UH), as one of the most famous methods, is used to estimate a
direct runoff hydrograph of a given rainfall duration. Meanwhile, statistical models are used to
simulate pollutant loads based on the established runoff–pollutant relationship. For example, Park
and Engel [14] developed Load Estimator (LOADEST) to predict pollutant concentration (or load) on
days when flow data were measured, and the results showed that absolute values of errors in the
annual sediment load estimation decreased from 39.7% to 10.8%. Meanwhile, most of the findings
demonstrate that the LOADEST model could provide more accurate results and may be useful for
simulating runoff–pollutant processes [15–17]. However, the LOADEST model has strict requirements
on the number of data points, which should include continuous flow data and dispersed water quality
data, and its calibration process is relatively complicated.

Owing to the limited measured data, the black-box model might be a substitution to construct the
logical relationships between runoff and pollutant loads for multiple-events processes. The artificial
neural network (ANN) with the characteristics of self-learning and adaptability has become the most
commonly used tool in environmental prediction, and it is also available for poor-data regions. This
method is applicable to simulate the imaginal thinking of the human brain, for which the most
prominent characteristic is the parallel processing of information and distributed storage. As an
example, Melesse et al. [18] used the ANNto estimate suspended sediment loads for three major rivers.
The results showed that daily predictions were better than weekly predictions. Therefore, it can be seen
that ANN models have flexible structures that allow multi-input and multi-output modeling. This is
particularly important in streamflow forecasting where inflows at multiple locations are considered
within a given catchment [19]. Though the application of ANN in the field of load production has
proliferated in recent years, the impact of data scarcity on its prediction capabilities during different
rainfall patterns still creates limitations [20].

Simulation evaluation is the most important step for the setup of statistical models [21].
In traditional applications, the model evaluation is usually performed using a single regression
goodness-of-fit indicator, the most common of which is the point-to-point pairs (a series of single
data pairs) of the predicted and measured data. However, this might lead to the loss of specific
information, resulting in dubitable simulation results. In this case, a joint evaluation should be a
substitute for the traditional single indicator. With the high precision and objectivity, the entropy
regulates the uncertainty of different criteria from different perspectives [22]. Compared with the
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traditional single indicators, it can combine different indicators to evaluate the discrepancy between
causes comprehensively. For instance, Khosravi et al. [23] sought to map the flooding susceptibility
using different bivariate methods, including Shannon’s entropy, the statistical index and the weighting
factor. Yuan et al. [24] developed an entropy method to find the weight sum of the information entropy
maximum to allocate the reduction of pollutants for the main seven valleys in China. The entropy
weighting method may be an efficient way to evaluate the regulation of the simulation results and
to balance the strengths and weaknesses of the results. However, these studies do not provide much
attention to event-based NPS predictions, especially for data-scarce catchments.

This study surveys the motivation for a methodology of action, looks at the difficulties posed
by data scarcity and outlines the need for the development of possibility methods to cope with data
scarcity in multiple rainfall events. The objectives of this work are: (1) to identify the impacts of
different rainfall patterns on the model construction using a complete data series; (2) to simulate the
scarce pollutant data in other data-scarce rainfall events; and (3) to test the application of the entropy
weighting method for the evaluation of ANN.

2. Materials and Methods

A prediction-evaluation framework is proposed for the NPS prediction for data-scarce catchments,
the flow chart of methods is shown in Figure 1. The ANN is proposed to simulate the missing data
points during multiple-events, and the entropy weighting method is used as a comprehensive indicator
to construct the model. As a necessary supplement, the interpolation method is used for tail correction
during multiple rainfall events. Data-scarce rainfall events denote the absence of data, especially
for measured flow and water quality, in a given period of time due to human mistakes during
high-resolution monitoring process. Instead, complete rainfall events are defined if there are no
measured flow and water quality data scarcity. The demonstration of traditional indicators is shown
in Section 2.2.
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2.1. The Description of the ANN

The back propagation algorithm is a supervised learning method based on the commonly used
steepest descent method to minimize global errors [25], while it is also the multilayer feedforward
network based on the error back propagation algorithm [2,26]. It accumulates an abundant mapping
relation of the input-output pattern and does not need to reveal mathematical equations to describe
the mapping relation before calculation. The ANN may be an efficient method to adjust the weights
and thresholds through back propagation to minimize the sum of the squared errors. As shown in
Figure 2, the topological structure of the ANN consists of an input layer, a hidden layer and an output
layer [27].

The learning mechanism of the ANN is shown in Figure 2, where xi is the input signal and wi is
the weight coefficient. The outside input samples x1, x2, . . . , xn are accepted into the input layer, and
the network weight coefficients are adjusted during training. The discrete values, 0 and 1, are selected
as the input sampling signals. By comparing the network output signals and the expected output
signals to generate the error signals, the weight coefficients of the learning system can be rectified based
through iterative adjustments to minimize the errors until reaching an acceptable range [28]. In this
process, the expected output signals are regarded as the teacher signals, which are compared with
the actual output, and the errors produced are applied to rectify the weight coefficients. At the point
when the actual output values and expected values are nearly the same, the process is concluded [26].
Finally, the results are produced through and equation of U based on the weight coefficients and are
exported by the output layers. In the ANN training process, three prime criteria can be summarized:
the error surface gradient can converge rapidly, the mean squared error is below the error of the preset
level, and the correlation coefficient of the training results is more than 0.9, indicating that training
results are an improvement [29]. This section briefly surveys the measurement for methodology, while
the ANN should be judged for whether each indicator can or cannot reach the given standards.

In this study, multiple rainfall events are used as the input conditions. Multiple rainfall events
are divided into either the training process or the simulation process based on the data conditions.
To establish the black-box model, data of three complete rainfall events are first input into the layer,
including light, moderate, and heavy rainfall patterns. The training results also indicate that the ANN
is applicable for various rainfall patterns. In the simulation process, the flow data for all the rainfall
and water quality information for the data-complete rainfall events for the same rainfall pattern are
regarded as the input layer. The hidden layer contains the water quality data for the data-scarce rainfall
events which correspond to all the flow and water quality data in the input layer. To obtain the output
layer, the training layer feedbacks the results into the prediction interval. Finally, the output layer is
simulated using the input data of the input layer.
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2.2. The Description of the Entropy Weighting Method

Three commonly used indicators, the mean relative error (d), the standard deviation of the
relative error (S), and the load deviation percentage (deviation), are selected to evaluate the simulation
results [30,31]. The formulas are shown as followed:
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deviation =
Oorigin

i −Oi

Oorigin
i

× 100% (1)

d =
n

∑
i=1

(Oi − Pi)/n (2)

S =

√√√√∑n
i=1

(
di − d

)2

n− 1
(3)

where Oi is the set of measured data, Pi is the set of predicted data, and Oi
origin denotes the total loads

of the original conditions, and is the mean value of the measured data.
Each of the three indicators represents the credibility of the measurements based on the

discrepancy between the measured and simulated values. Lower indicator values indicate that
the fitting between the simulated and measured data is improved, and the model is considered to have
a satisfactory performance. However, single indicators have limitation on amount of information loss.
Therefore, these indicators are handled with the entropy weighting method for a more comprehensive
assessment of the ANN. Based on the fundamental principles of information theory, information is
a measurement of the degree of order for a given system, and the entropy is a measurement of the
degree of disorder [32]. The entropy weighting method serves as a mathematic method and considers
the information provided by each factor [33]. Information entropy is negatively associated with the
increase in information provided by different indicators, and a smaller information entropy result
in higher weights for each single indicator. As an objective and comprehensive method, the entropy
weighting method considers the advantages of every indicator and makes a synthetic evaluation.
This principle is as follows:

Firstly, an n × m origin data matrix is established according to the selected evaluation indicators:

X =

 x11 · · · x1n
...

. . .
...

xn1 · · · xnm


n×m

(4)

where m denotes the evaluation indicator, and individual rows represent different evaluation objects.
Therefore, matrix X is known.

A second, positive matrix should be established with a transformation following same trend.
The transformed matrix is

Y =

 y11 · · · y1n
...

. . .
...

yn1 · · · ynm


n×m

(5)

Matrix Y is normalized, and the ratio of each column vector yij and the sum of all elements in this
matrix should be normalized. The formulas for these calculations are:

Zij =
yij

∑n
i=1 Yij

(j = 1, 2, . . . , m) (6)

where Zij are the elements of the normalized matrix.
The operational formula in the process of generating the entropy weights of the evaluation

indicators is

H
(

xj
)
= −k

n

∑
i=1

zij ln zij(j = 1, 2, . . . , m) (7)



Entropy 2017, 19, 265 6 of 18

where k is a normalizing constant, k = 1/lnn, and Zij is the j-th the probability of the element of
the i-th evaluation unit. Entropy values of the evaluation indicators should be transformed into the
weighted values:

wj =
1− H

(
xj
)

m−∑m
j=1 H

(
xj
) j = 1, 2, . . . , m, (8)

where 0 ≤ wi ≤ 1 and ∑ m
j=1wj = 1 are the acquired weighted values. Finally, the comprehensive

weighting values for each evaluation indicator should be ensured. The weighted values of each
indicator are multiplied with the corresponding indicators and summed. The evaluation model is

U =
m

∑
j=1

wizij (j = 1, 2, . . . , n) (9)

where U represents the comprehensive evaluation function of the entropy weights for each evaluation
indicator. This function reflects the comprehensive characteristics of the evaluation objective, which
avoids limiting these indicators [34].

The principle of the entropy weighting method is that information for each evaluation unit will
be qualified and synthesized, while every factor is weighted to simplify the evaluation process [35].
Therefore, the weight values can be ascertained with the entropy weighting method, and we choose
the deviation, d, and S as the evaluation indicators.

2.3. Method for Tail Correction

Statistical models would result in tail deviation problems if data scarcity exists in this study. This
problem addressed through data interpolation for the tail deviation. Therefore, linear interpolation,
as a common-used method, is used to obtain the missing values of the other data points. Two values of
the function f (x) are used to reduce the errors in the tail of the pollutographs. This approach is relatively
straightforward and is used widely in the field of mathematics or computer graphics. The error of the
approximate method can be defined as follows:

RT = f (x)− ρ(x) (10)

where ρ represents the linear interpolated polynomial:

ρ(x) = f (x0) +
f (x1)− f (x0)

x1 − x0
(x− x0) (11)

As a result of Rolle’s theorem, if f (x) has two continuous derivatives, the error range is

|RT | ≤
(x1 − x0)

2

8
max

x0≤x≤x1

∣∣ f ′(x)
∣∣ (12)

As shown in Formula (12), the approximate error of the linear interpolation increases with the
function curvature.

3. Case Study

3.1. Study Areas

As shown in Figure 3, the Zhangjiachong catchment, which is a representative area in the Three
Gorges Reservoir Region (TGRR), is selected as a case study [36]. It covers a drainage area of 1.62 km2,
and the landscape is primarily mountainous, with an elevation between 148 m and 530 m above the
Yellow Sea level. Agriculture and forests cover the majority of the total area. The main local crops are
tea, corn, oil seed rape, and chestnuts [37]. The background values of nitrogen and phosphorus are
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higher because the fertilizer usage is relatively high, resulting in a high risk of nutrient loss into nearby
streams [38].

The average annual temperature is approximately 18 ◦C, and the average annual precipitation
is approximately 1439 m, 80% of which occurs from May to August. Thus, soil erosion frequently
occurs during wet seasons, and results in an increase in the pollutant loads with increased runoff.
We consider that the variation of rainfall might impact the model accuracy. Therefore, identifying
the classification of rainfall patterns should be determined before any simulations. According to
the investigation results of existing rainfall data, rainfall patterns are divided into light, moderate,
and heavy events. Meanwhile, based on our monitoring data, a majority of rainfall events in the
Zhangjiachong catchment are considered moderate events, while heavy events are rare.
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3.2. Field Monitoring and Data Record

In this study, field monitoring data were collected from 1 January 2013 to 31 December 2014 and
the rainfall, streamflow and pollutant data during eight rainfall events were recorded. The data used
in this study represent three complete rainfall events, which include light, middle, and heavy rainfall
(21 April 2014, 24 July 2014, and 5 August 2014), and five other data-scarce events (15 April 2014,
23 August 2014, 20 July 2014, 5 July 2013, and 28 August 2013). Data-scarce rainfall events denote
the absence of data, especially for measured flow and water quality, in a given period of time due
to human mistakes during high-resolution monitoring process. Instead, complete rainfall events are
defined if there are no measured flow and water quality data scarcity. The equations with explicit
parameters are constructed through a training process with complete data of the three complete rainfall
events, and the constructed ANN is used to predict the missing NPS data in the other five data-scarce
rainfall events. The output layer includes pollutant load data for five data-scarce rainfall events.

The weather station (Skye Lynx Standard) provided continuous records for climate data and a
float-operator sensor (WGZ-1) was located at the catchment outlet, where high-frequency sampling
was recorded in approximately 15 min steps. Base flows were measured before the runoff started,
and water samples were collected every 15 min in the first hour after runoff began and every 30 min
over the following two hours. After water levels had stabilized, water samples were collected once
every hour until the end of the event. All water samples were placed in pre-cleaned glass jars with
aluminumfoil liners along the lids and stored at −20 ◦C during transportation to the laboratory for
processing and analysis. Specifically, the total nitrogen of NPS (NPS-TN) levels were measured via
Alkaline persulfate oxidation-UV spectrophoto metric with the detection limitation from 0.05 mg/L
to 4.0 mg/L, while the total phosphorus of NPS (NPS-TP) levels in the samples were measured via
Potassium persulfate oxidation-molybdenum blue colorimetric methods. The main instrument is
ultraviolet spectrophotometer. Finally, the recorded rainfall, flow and pollutant levels were used for
the following analysis.
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Table 1. Complete data for the three rainfall events.

21 April 2014 24 July 2014 5 August 2014

Time Flow
(m3/s)

NPS-TN
(mg/L)

NPS-TP
(mg/L) Time Flow

(m3/s)
NPS-TN
(mg/L)

NPS-TP
(mg/L) Time Flow

(m3/s)
NPS-TN
(mg/L)

NPS-TP
(mg/L)

2:45 0.002 4.75 0.063 22:45 0.003 0.84 0.11 21:30 0.008 2.66 0.30
3:00 0.009 8.89 0.193 23:00 0.380 6.26 0.76 21:45 0.678 7.29 0.84
3:15 0.015 15.29 0.300 23:15 0.647 6.96 1.04 22:00 1.107 11.30 1.12
3:30 0.016 13.31 0.301 23:30 0.726 7.06 0.87 22:15 1.400 11.90 1.26
3:45 0.031 25.28 0.369 23:45 0.336 6.77 0.92 22:30 2.227 9.85 0.94
4:00 0.037 14.14 0.297 0:00 0.971 8.77 1.12 23:00 1.647 15.00 1.20
4:30 0.065 22.64 0.652 0:30 0.570 8.08 0.70 23:30 0.585 9.67 0.62
5:00 0.071 24.48 0.441 1:00 0.294 5.53 0.48 0:00 0.945 9.56 0.68
6:00 0.086 26.49 0.469 2:00 0.266 5.05 0.57 1:00 0.410 7.01 0.35
7:00 0.126 23.89 0.443 3:00 0.172 5.11 0.36 2:00 0.237 2.03 0.28
8:00 0.146 16.97 0.286 4:00 0.191 5.79 0.34 3:00 0.183 7.60 0.37
9:00 0.264 11.60 0.171 5:00 0.041 5.85 0.20 4:00 0.166 6.81 0.27
10:00 0.278 11.00 0.117 6:00 0.090 5.59 0.18 5:00 0.115 7.01 0.20
11:00 0.288 10.73 0.104 7:00 0.064 7.78 0.15 6:00 0.126 6.71 0.19
12:00 0.296 10.94 0.109 8:00 0.048 5.29 0.14 7:00 0.102 6.08 0.12
13:00 0.411 9.64 0.113 8:00 0.073 7.03 0.24
14:00 0.593 9.48 0.089 9:00 0.063 5.68 0.11
15:00 0.593 9.65 0.087 10:00 0.086 5.75 0.09
16:00 0.602 9.26 0.072 11:00 0.075 6.44 0.18
17:00 0.770 9.93 0.068 12:00 0.045 6.33 0.21

13:00 0.029 5.88 0.14
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Table 2. Five rainfall events with data scarcity.

15 April 2014 (1.213 mm/h) 28 August 2013 (2.027 mm/h) 20 July 2014 (2.013 mm/h) 5 July 2013 (2.380 mm/h) 28 August 2013 (2.647 mm/h)

Time Flow TN TP Time Flow TN TP Time Flow TN TP Time Flow TN TP Time Flow TN TP

6:00 0.0127 7.65 0.050 15:00 0.0375 1.13 0.13 19:00 0.0127 5.51 0.27 14:30 0.0127 5.03 0.06 19:00 0.03 5.59 0.05
6:30 0.024 12.27 0.412 15:30 - - - 19:30 0.0163 7.02 0.56 15:00 - - - 19:30 0.06 12.65 0.33
6:45 0.0375 11.49 0.366 16:00 0.0964 6.29 0.71 20:00 0.0485 6.92 0.86 15:30 - - - 20:00 1.78 15.24 1.39
7:00 0.0427 23.53 0.579 16:30 0.1020 5.57 0.3 20:30 0.1190 5.56 1.15 16:00 0.0127 8.81 1.50 20:30 2.22 16.38 0.84
7:15 0.0401 16.13 0.363 17:00 0.0964 5.81 0.32 21:00 0.0866 5.14 0.53 16:30 0.0127 6.37 2.56 21:00 1.94 13.88 0.69
7:30 0.0406 15.19 0.350 17:30 0.0547 5.2 0.2 21:30 0.0327 7.37 0.4 17:00 0.0375 1.06 2.11 21:30 0.80 14.95 0.44
8:00 0.0327 16.92 0.373 18:00 0.0427 4.95 0.14 22:00 - - - 17:30 - - - 22:00 0.39 13.43 0.55
8:30 0.0351 14.29 0.363 18:30 - - - 22:30 0.0375 5.64 0.24 18:00 0.4140 - - 22:30 0.26 14.81 0.56
9:00 0.0327 11.26 0.291 19:00 0.0375 5.14 0.13 23:00 - - 18:30 0.4440 - - 23:00 - - -
10:00 - - - 19:30 - - - 23:30 0.0182 6.49 0.19 19:00 0.2220 3.20 0.41 23:30 - - -
10:30 0.0351 8.67 0.228 20:00 0.0427 5.21 0.13 19:30 - - - 0:00 - - -
11:00 0.0127 7.65 0.050 20:00 0.1590 4.08 0.28 0:30 - - -

20:30 - - - 1:00 0.21 10.17 0.14
21:00 0.0964 4.26 0.11 1:30 - - -
21:30 - - - 2:00 0.15 9.83 0.19
22:00 0.0775 3.78 0.22 2:30 - - -
22:30 - - - 3:00 0.09 6.54 0.08
23:00 0.0616 3.80 0.13
23:30 - - -
0:30 0.0547 - -
1:30 0.0427 - -

Note: the units of flow are in m3/s; the units of NPS-TN and NPS-TP are mg/L; - denotes that data are missing at this time.
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However, flow and water quality data were limited because of the use of flow instruments
via manual collection. Rainfall levels were recorded to divide the rainfall into light, moderate, and
heavy events. The rainfall levels for 21 April 2014, 24 July 2014, and 5 August 2014 are 1.308 mm/h,
3.000 mm/h, and 6.054 mm/h, respectively. The flow data were replenished with unit hydrographs
as the basis for the ANN. In addition, this catchment is dominated by agriculture, so fertilizer use
results in deteriorated water quality. Therefore, the NPS-TN and NPS-TP are selected as the evaluation
indicators. All the data for the three complete rainfall events and five typical data-scarce rainfall events
are shown in Tables 1 and 2, respectively, including the rainfall intensity, flow data, and the pollutant
concentration of the NPS-TN and NPS-TP. As shown in Table 1, complete data are used as the input
of the ANN and represent the impacts of the rainfall patterns on the model applicability. As shown
in Table 2, data scarcity of the five random rainfall events is simulated, and the impacts of the data
scarcity are quantified.

4. Results and Discussion

4.1. Training Results of the ANNUsing the Complete Data

This section demonstrates the training process with data for the three complete rainfall events,
illustrating that the applicability of ANN in different rainfall patterns. The training results for the
ANN areas followed (the figure is shown in the Supplementary Materials): the error surface gradient
rapidly converges to a flat surface for both the NPS-TN and NPS-TP. The mean squared error of the
training results for the NPS-TP prediction reaches the 10−3, 10−2, and 10−1 orders of magnitude for
the light, moderate, and heavy rainfall events, respectively. However, the mean squared error for the
NPS-TN prediction reaches the 1.0, 10−3, and 1.0 orders of magnitude during the light, moderate, and
heavy rainfall events, respectively, indicating that all the results fall within the range of permissible
errors or rapidly reach a flat surface. The correlation coefficients are more than 0.9, indicating that all
the training results are good. In this respect, it can be said that the ANN is applicability to simulate the
NPS for different rainfall patterns, and we extrapolated ANN for pollutant load simulations in the
data-scarce rainfall events.

To better understand the simulation results, the entropy weighting method was used in the
evaluation process. As shown in Table 3, K results are all higher than 0.9, indicating that there is
no obvious deviation between the simulated and measured values. Meanwhile, the K values for
the NPS-TP are higher than the NPS-TN for different rainfall patterns, and the K value for the light
rainfall is higher than the other rainfall patterns. Therefore, it is apparent that the NPS-TP simulation
is an improvement over the NPS-TN, and the simulation is better suited for the light rainfall events
for both the NPS-TP and NPS-TN. It is obvious that the flow have different shear force in different
rainfall patterns. The soil particles and pollutants act differently with different rainfall levels and
intensities. It is possible that our monitoring scheme is more appropriate in light rainfall patterns in this
experiment, and the peak data cannot be monitored during heavy rainfall patterns [39]. The NPS-TN
concentration peak and flow peak appear to be consistent. When one of the flow or load peaks is
missing, it is the same as both of them missing simultaneously, resulting in a poor simulation effect.
However, the apparent time of the NPS-TP concentration peak and flow peak is inconsistent in different
rainfall patterns. Xu et al. [40] introduced the support vector regression (SVR) model to develop a
quantitative relationship between the environmental factors and the eutrophic indices compared with
the ANN. The results show that the correlation coefficients of the NPS-TP are greater than those for
the NPS-TN, indicating that the model effect of the NPS-TP is improved over the NPS-TN. This study
verifies this conclusion with the ANN model.
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Table 3. Evaluation of the simulation results of the pollutant loads for different rainfall patterns.

Rainfall Events
Comprehensive Indicators K

NPS-TP NPS-TN

21 April 2014 0.986 0.953
24 July 2014 0.973 0.938

5 August 2014 0.958 0.921

4.2. Simulated Results of the ANN for Data-Scarce Events

Five typical data-scarce rainfall events were used to discuss the impact of different data-scarce
patterns on the NPS predictions. As shown in Figure 4, the NPS-TP training results for the NPS-TN
have a faster convergence rate for the grads and lower mean squared errors. The training values for the
NPS-TN are represented by an R2 value that is more than 0.9, and the mean squared errors are under
the permissible values or reach the flat surface rapidly. However, only one event (5 July 2013) was
observed to have lower grads beyond the preset value, and its training effect was the worst because
this rainfall event has peak scarcity.

The entropy values in the five data-scarce rainfall patterns are shown in Table 4. Combined
with the complete data events, it is apparent that the simulated effect for 5 July 2013 has a worse fit
compared with the other rainfall events, which reflects the poor training effect when there is a scarcity
of peak concentration data. The peak data are the key information, and reflect the overall process of
the rainfall events. However, the peak scarcity is unintentional and due to system errors. In addition,
the training effect of the NPS-TP is improved over the NPS-TN.

Table 4. Evaluation effect of the data scarcity on the models for the five data-scarce rainfall events.

Rainfall Events
Comprehensive Indicators K Traditional Indicators (NPS-TP)

NPS-TN NPS-TP Deviation d S

15 April 2014 0.546 0.971 0.989 0.956 0.966
23 August 2014 0.937 0.924 0.934 0.892 0.943

20 July 2014 0.959 0.930 0.964 0.882 0.941
5 July 2013 0.340 0.948 0.997 0.908 0.938

28 August 2013 0.948 0.982 0.996 0.980 0.970

We further compared the evaluation results between the traditional methods and the entropy
weighting method, which are shown in Table 4. As shown in the results, the rank order of the effects
of the simulation results with the traditional indicators (high to low) as the following: deviations:
5 July 2013, 23 August 2013, 15 April 2014, 20 July 2014, and 23 August 2014; d: 23 August 2014,
5 July 2013, 20 July 2014, 23 August 2013, and 15 April 2014; and S: 23 August 2014, 5 July 2013,
23 August 2013, 15 April 2014, and 20 July 2014. The application of a single indicator is limited by
the indicator selection so that we cannot sum them up simply or select one of them. For instance,
the effect of 5 July 2013 showed the best deviation but the worst S, which represents the rainfall amount
and the average rainfall, respectively. Therefore, choosing these traditional indicators would lead to
information loss during the model evaluation. Conversely, the entropy weighting method considers
the advantages and characteristics of each traditional indicators and assesses the simulation results
comprehensively form different perspectives [34,35]. Thus, the K values are more accurate and easier
to compare.
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Owing to the limited water quality data, we randomly selected 30% of the measured values
as verification points, and the simulated data points were compared to the selected data to test the
accuracy of the ANN during data-scarce conditions. The evaluated results are shown in Table 5, and
the intuitionistic indicator is the mean percentage of the load deviation. As shown in Table 5, the
effects of the training results for the runoff–pollutant load process are better in different rainfall events,
and each of the load deviations is smaller. The mean percentage load deviations of the three events
(15 April 2014, 23 August 2014, 28 August 2013) are higher than the other events. This is because these
pollutant load data for the three individual rainfall events have peak loads nearby the flow peaks. It is
apparent that the flow peak and these high values have major impacts on the training and predictive
values of the ANN. In general, the simulation effects are improved, which shows that this method is
feasible for estimating scarce pollutant load data.

Table 5. Evaluation of the predicted effects of the verification points.

Rainfall Events
Mean Load Deviation Percentage of Verification Points (%)

NPS-TP NPS-TN

15 April 2014 0.150 0.0770
23 August 2014 0.153 0.029

20 July 2014 0.041 0.094
5 July 2013 0.002 0.038

28 August 2013 0.120 0.022

4.3. Implication for NPS Studies of Multi-Events

Figure 5 compares pollutographs of complete rainfall events with pollutographs simulated
by ANN in the same rainfall pattern (data-scarce rainfall events in light and moderate rainfall
patterns). Most of the pollutographs conform to the ordinary rules (pollutographs in complete
data rainfall events), and the overall tendency is consistent with the hydrographs with complete data,
indicating that the method is reliable. Moreover, the model performance is worse under conditions
of missing peak data, which is consistent with the abovementioned conclusions. According to the
comparisons, the pollutographs of the measured points are more consistent with the ordinary rules
than when the tails have missing data. Meanwhile, tail scarcity often appears in actual monitoring
to reduce manpower [41]. The tails of the pollutographs have stronger linear characteristics, so a
linear interpolation is used to amend the incomplete tails [42]. The pollutographs amended by linear
interpolation are shown in Figure 6, indicating that the hydrographs with the tail correction are
more coincident.

During the monitoring process, emphasis is placed on the discrepancy in the monitoring
mechanism under different rainfall conditions. Based on the abovementioned analysis, the NPS
prediction performs the best during the light rainfall events and is the worst during heavy rainfall
events. Therefore, the monitoring process for the NPS can be appropriately focused on heavy rainfall
conditions. Researchers should pay more attention to monitoring time to avoid peak data scarcity,
especially for the NPS-TN monitoring [43]. As already suggested, peak concentration appeared after
nearly five hours of runoff during light rainfall events and after nearly three hours of runoff during
moderate events. Therefore, we promote peak monitoring techniques, for example, anautomatic
sampler with programming, we can appropriately shorten sampling intervals for the peak lag times.
Meanwhile, based on the pollutographs improved by this study, we can design the sampling scheme
and avoid the risk time in order to require complete water quality data. In addition, the entropy
weighting method can be effectively used to evaluate the measured and simulated data [44], showing
that it can be used to comprehensively assess the discrepancies more accurately and to easily compare
the results, which can be generalized to other catchments.



Entropy 2017, 19, 265 15 of 18

Entropy 2017, 19, 265 14 of 18 

 

4.3. Implication for NPS Studies of Multi-Events 

Figure 5 compares pollutographs of complete rainfall events with pollutographs simulated by 
ANN in the same rainfall pattern (data-scarce rainfall events in light and moderate rainfall patterns). 
Most of the pollutographs conform to the ordinary rules (pollutographs in complete data rainfall 
events), and the overall tendency is consistent with the hydrographs with complete data, indicating 
that the method is reliable. Moreover, the model performance is worse under conditions of missing 
peak data, which is consistent with the abovementioned conclusions. According to the comparisons, 
the pollutographs of the measured points are more consistent with the ordinary rules than when 
the tails have missing data. Meanwhile, tail scarcity often appears in actual monitoring to reduce 
manpower [41]. The tails of the pollutographs have stronger linear characteristics, so a linear 
interpolation is used to amend the incomplete tails [42]. The pollutographs amended by linear 
interpolation are shown in Figure 6, indicating that the hydrographs with the tail correction are 
more coincident. 

During the monitoring process, emphasis is placed on the discrepancy in the monitoring 
mechanism under different rainfall conditions. Based on the abovementioned analysis, the NPS 
prediction performs the best during the light rainfall events and is the worst during heavy rainfall 
events. Therefore, the monitoring process for the NPS can be appropriately focused on heavy 
rainfall conditions. Researchers should pay more attention to monitoring time to avoid peak data 
scarcity, especially for the NPS-TN monitoring [43]. As already suggested, peak concentration 
appeared after nearly five hours of runoff during light rainfall events and after nearly three hours 
of runoff during moderate events. Therefore, we promote peak monitoring techniques, for example, 
anautomatic sampler with programming, we can appropriately shorten sampling intervals for the 
peak lag times. Meanwhile, based on the pollutographs improved by this study, we can design the 
sampling scheme and avoid the risk time in order to require complete water quality data. In 
addition, the entropy weighting method can be effectively used to evaluate the measured and 
simulated data [44], showing that it can be used to comprehensively assess the discrepancies more 
accurately and to easily compare the results, which can be generalized to other catchments. 

 
Figure 5. The pollutographs for different rainfall patterns. Figure 5. The pollutographs for different rainfall patterns.Entropy 2017, 19, 265 15 of 18 

 

 
Figure 6. The tail amendment of the pollutographs for different rainfall patterns. 

5. Conclusions 

In this study, a new framework is proposed for the event-based NPS prediction and evaluation 
in data-scarce catchments. The results obtained from this study indicate that the proposed ANN had 
an improved performance over the NPS simulation of light rainfall events, and the NPS-TP model 
was always more accurate than the NPS-TN under scarce data conditions. In addition, the scarcity of 
the peak pollutant data has a significant impact on the model performance, so more attention should 
be given to the monitoring scheme of the event-based NPS studies, especially for the NPS-TN 
monitoring and the lag time of the peak data. Compared to the traditional indicators, the entropy 
weighting method can provide a more accurate ANN by considering all of the information during 
model evaluation. These tools could be extended to other catchments to quantify the event-based 
NPS pollution, especially data-poor catchments. 

However, we should pay more attention to the mechanism of the NPS during multiple rainfall 
events because the NPS pollution was not the simple consequence of current rainfall events. 
Additionally, because of the computational burden, the errors and the related uncertainty of the 
model results were not explored, so more studies are suggested to test this new framework among 
more diverse regions. Meanwhile, data-driven black-box models are not good at long-term 
forecasting, nor are they good for examining the effect of BMPs. 

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/6/265/s1, Figure S1: 
Training results of the loads in the different rainfall patterns: (a) NPS-TN; and (b) NPS-TP. 

Acknowledgments: This research was funded by the National Natural Science Foundation of China (Nos. 
51579011 and 51409003) and the Fund for the Innovative Research Group of the National Natural Science 
Foundation of China (No. 51421065). 

Author Contributions: Lei Chen constructed the research framework and designed the study. Cheng Sun was 
responsible for the data analysis and code programming. Guobo Wang performed the experiments and 
conducted data analysis. Hui Xie and Zhenyao Shen reviewed and edited the manuscript. All of the authors 
have read and approved the final manuscript. 

Figure 6. The tail amendment of the pollutographs for different rainfall patterns.



Entropy 2017, 19, 265 16 of 18

5. Conclusions

In this study, a new framework is proposed for the event-based NPS prediction and evaluation in
data-scarce catchments. The results obtained from this study indicate that the proposed ANN had
an improved performance over the NPS simulation of light rainfall events, and the NPS-TP model
was always more accurate than the NPS-TN under scarce data conditions. In addition, the scarcity
of the peak pollutant data has a significant impact on the model performance, so more attention
should be given to the monitoring scheme of the event-based NPS studies, especially for the NPS-TN
monitoring and the lag time of the peak data. Compared to the traditional indicators, the entropy
weighting method can provide a more accurate ANN by considering all of the information during
model evaluation. These tools could be extended to other catchments to quantify the event-based NPS
pollution, especially data-poor catchments.

However, we should pay more attention to the mechanism of the NPS during multiple rainfall
events because the NPS pollution was not the simple consequence of current rainfall events.
Additionally, because of the computational burden, the errors and the related uncertainty of the
model results were not explored, so more studies are suggested to test this new framework among
more diverse regions. Meanwhile, data-driven black-box models are not good at long-term forecasting,
nor are they good for examining the effect of BMPs.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/19/6/265/s1,
Figure S1: Training results of the loads in the different rainfall patterns: (a) NPS-TN; and (b) NPS-TP.
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