

  On the Energy-Distortion Tradeoff of Gaussian Broadcast Channels with Feedback




On the Energy-Distortion Tradeoff of Gaussian Broadcast Channels with Feedback







Entropy 2017, 19(6), 243; doi:10.3390/e19060243




Article



On the Energy-Distortion Tradeoff of Gaussian Broadcast Channels with Feedback



Yonathan Murin 1, Yonatan Kaspi 2, Ron Dabora 3,* and Deniz Gündüz 4





1



Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA






2



Goldman Sachs, New York, NY 10282, USA






3



Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel






4



Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK









*



Correspondence: Tel.: +972-8-646-1511







Academic Editors: Tobias Oechtering and Michèle Angela Wigger



Received: 25 April 2017 / Accepted: 19 May 2017 / Published: 24 May 2017



Abstract:



This work studies the relationship between the energy allocated for transmitting a pair of correlated Gaussian sources over a two-user Gaussian broadcast channel with noiseless channel output feedback (GBCF) and the resulting distortion at the receivers. Our goal is to characterize the minimum transmission energy required for broadcasting a pair of source samples, such that each source can be reconstructed at its respective receiver to within a target distortion, when the source-channel bandwidth ratio is not restricted. This minimum transmission energy is defined as the energy-distortion tradeoff (EDT). We derive a lower bound and three upper bounds on the optimal EDT. For the upper bounds, we analyze the EDT of three transmission schemes: two schemes are based on separate source-channel coding and apply encoding over multiple samples of source pairs, and the third scheme is a joint source-channel coding scheme that applies uncoded linear transmission on a single source-sample pair and is obtained by extending the Ozarow–Leung (OL) scheme. Numerical simulations show that the EDT of the OL-based scheme is close to that of the better of the two separation-based schemes, which makes the OL scheme attractive for energy-efficient, low-latency and low-complexity source transmission over GBCFs.
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1. Introduction


This work studies the energy-distortion tradeoff (EDT) for the transmission of a pair of correlated Gaussian sources over a two-user Gaussian broadcast channel (GBC) with noiseless, causal feedback, referred to as the GBCF. The EDT was originally proposed in [1] to characterize the minimum energy-per-source sample required to achieve a target distortion at the receiver, without constraining the source-channel bandwidth ratio. In many practical scenarios, e.g., satellite broadcasting [2], sensor networks measuring physical processes [3,4] and wireless body-area sensor networks [5,6,7], correlated observations need to be transmitted over noisy channels. Moreover, in various emerging applications, particularly in the context of the Internet of Things, the sampling rates are low; and hence, the channel bandwidth for transmission is much larger than the rate of the sources. Consequently, the main fundamental limitation for the communication system is the available energy per source sample. For example, in wireless body-area sensor networks, wireless computing devices located on, or inside, the human body measure physiological parameters, which typically exhibit correlations as they originate from the same source. These devices commonly have limited energy supply due to their size and are also subject to transmission power constraints due to safety restrictions, while bandwidth can be relatively large as communications takes place over short distances [8,9,10]. In this application, transmission of correlated parameters measured by a single sensor to different devices can be modeled as a BC with correlated sources. As an example for such a setting, consider a sensor measuring heart rate, as well as cardiac output (volume of blood outputted from the heart per unit time), which are correlated parameters (see, e.g., [10] (Section 2.6)), where the heart rate measurements are communicated to a smart watch (e.g., for the purpose of fitness tracking), while the cardiac output is communicated to a smart phone (e.g., for health monitoring and reporting purposes).



It is well known that for lossy transmission of a Gaussian source over a Gaussian memoryless point-to-point channel, either with or without feedback, when the source-channel bandwidth ratio is fixed and the average power is finite, then separate source and channel coding (SSCC) achieves the minimum possible average mean square error (MSE) distortion [11] (Theorem 3). In [1] (Cor. 1), it is further shown that SSCC is optimal also in the sense of EDT: for any target MSE distortion level, the minimal transmission energy is achieved by optimal lossy compression [12] (Chapter 13) followed by the most energy efficient channel code [13]. While [1] (Cor. 1) considered unbounded number of source samples, more recent works [14] (Theorem 9) and [15] showed that similar observations hold also for the point-to-point channel with a finite number of source samples. Except for a few special scenarios, e.g., [16,17,18] and the references therein, the optimality of SSCC does not generalize to multiuser networks, and a joint design of the source and channel codes can improve the performance.



An example for a setting in which SSCC is sub-optimal is the transmission of a pair of correlated Gaussian sources over a GBC where the bandwidths of the source and the channel match (i.e., on average, a single source sample pair is transmitted over a single use of the channel). The complete characterization of the achievable distortion pairs for this problem was given in [19], which also showed that a joint source-channel coding (JSCC) transmission scheme is optimal while separation-based schemes cannot achieve the optimal performance. JSCC for the transmission of correlated sources over GBCs with a source-channel bandwidth mismatch was recently studied in [20], where novel hybrid digital/analog coding schemes were proposed and shown to be superior to other schemes known in the literature. It should be noted that the transmission of correlated sources over GBCs is an important communications scenario, which applies to a vast number of practical applications, including broadcasting video [21,22], images [23] and physical measurements [24].



The impact of feedback on lossy JSCC over multiuser channels was considered in relatively few works. Several achievability schemes and a set of necessary conditions for losslessly transmitting a pair of discrete and memoryless correlated sources over a multiple-access channel (MAC) with feedback were presented in [25]. Lossy transmission of correlated Gaussian sources over a two-user Gaussian MAC with feedback was studied in [26], in which sufficient conditions, as well as necessary conditions for the achievability of an MSE distortion pair were derived for the case in which the source and channel bandwidths match. The work [26] also showed that for the symmetric setting, if the channel signal-to-noise ratio (SNR) is low enough, then uncoded transmission is optimal. While [26] considered source-channel coding with a unit bandwidth ratio, [1] studied the EDT for the transmission of correlated Gaussian sources over a two-user Gaussian MAC with and without feedback, when the bandwidth ratio is not restricted. Lastly, [27] improved the lower bound derived in [1] for the two-user Gaussian MAC without feedback and extended the results to more than two users.



While EDT analysis has gained some attention in recent years, the EDT of broadcast channels was considered only for GBCs without feedback. In particular, the work [15] studied the transmission of Gaussian sources over a GBC and characterized the energy-distortion exponents, namely, the exponential rate of decay of the square-error distortion as the available energy-to-noise ratio increases without bound. For GBCFs, the existing literature mainly focused on channel coding aspects, considering independent and uniformly distributed messages. A key work in this context is the work of Ozarow and Leung (OL) [28], which obtained inner and outer bounds on the capacity region of the two-user GBCF, by extending the point-to-point transmission strategy of Schalkwijk–Kailath (SK) [29]. The work [30] extended the OL scheme for two-user GBCFs by using estimators with memory (at the receivers) instead of the memoryless estimators used in the original OL scheme of [28]. In contrast to the point-to-point case [29], for GBCFs, both the scheme of [28] and the scheme of [30] are generally suboptimal. While the analysis and construction of the OL scheme [28] are carried out in an estimation theoretic framework, the works [31,32] approached the problem of channel coding for the GBCF within a control theoretic framework. Specifically, [32] proposed a transmission scheme based on linear quadratic Gaussian (LQG) control theory, that achieves rate pairs outside the achievable rate region of the OL code developed in [28]. Recently, it was shown in [33,34] that, for the two-user GBCF when the noise components at the receivers are mutually independent with equal variances, the LQG scheme of [32] achieves the maximal sum-rate among all possible linear-feedback schemes. Finally, it was shown in [35] that the capacity of GBCFs with independent noises at the receivers and only a common message cannot be achieved using a linear feedback scheme. Instead, the work [35] presented a capacity-achieving non-linear feedback scheme.



JSCC for the transmission of correlated Gaussian sources over GBCFs when the number of transmitted symbols is finite (referred to as the finite horizon regime) was previously considered in [36], which studied the minimal number of channel uses required to achieve a target MSE distortion pair. Three linear encoding schemes based on uncoded transmission were considered: the first scheme was a JSCC scheme based on the coding scheme of [28], to which we shall refer as the OL scheme; the second scheme was a JSCC scheme based on the scheme of [32], to which we shall refer as the LQG scheme; and the third scheme was a JSCC scheme whose parameters are obtained using dynamic programming (DP) (in the present work we discuss only the former OL and LQG schemes since the scheme based on DP becomes analytically and computationally infeasible as the number of channel uses goes to infinity). We note that linear and uncoded transmission, as implemented in the OL and in the LQG schemes, has important advantages, including low computational complexity, short coding delays and small storage requirements, which make this type of coding very desirable. We further note that although the LQG channel coding scheme of [32] for the two-user GBCF (with two messages) achieves the largest rate region out of all known channel coding schemes, in [36], it was shown that when the time horizon is finite, JSCC based on the OL scheme can achieve MSE distortion pairs lower than the JSCC based on the LQG scheme. In the present work, we analyze lossy source coding over GBCFs using SSCC and JSCC schemes based on a different performance metric: the EDT.



We note here that, as discussed above, noiseless feedback has been studied extensively in wireless Gaussian networks. An immediate benefit of this analysis is that the performance obtained for noiseless feedback serves as an upper bound on the performance for channels with noisy feedback. The analysis of noiseless feedback scenarios also leads to guidelines and motivation, which then can be applied to channels with noisy feedback. Indeed, the works [37,38], which studied channel coding for point-to-point Gaussian channels with noisy feedback and for GBCs with noisy feedback, respectively, considered transmission schemes, which are based on the SK [29] and on the OL schemes [28], respectively, originally developed for noiseless feedback scenarios. In [37,38], the noise in the feedback links was handled by applying modulo-lattice precoding in both the direct and feedback links. It is shown in [37,38] that, while having noise in the feedback links results in a performance degradation compared to the case of noiseless feedback [37] (Section V.D), many of the benefits of noiseless feedback can be carried over to the more practical setup of noisy feedback, thereby further motivating the current work. It follows that the analysis of noiseless feedback models provides practically relevant insights while facilitating simpler analysis.



Main contributions: In this work, the EDT for GBCFs is studied for the first time. We derive lower and upper bounds on the minimum energy per source pair required to achieve a target MSE distortion at each receiver, for the problem of transmitting a pair of Gaussian sources over a two-user GBCF, without constraining the number of channel uses per source sample. The new lower bound is based on cut-set arguments, while the upper bounds are obtained using three transmission schemes: two SSCC schemes and an uncoded JSCC scheme. The first SSCC scheme jointly compresses the two source sequences into a single bit stream, and transmits this stream to both receivers as a common message. The second SSCC scheme separately encodes each source sequence into two distinct bit streams, and broadcasts them via the LQG channel code of [32]. It is shown that in terms of the minimum energy-per-bit, the LQG code provides no gain compared to orthogonal transmission, from which we conclude that the first SSCC scheme, that jointly compresses the sequences into a single stream, is more energy efficient. As both SSCC schemes apply coding over multiple samples of the source pairs, they require high computational complexity, long delays and large storage space. We then consider the uncoded JSCC OL scheme presented in [36]. For this scheme, we first consider the case of fixed SNR and derive an upper bound on the number of channel uses required to achieve a target distortion pair. When the SNR approaches zero, the required number of channel uses grows, and the derived bound becomes tight. At the limiting scenario of [image: there is no content], this provides a simple upper bound on the EDT. While our primary focus in this work is on the analysis of the three schemes mentioned above, such an analysis is a first step towards identifying schemes that would achieve improved EDT performance in GBCFs.



Numerical results indicate that the SSCC scheme based on joint compression achieves better EDT compared to the JSCC OL scheme; yet, the gap is quite small. Moreover, in delay-sensitive applications, there is a constraint on the maximal allowed latency in transmitting each source sample to the destination. In such scenarios, coding over large blocks of independent and identically distributed (i.i.d.) pairs of source samples is not possible, and instantaneous transmission of each observed pair of source samples via the JSCC-OL scheme may be preferable in order to satisfy the latency requirement, while maintaining high energy efficiency.



The rest of this paper is organized as follows: The problem formulation is detailed in Section 2. The lower bound on the minimum energy per source sample is derived in Section 3. Upper bounds on the minimum energy per source sample are derived in Section 4 and Section 5. Numerical results are detailed in Section 6, and concluding remarks are provided in Section 7.




2. Problem Definition


2.1. Notation


We use capital letters to denote random variables, e.g., X, and boldface letters to denote column random vectors, e.g., [image: there is no content]; the [image: there is no content] element of a vector [image: there is no content] is denoted by [image: there is no content], and we use [image: there is no content], with [image: there is no content], to denote [image: there is no content]. We use sans-serif fonts to denote matrices, e.g., [image: there is no content]. We use [image: there is no content] to denote differential entropy, [image: there is no content] to denote mutual information, and [image: there is no content] to denote a Markov chain, as defined in [12] (Chapters 9 and 2). We use [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] to denote expectation, transpose, natural base logarithm, the set of real numbers and the set of non-negative integers, respectively. We let [image: there is no content] denote the set of functions [image: there is no content] such that [image: there is no content]. Finally, we define [image: there is no content] as the sign of [image: there is no content], with [image: there is no content].




2.2. Problem Setup


The two-user GBCF is depicted in Figure 1, with all of the signals being real. In this work, we consider the symmetric setting in which the sources have the same variances and the noises have the same variances. The encoder observes m i.i.d. realizations of a correlated and jointly Gaussian pair of sources [image: there is no content], where [image: there is no content], [image: there is no content]. The task of the encoder (transmitter) is to generate a transmitted signal that will facilitate decoding of the sequence of the [image: there is no content] source, [image: there is no content], at the ith decoder (receiver), denoted by Rxi, whose channel output at time k is given by:


Yi,k=Xk+Zi,k,i=1,2,



(1)




for [image: there is no content]. The noise sequences [image: there is no content], are i.i.d. over [image: there is no content], with [image: there is no content], where [image: there is no content], [image: there is no content].


Figure 1. Gaussian broadcast channel with correlated sources and feedback links. [image: there is no content] and [image: there is no content] are the reconstructions of [image: there is no content] and [image: there is no content], respectively.
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Let [image: there is no content]. The encoder maps the observed pair of source sequences and the noiseless causal channel outputs obtained through the feedback links into a channel input via: [image: there is no content]. Rxi, [image: there is no content], uses its channel output sequence [image: there is no content] to estimate [image: there is no content] via S^i,1m=gi(Yi,1n),gi:Rn↦Rm.



We study the symmetric GBCF with parameters [image: there is no content], and define a [image: there is no content] code to be a collection of n encoding functions [image: there is no content] and two decoding functions [image: there is no content], such that the MSE distortion satisfies:


∑j=1mE(Si,j−S^i,j)2≤mD,0<D≤σs2,i=1,2,



(2)




and the energy of the transmitted signals satisfies:


[image: there is no content]



(3)







Our objective is to characterize the minimal E, for a given target MSE D at each user, such that for all [image: there is no content], there exist [image: there is no content] and a [image: there is no content] code. We call this minimal value the EDT and denote it by [image: there is no content].



Remark 1 (Energy constraint vs. power constraint).

The constraint (3) reflects the energy per source sample rather than per channel use. Note that by defining [image: there is no content], the constraint (3) can be equivalently stated as [image: there is no content] which is the well known average power constraint. Yet, since there is no constraint on the ratio between m and n, given a finite energy E, when the number of channel uses per source sample [image: there is no content] goes to infinity, the classical average power constraint goes to zero. We also note that [image: there is no content] can be obtained by evaluating the power-distortion tradeoff, namely, the minimal power required to achieve a given distortion at each receiver (see, e.g., [39] (Section II) for the definition of achievable distortion and power for a GBC with a given set of scenario parameters), in the limit [image: there is no content]. This approach was indeed used in [15] to derive energy-distortion exponents for GBCs without feedback. However, to the best of our knowledge, there are no tight bounds on the power-distortion tradeoff for GBCFs. Moreover, for the GBCF, we show next that directly characterizing [image: there is no content] leads to significantly simpler results.







3. Lower Bound on [image: there is no content]


Our first result is a lower bound on [image: there is no content]. First, we define [image: there is no content] as the rate-distortion function for the source variable [image: there is no content], and [image: there is no content] as the rate distortion function for jointly compressing the pair of sources [image: there is no content]. Using [40] (Section III.B), we can write these functions explicitly as:


[image: there is no content]



(4a)






[image: there is no content]



(4b)




Note that [40] (Section III.B) uses the function [image: there is no content] as it allows for a different distortion constraint for each source. For the present setup, in which the same distortion constraint is applied to both sources, [image: there is no content] can be obtained by setting [image: there is no content] in [40] (Equation (8)), and thus, we use the simplified notation [image: there is no content]. Next, define:


[image: there is no content]



(5)







The lower bound on the EDT is stated in the following theorem:



Theorem 1.

The EDT [image: there is no content] satisfies [image: there is no content].





Remark 2 (Different approaches for deriving a lower bound).

The work [27] presented a novel technique for lower bounding the EDT in a Gaussian MAC. Applying this technique to the symmetric GBCF results in the lower bound reported in Theorem 1. The work [39] presented a lower bound on the distortion achievable in sending correlated Gaussian sources over a GBC (without feedback). This bound uses the entropy power inequality while relying on the fact that GBCs are degraded. As GBCFs are not degraded, it is not clear if the technique used in [39] can be used for deriving lower bounds on the EDT for GBCFs.





Proof of Theorem 1.

As we consider a symmetric setting, in the following, we focus on the distortion at Rx1, and derive two different lower bounds. The first lower bound is obtained by identifying the minimal energy required in order to achieve an MSE distortion of D at Rx1, while ignoring Rx2. The second lower bound is obtained by considering the transmission of both sources over a point-to-point channel with two outputs [image: there is no content] and [image: there is no content]. We begin with the following lemma:





Lemma 1.

If for any [image: there is no content], a [image: there is no content] code exists, then the rate-distortion functions in (4) are upper bounded by:


[image: there is no content]



(6a)






[image: there is no content]



(6b)









Proof. 

The proof is provided in Appendix A. ☐



Now, for achievable [image: there is no content] fix [image: there is no content] and consider a [image: there is no content] code. For the right-hand side of (6a), we write:


1m∑k=1nI(Xk;Y1,k)≤(a)1m∑k=1n12log21+var{Xk}σz2≤(b)1m∑k=1n12var{Xk}σz2·loge2≤(c)E+ϵ2σz2·loge2,



(7)




where (a) follows by considering the point-to-point channel from [image: there is no content] to [image: there is no content] and noting that the capacity of this additive white Gaussian noise channel, subject to an input variance variance constraint [image: there is no content], is [image: there is no content]. Thus, given [image: there is no content] with variance [image: there is no content], then setting [image: there is no content], it follows that [image: there is no content]; (b) follows from changing the logarithm base and from the inequality [image: there is no content]; and (c) follows by noting that (3) implies [image: there is no content]. Combining with (6a), we obtain [image: there is no content], which implies that [image: there is no content]. Since this holds for every [image: there is no content], we arrive at the first term on the right-hand-side (RHS) of (5).



Next, the RHS of (6b) can be upper bounded by considering a Gaussian single-input-multiple-output channel with two receive antennas. Then, the mutual information [image: there is no content] is upper bounded by the capacity of the channel subject to the variance of [image: there is no content]:


[image: there is no content]



(8)




where (8) follows from [12] (Theorem 9.6.5), combined with [12] (Theorem 9.4.1) for jointly Gaussian random variables, and by defining [image: there is no content] and the covariance matrices [image: there is no content] and [image: there is no content]. To explicitly write [image: there is no content], we note that [image: there is no content] for [image: there is no content], and similarly, [image: there is no content]. We also have [image: there is no content] and [image: there is no content]. Thus, we obtain [image: there is no content] and [image: there is no content]. Plugging these expressions into (8) results in:


1m∑k=1n12log2|QYk||QZk|≤1m∑k=1nEXk2σz2(1+ρz)loge2≤E+ϵσz2(1+ρz)loge2,



(9)




where the inequalities follow the same arguments as those leading to (7). Combining with (6b), we obtain [image: there is no content], which implies that [image: there is no content]. Since this holds for every [image: there is no content], we obtain the second term on the RHS of (5). This concludes the proof. ☐





In the next sections, we study three achievability schemes which lead to upper bounds on [image: there is no content]. While these schemes have simple constructions, analyzing their achievable EDT is novel and challenging.




4. Upper Bounds on E(D) via SSCC


SSCC in multiuser scenarios carries the advantages of modularity and ease of integration with the layered architecture, which is the fundamental design architecture in many practical communications systems. In this section, we analyze the EDT of two SSCC schemes. The first scheme takes advantage of the correlation between the sources and ignores the correlation between the noise components, while the second scheme ignores the correlation between the sources and aims at utilizing the correlation between the noise components.



4.1. The SSCC-[image: there is no content] Scheme


This scheme utilizes the correlation between the sources by first jointly encoding both source sequences into a single bit stream via the source coding scheme proposed in [41] (Theorem 6); see also [40] (Theorem III.1). For a given distortion D, the minimum required compression bit rate is given by the rate-distortion function stated in (4b). The bit stream generated through compression is then encoded via a channel code designed for sending a common message over the GBC (without feedback), and the corresponding codeword is transmitted to both receivers. Note that the optimal code for transmitting a common message over GBCFs with [image: there is no content] is not known, but, when [image: there is no content], the optimal code for sending a common message over the GBCF is known to be the optimal point-to-point channel code which ignores the feedback [35] (Equation (13)). Thus, SSCC-[image: there is no content] uses the correlation between the sources, but ignores the correlation between the noises at the receivers. The following theorem characterizes the minimum energy per source sample achieved by this scheme.



Theorem 2.

The SSCC-[image: there is no content] scheme achieves the following EDT:


[image: there is no content]



(10)









Proof. 

The optimal rate for jointly encoding the source sequences into a single-bit stream is [image: there is no content], given in (4b) [40] (Section III.B). Note that from this stream both source sequences can be recovered to within a distortion D. The encoded bit stream is then transmitted to both receivers via a capacity-achieving point-to-point channel code [12] (Theorem 10.1.1) (note that this code does not exploit the causal feedback [12] (Theorem 8.12.1)). Let [image: there is no content] denote the minimum energy-per-bit required for reliable transmission over the Gaussian point-to-point channel [13]. From [13] (p. 1025), we have [image: there is no content]. As the considered scheme is based on source-channel separation, the achievable EDT is given by [image: there is no content], where [image: there is no content] is stated in (4b). This results in the EDT in (10). ☐





Remark 3 (EDT of GBC without feedback).

A basic question that may arise is about the EDT for transmitting a pair of correlated Gaussian sources over the GBC without feedback. The work [15] studied asymmetric GBCs, namely, when the noises have different variances, and used bounds derived in [39] to characterize the energy-distortion exponents. It is not clear whether the techniques used to derive the bounds in [39] can be used for the symmetric setting discussed in the current work. For the symmetric setting, the transmission of correlated Gaussian source over the GBC has been studied in [42]. Applying the results of [42] (Footnote 2) to the current case leads to the EDT of the SSCC-[image: there is no content] scheme, which indeed does not exploit feedback.






4.2. The SSCC-[image: there is no content] Scheme


This scheme aims at utilizing the correlation between the noises at the receivers, that is available at the encoder through the feedback links, for generating the channel symbols, while avoiding using the correlation between the sources for compression. As in this section we focus on separation-based schemes, the correlation between the noises at the receivers can be utilized only via the channel code. Our results show that in terms of EDT (or minimum required energy per pair of encoded bits), even the best known channel code cannot utilize the correlation between the noises at the receivers.



In the SSCC-[image: there is no content] scheme each of the source sequences is first compressed using the optimal rate-distortion source code for scalar Gaussian sources [12] (Theorem 13.3.2). Then, the resulting compressed bit streams are sent over the GBCF using the best known channel code for transmission over the GBCF, which is the LQG channel coding scheme of [32], that generally utilizes the correlation between the noises at the receivers, as is evident from [32] (IV.B) and in particular from [32] (Equations (23) and (24)). The following theorem characterizes the minimum energy per source sample required by this scheme.



Theorem 3.

The SSCC-[image: there is no content] scheme achieves the EDT:


[image: there is no content]



(11)









Proof. 

The encoder separately compresses each source sequence at rate [image: there is no content], where [image: there is no content] is given in (4a). Thus, from each encoded stream the corresponding source sequence can be recovered to within a distortion D. Next, the two compressed bit streams are broadcast to their corresponding receivers using the LQG scheme of [32]. Let [image: there is no content] denote the minimum energy per pair of encoded bits required by the LQG scheme. [image: there is no content] is given in the following lemma:





Lemma 2.

For the symmetric setting, the minimum energy per pair of encoded bits required by the LQG scheme is given by:


[image: there is no content]



(12)









Proof. 

The proof is provided in Appendix B. ☐



Since two bit streams are transmitted, the achievable EDT is given by [image: there is no content], yielding the EDT in (11). ☐





Remark 4 (SSCC-ρz vs. time-sharing)

Note that [image: there is no content] in (12) is independent of [image: there is no content], and therefore, even though in general the LQG scheme is capable of utilizing the correlation between the noises at the receivers, in terms of minimum energy per pair of encoded bits it cannot (recall that the LQG scheme is the best known channel coding scheme for the GBCF). Therefore, [image: there is no content] is also independent of [image: there is no content], and the SSCC-[image: there is no content] scheme does not take advantage of the correlation between the noises at the receivers to improve the minimum energy per source sample needed in the symmetric setting. Indeed, an EDT of [image: there is no content] can also be achieved by transmitting the two bit streams via time sharing over the GBCF without using the feedback. In this context, we recall that [43] (Prop. 1) also stated that in Gaussian broadcast channels without feedback, time sharing is asymptotically optimal as the power tends to zero.





Remark 5 (Relationship between [image: there is no content], [image: there is no content] and [image: there is no content]).

We observe that [image: there is no content]. For [image: there is no content] this relationship directly follows from the expressions of [image: there is no content] and [image: there is no content]. For D>σs2(1−|ρs|) the above relationship holds if the polynomial [image: there is no content] is positive. This is satisfied as the discriminant of [image: there is no content] is negative. We thus conclude that it is preferable to use the correlation between the sources than the correlation between the noise components. We further note that as [image: there is no content], the gap between [image: there is no content] and [image: there is no content] is bounded. On the other hand, as [image: there is no content], the gap between [image: there is no content] and [image: there is no content] is not bounded (note that when [image: there is no content], the RHS of (5) is given by [image: there is no content]).





Remark 6 (Relevance to more than two users).

The lower bound presented in Theorem 1 can be extended to the case of [image: there is no content] sources using the results of [41] (Theorem 1) and [44]. The upper bound of Theorem 2 can also be extended in a relatively simple manner to [image: there is no content] sources, again, using [41] (Theorem 1). The upper bound in Theorem 3 can be extended to [image: there is no content] sources by using the LQG scheme for [image: there is no content] [32] (Theorem 1), or by using time-sharing.







5. Upper Bound on E(D) via the OL Scheme


Next, we derive a third upper bound on [image: there is no content] by applying uncoded JSCC transmission based on the OL scheme [36] (Section 3). This scheme sequentially transmits the source pairs [image: there is no content], [image: there is no content], without source coding. Thus, the delay introduced by the OL scheme is significantly lower than the delay introduced by the schemes discussed in Section 4. We note that the OL scheme is designed for a fixed [image: there is no content], and from condition (3) we obtain that [image: there is no content]. An upper bound on [image: there is no content] can now be obtained by first calculating the minimal number of channel uses required by the OL scheme to achieve the target distortion D, which we denote by [image: there is no content], and then determining the required energy via [image: there is no content].



5.1. JSCC Based on the OL Scheme


In the OL scheme, each receiver recursively estimates its intended source samples. At each time index, the transmitter uses the feedback to compute the estimation errors at the receivers at the previous time index, and transmits a linear combination of these errors. The scheme is terminated after [image: there is no content] channel uses, when the target MSE D is achieved at each receiver.



Setup and Initialization: Let [image: there is no content] be the estimate of [image: there is no content] at Rxi after receiving the [image: there is no content] channel output [image: there is no content], [image: there is no content] be the estimation error after k transmissions, and define [image: there is no content]. It follows that [image: there is no content]. Next, define [image: there is no content] to be the MSE at Rxi after k transmissions, [image: there is no content] to be the correlation between the estimation errors after k transmissions, and [image: there is no content]. For initialization, set [image: there is no content] and [image: there is no content]; thus, [image: there is no content]. Note that for this setup and initializations, we have [image: there is no content].



Encoding: At the [image: there is no content] channel use the transmitter sends [image: there is no content], and the corresponding channel outputs are given by (1).



Decoding: Each receiver computes [image: there is no content], based only on [image: there is no content] via [image: there is no content], which can be explicitly computed as in [28] (p. 669). Then, similarly to [45] (Equation (7)), the estimate of the source [image: there is no content] is given by [image: there is no content]. Let [image: there is no content] and [image: there is no content]. The instantaneous MSE [image: there is no content] is given by the recursive expression [28] (Equation (5)):


αk=αk−1σz2+Ψk−12(1−ρk−12)P+σz2,i=1,2,



(13)




where the recursive expression for [image: there is no content] is given by [28] (Equation (7)):


[image: there is no content]



(14)







Remark 7 (Initialization of the OL scheme).

Note that in the above OL scheme we do not apply the initialization procedure described in [28] (p. 669), as it optimizes the achievable rate rather than the distortion. Instead, we set [image: there is no content] and [image: there is no content], thus, taking advantage of the correlation between the sources. Moreover, in Appendix C, it is explicitly shown that for the OL scheme, in the low SNR regime, the impact of the correlation between the sources on the distortion at the receivers lasts over a large number of channel transmissions. It thus follows that the proposed initialization clearly exploits the correlation between the sources.. We further note that [36] (Section III.B) considered several initialization methods for the OL scheme and showed that setting [image: there is no content] and [image: there is no content] outperforms the other studied initialization approaches.





Let [image: there is no content] denote the minimal energy per source pair required to achieve MSE D at each receiver using the OL scheme. Since in the OL scheme [image: there is no content], we have [image: there is no content]. From (13) one observes that the MSE value at time instant k depends on [image: there is no content] and the MSE at time [image: there is no content]. Due to the non-linear recursive expression for [image: there is no content] in (14), it is very complicated to obtain an explicit analytical characterization for [image: there is no content]. For any fixed P, we can upper bound [image: there is no content], and therefore [image: there is no content], via upper bounding [image: there is no content]. In [36] (Theorem 1) we showed that [image: there is no content], which leads to the upper bound: [image: there is no content]. However, when [image: there is no content], the upper bound [image: there is no content] is not tight This can be seen by considering a numerical example: Let σs2=1,ρs=0.9,σz2=1,ρz=0.7,D=1, and consider two possible values for P: [image: there is no content] and [image: there is no content]. Via numerical simulations one can find that [image: there is no content], while the upper bound is 46,058. For [image: there is no content] we have [image: there is no content], while the upper bound is 4,605,176. Thus, the gap between [image: there is no content] and the above bound increases as P decreases. For this reason, in the next subsection we derive a tighter upper bound on [image: there is no content] whose ratio to [image: there is no content] approaches 1 as [image: there is no content]. This bound is then used to derive a tighter upper bound on [image: there is no content].




5.2. A New Upper Bound on [image: there is no content]


Following ideas from [1] (Theorem 7), we assume a fixed [image: there is no content] and approximate the recursive relationships for [image: there is no content] and [image: there is no content] given in (13) and (14) for small values of [image: there is no content]. We note that while [1] (Theorem 7) obtained only asymptotic expressions for [image: there is no content] and [image: there is no content] for [image: there is no content], in the following we derive tight bounds for these quantities and obtain an upper bound on [image: there is no content] which is valid for small values of [image: there is no content]. Then, letting [image: there is no content], the derived upper bound on [image: there is no content] yields an upper bound on [image: there is no content], and therefore on [image: there is no content].



First, define: [image: there is no content] and [image: there is no content]. We further define the positive quantities [image: there is no content] and [image: there is no content]:


[image: there is no content]



(15a)






[image: there is no content]



(15b)




and finally, we define the quantities:


[image: there is no content]



(16a)






[image: there is no content]



(16b)






[image: there is no content]



(16c)






[image: there is no content]



(16d)






[image: there is no content]



(16e)






[image: there is no content]



(16f)






[image: there is no content]



(16g)






[image: there is no content]



(16h)







For small values of [image: there is no content], the following theorem provides a tight upper bound on [image: there is no content]:



Theorem 4.

Let P satisfy the conditions [image: there is no content] and [image: there is no content]. The OL scheme achieves MSE D at each receiver within [image: there is no content] channel uses, where, [image: there is no content] is given by: 


KOLub(P,D)=(17a)2σz2P(3−ρz)log(2−ρz−ρ∗lb(P,D))(1+|ρs|)(2−ρz−|ρs|)(1+ρ∗lb(P,D))+2σz2PF1(P)+F2(P),D>Dthub,logD(2−ρz−ρ¯(P))σs2(2−ρz−|ρs|)−F3(P)1F4(P)(17b)+2σz2P(3−ρz)log(2−ρz)(1+|ρs|)2−ρz−|ρs|+2σz2PF1(P)+F2(P),D<Dthlb.













Proof outline.

Let [image: there is no content] (otherwise replace [image: there is no content] with [image: there is no content]). From [28] (p. 669) it follows that [image: there is no content] monotonically decreases with k until it crosses zero. Let [image: there is no content] be the largest time index k for which [image: there is no content]. In the proof of Theorem 4 we show that, for sufficiently small [image: there is no content], [image: there is no content]. Hence, [image: there is no content] decreases until time [image: there is no content] and then it has a bounded magnitude (larger than zero). This implies that the behavior of [image: there is no content] is different in the regions [image: there is no content] and [image: there is no content]. Let [image: there is no content] be the MSE after [image: there is no content] channel uses. We first derive upper and lower bounds on [image: there is no content], denoted by [image: there is no content] and [image: there is no content], respectively. Consequently, we arrive at the two cases in Theorem 4: (17a) corresponds to the case of [image: there is no content], while (17b) corresponds to the case [image: there is no content]. The detailed proof is provided in Appendix C. ☐





Remark 8 (Bandwidth used by the OL scheme).

Note that as [image: there is no content], [image: there is no content] increases to infinity. Since, as [image: there is no content], [image: there is no content], it follows that as [image: there is no content], [image: there is no content]. Assuming the source samples are generated at a fixed rate, this implies that the bandwidth used by the OL scheme increases to infinity as [image: there is no content].





Remark 9 (Theorem 4 holds for non-asymptotic values of P).

Note that the conditions on P in Theorem 4 can be written as [image: there is no content] with [image: there is no content] depending explicitly on [image: there is no content] and [image: there is no content]. Plugging [image: there is no content] in (15) into the condition [image: there is no content], we obtain the condition: [image: there is no content]. We note that, in this formulation the coefficients of [image: there is no content], are all positive. Therefore, the left-hand-side (LHS) is monotonically increasing with P, and since [image: there is no content] is constant, the condition [image: there is no content] is satisfied if [image: there is no content], for some threshold [image: there is no content]. Following similar arguments, the same conclusion holds for [image: there is no content] with some threshold [image: there is no content] instead of [image: there is no content]. Thus, by setting [image: there is no content] we obtain that the conditions in Theorem 4 restrict the range of power constraint values P for which the theorem holds for some [image: there is no content].






5.3. An Upper Bound on [image: there is no content]


Next, we let [image: there is no content], and use [image: there is no content] derived in Theorem 4 to obtain an upper bound on [image: there is no content], and therefore on [image: there is no content]. This upper bound is stated in the following theorem.



Theorem 5.

Let [image: there is no content]. Then, [image: there is no content], where


[image: there is no content]



(18)









Proof. 

We evaluate [image: there is no content] for [image: there is no content]. Note that [image: there is no content], which implies that [image: there is no content]. To see why this holds, consider, for example, [image: there is no content]:


[image: there is no content]











Since [image: there is no content], and [image: there is no content] are constants, and since [image: there is no content], we have [image: there is no content]. Now, since [image: there is no content] is constant we have [image: there is no content]. Taking the product of these two asymptotics we conclude that [image: there is no content].



Now, for [image: there is no content] we bound the minimum [image: there is no content] as follows: First, for [image: there is no content] defined in (16g), we multiply both sides of (17a) by P. As [image: there is no content], then, as [image: there is no content], we obtain:


P·KOLub(P,D)=2σz23−ρzlog(2−ρz−ρ∗lb(P,D))(1+|ρs|)(2−ρz−|ρs|)(1+ρ∗lb(P,D))+O(P)⟶(a)P→02σz23−ρzlogσs2(1+|ρs|)D+(2−ρz)(D−σs2)+σs2·|ρs|,








where (a) follows from (16f) by noting that [image: there is no content], and therefore, when [image: there is no content], [image: there is no content]. This implies that as [image: there is no content] we have [image: there is no content]. Finally, note that for [image: there is no content] we have [image: there is no content].



Next, for [image: there is no content] we bound the minimum [image: there is no content] by first noting that since [image: there is no content] and [image: there is no content], then [image: there is no content]. Now, for [image: there is no content] defined in (16h), multiplying both sides of (17b) by P, we obtain:


P·KOLub(P,D)=2σz2logD(2−ρz−ρ¯(P))σs2(2−ρz−|ρs|)+O(P)·1−1+O(P)+2σz23−ρzlog(2−ρz)(1+|ρs|)2−ρz−|ρs|+O(P)⟶(a)P→02σz2log(2−ρz−|ρs|)σs2(2−ρz)D+13−ρzlog(2−ρz)(1+|ρs|)2−ρz−|ρs|,








where (a) follows from the fact that [image: there is no content], see (16a). This concludes the proof. ☐





Remark 10 (Performance for extreme correlation values).

Similarly to Remark 5, as [image: there is no content], the gap between [image: there is no content] and [image: there is no content] is not bounded, which is in contrast to the situation for the OL-based JSCC for the Gaussian MAC with feedback, cf. [1] (Remark 6). When [image: there is no content] we obtain that [image: there is no content], for all [image: there is no content], which follows as the sources are independent. When [image: there is no content] and [image: there is no content] then [image: there is no content], in this case we also have [image: there is no content] and [image: there is no content].





Remark 11 (Comparison of the OL scheme and the separation-based schemes).

From (10) and (18), it follows that if [image: there is no content] then [image: there is no content] is given by:


[image: there is no content]



(19)




Note that [image: there is no content] is independent of D in this range. Similarly, from (11) and (18) it follows that if [image: there is no content] then [image: there is no content] is independent of D and is given by:


[image: there is no content]



(20)




Note that in both cases the gap decreases as [image: there is no content] decreases, which follows as the scenario approaches the transmission of independent sources. The gap also increases as [image: there is no content] decreases.





Remark 12 (Uncoded JSCC via the LQG scheme).

In this work, we do not include an analysis of the EDT of JSCC using the LQG scheme, [image: there is no content], because JSCC-LQG does not lend itself to a concise analytical treatment, and, moreover, our numerical study demonstrated that, in terms of EDT, JSCC-LQG is generally inferior to JSCC-OL. To elaborate on these aspects, we first recall that the LQG scheme of [32] was already applied to the transmission of correlated Gaussian sources over GBCFs in [36] (Section IV). It follows from the derivations in [36] that [image: there is no content] is expressed as the solution of an optimization problem which does not have an explicit analytic solution. It is also shown in [36] that, for a finite duration of transmission and low transmission power, when the covariance matrix of the sources is different from the covariance matrix of the steady-state of the LQG scheme, then the JSCC-OL scheme outperforms the JSCC-LQG scheme, which stands in contrast to the results of [33] for the channel coding problem. This surprising conclusion carries over to the EDT as well. Indeed, using the results of [36] we carried out an extensive numerical study of JSCC-LQG, the outcome of which was that the JSCC-LQG scheme of [36] (Section IV) achieves roughly the same minimum energy as the SSCC-[image: there is no content] scheme. Since in Section 6 we show that the JSCC-OL scheme outperforms the SSCC-[image: there is no content] scheme in terms of the EDT, we decided to exclude the JSCC-LQG scheme from the numerical comparisons reported in Section 6.







6. Numerical Results


In the following, we numerically compare [image: there is no content] and [image: there is no content]. We set σs2=σz2=1 and consider several values of [image: there is no content] and [image: there is no content]. Figure 2a depicts [image: there is no content] and [image: there is no content] for [image: there is no content], and for two values of [image: there is no content]: [image: there is no content] and [image: there is no content]. As [image: there is no content] is not a function of [image: there is no content], it is plotted only once. It can be observed that when [image: there is no content], then [image: there is no content] and [image: there is no content] are almost the same. This follows because when the correlation between the sources is low, the gain from utilizing this correlation is also low. Furthermore, when [image: there is no content] the gap between the lower bound and the upper bounds is evident. On the other hand, when [image: there is no content], both SSCC-[image: there is no content] and OL significantly improve upon SSCC-[image: there is no content]. This follows as SSCC-[image: there is no content] does not take advantage of the correlation among the sources. It can further be observed that when the distortion is low, there is a small gap between OL and SSCC-[image: there is no content], while when the distortion is high, OL and SSCC-[image: there is no content] require roughly the same amount of energy per source-pair sample. This is also supported by Figure 2c. We conclude that as the SSCC-[image: there is no content] scheme encodes over long sequences of source samples, it better exploits the correlation among the sources compared to the OL scheme.


Figure 2. Numerical results. (a) Upper and lower bounds on [image: there is no content] for [image: there is no content], and [image: there is no content]. Solid lines correspond to [image: there is no content], while dashed lines correspond to [image: there is no content]. (b) Upper and lower bounds on [image: there is no content] for [image: there is no content]. Solid lines correspond to [image: there is no content], while dashed lines correspond to [image: there is no content]. (c) Normalized excess energy requirement of the OL scheme over the SSCC-[image: there is no content] scheme, [image: there is no content]. (d) Normalized excess energy requirement of the SSCC-[image: there is no content] scheme over the OL scheme, [image: there is no content].



[image: Entropy 19 00243 g002]






Figure 2b depicts [image: there is no content] and [image: there is no content] vs. D, for [image: there is no content], and for [image: there is no content]. As [image: there is no content] and [image: there is no content] are not functions of [image: there is no content], we plot them only once. It can be observed that when [image: there is no content], [image: there is no content] and [image: there is no content] are very close to each other, as was analytically concluded in Remark 10. On the other hand, for [image: there is no content] the gap between the bounds is large.



Note that while analytically comparing [image: there is no content], [image: there is no content] and [image: there is no content] for any D is difficult, our numerical simulations suggest the relationship [image: there is no content], for all values of [image: there is no content]. For example, Figure 2c depicts the difference [image: there is no content] for [image: there is no content], and for all values of D and [image: there is no content]. It can be observed that for low values of [image: there is no content], or for high values of D, [image: there is no content]. On the other hand, when the correlation among the sources is high and the distortion is low, then the SSCC-[image: there is no content] scheme improves upon the OL scheme. When [image: there is no content] we can use (19) to analytically compute the gap between the energy requirements of the two schemes. For instance, at [image: there is no content] and [image: there is no content] the gap is approximately 3.173. Figure 2d depicts the difference [image: there is no content] for [image: there is no content]. It can be observed that larger [image: there is no content] results in a larger gap. Again we can use (20) to analytically compute the gap between the energy requirements of the two schemes for a certain range of distortion values: At [image: there is no content] and [image: there is no content], the gap is approximately 0.744. Finally, as stated in Remark 12, the LQG scheme achieves approximately the same minimum energy as the SSCC-[image: there is no content] scheme, hence, OL is expected to outperform LQG. This is in accordance with [36] (Section VI), which shows that for low values of P, OL outperforms LQG, but, is in contrast to the channel coding problem in which the LQG scheme of [32] is known to achieve higher rates compared to the OL scheme of [28].




7. Conclusions and Future Work


In this work, we studied the EDT for sending correlated Gaussian sources over GBCFs, without constraining the source-channel bandwidth ratio. In particular, we first derived a lower bound on the minimum energy per source pair sample using information theoretic tools and then presented upper bounds on the minimum energy per source pair sample by analyzing three transmission schemes. The first scheme, SSCC-[image: there is no content], jointly encodes the source sequences into a single bit stream, while the second scheme, SSCC-[image: there is no content], separately encodes each of the sequences, thus, it does not exploit the correlation among the sources. We further showed that the LQG channel coding scheme of [32] achieves the same minimum energy-per-bit as orthogonal transmission, and therefore, in terms of the minimum energy-per-bit, it does not take advantage of the correlation between the noises at the receivers. We also concluded that SSCC-[image: there is no content] outperforms SSCC-[image: there is no content].



The third scheme analyzed is the OL scheme for which we first derived an upper bound on the number of channel uses required to achieve a target distortion pair, which, in the limit [image: there is no content], leads to an upper bound on the minimum energy per source pair sample. Numerical results indicate that SSCC-[image: there is no content] outperforms the OL scheme, as well. On the other hand, the gap between the energy requirements of the two schemes is rather small. We note that the SSCC-[image: there is no content] scheme implements coding over blocks of samples of source pairs, which introduces high computational complexity, large delays and requires a large amount of storage space. On the other hand, the OL scheme applies linear and uncoded transmission to each source pair sample separately, which requires low computational complexity, short delays and limited storage space. Our results demonstrate that the OL scheme provides an attractive alternative for energy efficient transmission over GBCFs.



Finally, we note that for the Gaussian MAC with feedback, OL-based JSCC is very close to the lower bound, cf. [1] (Figure 4), while, as indicated in Section 6, for the GBCF, the gap between the OL-JSCC and the lower bound is larger. This difference is also apparent in the channel coding problem for GBCFs, namely between the achievable rate region of the OL scheme and the tightest outer bound (note that while the OL strategy achieves the capacity of the Gaussian MAC with feedback [32] (Section V.A), for the GBCF the OL strategy is sub-optimal [28]). Therefore, it is interesting to see if the duality results between the Gaussian MAC with feedback and the GBCF, presented in [33,34] for the channel coding problem, can be extended to JSCC and if the approach of [33,34] facilitates a tractable EDT analysis. We consider this as a direction for future work.
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Appendix A. Proof of Lemma 1


We begin with the proof of (6a). From [12] (Theorem 13.2.1) we have:


[image: there is no content]



(A1)







Now, for any [image: there is no content] we write:


[image: there is no content]



(A2)




where (a) follows from the convexity of the mutual information [image: there is no content] in the conditional distribution [image: there is no content], and from the assumption that the sources are memoryless; (b) is due to the non-negativity of mutual information combined with the chain rule for mutual information. Next, we upper bound [image: there is no content] as follows:


[image: there is no content]



(A3)




where (a) follows from the data processing inequality [12] (Section 2.8), by noting that [image: there is no content]; (b) follows from the fact that conditioning reduces entropy, and from the fact that since the channel is memoryless, then [image: there is no content] depends on [image: there is no content] only through the channel input [image: there is no content], see (1). By combining (A1)–(A3) we obtain (6a).



Next, we prove (6b). From [40] (Theorem III.1) we have:


[image: there is no content]



(A4)







Again, for any [image: there is no content], we write:


[image: there is no content]



(A5)




where (a) is due to the convexity of the mutual information [image: there is no content] in the conditional distribution [image: there is no content], and (b) follows from the memorylessness of the sources, the chain rule for mutual information, and from the fact that it is non-negative. Next, we upper bound [image: there is no content] as follows:


[image: there is no content]



(A6)




where (a) follows from the data processing inequality [12] (Section 2.8), by noting that we have [image: there is no content]; (b) follows from the fact that conditioning reduces entropy, and from the fact that the channel is memoryless, thus, [image: there is no content] and [image: there is no content] depend on [image: there is no content] only through the channel input [image: there is no content], see (1). By combining (A4)–(A6) we obtain (6b). This concludes the proof of the lemma.




Appendix B. Proof of Lemma 2: Minimum Energy-Per-Bit for the LQG Scheme


We first note that by following the approach taken in the achievability part of [48] (Theorem 1) it can be shown that for the symmetric GBCF with symmetric rates, the minimum energy-per-bit is given by:


[image: there is no content]



(A7)




where [image: there is no content] is the sum rate achievable by the LQG scheme. Let [image: there is no content] be the unique positive real root of the third order polynomial [image: there is no content]. From [32] (Equation (26)), for the symmetric GBCF, the achievable per-user rate of the LQG scheme is [image: there is no content] bits. We now follow the approach taken in [36] (Appendix A.3) and bound [image: there is no content] using Budan’s theorem [49].



Explicitly writing the derivatives of [image: there is no content] and evaluating the sequence [image: there is no content], we have [image: there is no content]. Next, we let [image: there is no content] where [image: there is no content] is a real constant. Setting [image: there is no content] we obtain [image: there is no content], [image: there is no content], and [image: there is no content]. Note that we are interested in the regime [image: there is no content] which implies that [image: there is no content]. Now, for [image: there is no content] small enough we have [image: there is no content]. Furthermore, when [image: there is no content] we have [image: there is no content]. Clearly, for any [image: there is no content], [image: there is no content], and when [image: there is no content], [image: there is no content]. Thus, letting [image: there is no content], Budan’s theorem implies that when [image: there is no content], the number of roots of [image: there is no content] in the interval [image: there is no content] is 1. From Descartes’ rule [50] (Section 1.6.3), we know that there is a unique positive root, thus, as this holds for any [image: there is no content], we conclude that [image: there is no content]. Plugging the value of [image: there is no content] into (A7), and considering the sum-rate, we obtain:


[image: there is no content]



(A8)







This concludes the proof.




Appendix C. Proof of Theorem 4


First, note that if [image: there is no content], we can replace [image: there is no content] with [image: there is no content], which changes only the sign of [image: there is no content] in the joint distribution of the sources. Note that changing the sign of [image: there is no content] in (14) only changes the sign of [image: there is no content] while [image: there is no content] remains unchanged. Hence, [image: there is no content] in (13) is not affected by changing the sign of [image: there is no content]. Therefore, in the following we assume that [image: there is no content]. To simplify the notation we also omit the dependence of [image: there is no content] on P and D, and write [image: there is no content]. For characterizing the termination time of the OL scheme we first characterize the temporal evolution of [image: there is no content]. From [28] (p. 669), [image: there is no content] decreases (with k) until it crosses zero. Let [image: there is no content], regardless of whether the target MSE was achieved or not. We begin our analysis with the case [image: there is no content].



Appendix C.1. The Case of KOL ≤ Kth


From (14) we write the (first order) Maclaurin series expansion [50] (Chapter 7.3.3.3) of [image: there is no content] in the parameter P:


[image: there is no content]



(A9)




where [image: there is no content] is the remainder of the first order Maclaurin series expansion. The following lemma upper bounds [image: there is no content]:



Lemma A1.

For any k, we have [image: there is no content], where [image: there is no content] is defined in (15).





Proof. 

Let [image: there is no content]. From Taylor’s Theorem [50] (Subsection 6.1.4.5) it follows that [image: there is no content], for some [image: there is no content]. In the following we upper bound [image: there is no content], for [image: there is no content]: Let [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content] (note that in order to simplify the expressions we ignore the dependence of [image: there is no content], and [image: there is no content] on k). Using (14), the expression [image: there is no content] can now be explicitly written as [image: there is no content], from which we obtain:


[image: there is no content]











Since [image: there is no content], we lower bound the denominator of [image: there is no content] in the range [image: there is no content] by [image: there is no content]. Next, we upper bound each of the terms in the numerator of [image: there is no content]. For the coefficient of [image: there is no content] we write [image: there is no content], where the inequality follows from the fact that [image: there is no content]. For the coefficient of [image: there is no content] we write [image: there is no content]. For the coefficient of x we write [image: there is no content]. Finally, for the constant term we write [image: there is no content]. Collecting the above bounds on the terms of the numerator, and the bound on the denominator, we obtain [image: there is no content], concluding the proof of the lemma. ☐





Note that for [image: there is no content] we have [image: there is no content]. Hence, (A9) together with Lemma A1 imply that, for [image: there is no content] we have:


[image: there is no content]











Next, note that the function [image: there is no content] satisfies:


[image: there is no content]



(A10)







The lower bound on [image: there is no content] follows from the fact that [image: there is no content] is concave, and the upper bound is obtained via: [image: there is no content]. When [image: there is no content] then we have [image: there is no content], hence [image: there is no content]. Thus, we can combine the lower and upper bounds on [image: there is no content], and the bound on [image: there is no content] to obtain the following lower and upper bounds on [image: there is no content]:


[image: there is no content]



(A11)







Now, recalling that [image: there is no content], the fact that the bound in (A11) does not depend on k results in the following upper bound on [image: there is no content]:


[image: there is no content]



(A12)







Next, using the fact that [image: there is no content] for [image: there is no content], we rewrite (A9) as follows:


[image: there is no content]








which implies that for [image: there is no content] we have:


[image: there is no content]



(A13)







Observe that [image: there is no content], which follows from the fact that [image: there is no content] is lower and upper bounded independent of P and [image: there is no content] (see (A10)), and from the fact that [image: there is no content]. Next, we focus on the LHS of (A13) and write:


[image: there is no content]



(A14)







Since [image: there is no content], it follows that [image: there is no content] is continuous, differentiable and bounded over [image: there is no content], which implies that there exists a constant [image: there is no content] such that:


[image: there is no content]



(A15)







The constant [image: there is no content] is upper bounded in the following Lemma A2. Note that (A15) constitutes an upper bound on the maximal magnitude of the difference between [image: there is no content] and [image: there is no content].



Lemma A2.

The constant [image: there is no content], in (A15), satisfies: [image: there is no content].





Proof. 

Since [image: there is no content], the mean-value theorem [50] (Section 6.1.4) implies: [image: there is no content]. Writing [image: there is no content] explicitly we have: [image: there is no content]. To maximize [image: there is no content] over [image: there is no content], we compute [image: there is no content]. Setting [image: there is no content] requires [image: there is no content]. Since for all [image: there is no content] the roots of [image: there is no content] are complex (the determinant of [image: there is no content] is equal to [image: there is no content].), then [image: there is no content] is not equal to 0 in the interval [image: there is no content], and hence its maximal value is achieved at one of the boundaries of the interval [0,1]. This concludes the proof of the lemma. ☐





Next, we write the LHS of (A14) as follows:


∑k=0KOL−1ρk+1−ρk(1+ρk)(2−ρz−ρk)=(a)∑k=0KOL−1∫ρkρk+1dρ(1+ρk)(2−ρz−ρk)≤(b)∑k=0KOL−1∫ρkρk+1dρ(1+ρ)(2−ρz−ρ)+∑k=0KOL−1∫ρkρk+1ψ3·|ρk+1−ρk|dρ≤∫ρsρKOLdρ(1+ρ)(2−ρz−ρ)+∑k=0KOL−1ψ3·|ρk+1−ρk|2≤(c)1ρz−3log(2−ρz−ρKOL)(1+ρs)(2−ρz−ρs)(1+ρKOL)+F1(P),



(A16)




where (a) follows from (A14); (b) follows from (A15) which implies that [image: there is no content], and from Lemma A2; (c) follows from explicitly calculating the integral, and by multiplying (A12) by the RHS of (A11) to bound the summation, and then using the upper bounds (A11) and (A12) which leads to an upper bound on the second summation by [image: there is no content], which is defined in (16b). By following arguments similar to those leading to (A16) the summation at the LHS of (A14) can be lower bounded via:


[image: there is no content]



(A17)







Next, consider again the RHS of (A13). Using the bound (A10) and Lemma A1, we can write:


−KOLP2σz2+∑k=0KOL−1Res1(P)(1+ρk)(2−ρz−ρk)≤−KOLP2σz2+∑k=0KOL−1B1(P)min2−ρz,2(1−ρz)≤(a)−KOLP2σz2+F2(P),



(A18)




where (a) follows from (A12), the LHS of (A10) and Lemma A2, and from the definitions of [image: there is no content] and [image: there is no content] in Section 5.2. Plugging the lower bound (A17) and the upper bound (A18) into (A13) we arrive at an upper bound on [image: there is no content] when [image: there is no content]:


[image: there is no content]



(A19)







We emphasize that the above expressions hold only for [image: there is no content], and we note that these expressions depend on [image: there is no content]. As [image: there is no content] is unknown, in the following we bound its value. For this purpose, we set [image: there is no content] in (13) and write:


logDσs2=∑k=0KOL−1log2σz2(1+|ρk|)+P(1−ρk2)2(P+σz2)(1+|ρk|)=(a)∑k=0KOL−1−P2σz2(1+|ρk|)+∑k=0KOL−1Res2(P,k),



(A20)




where (a) follows from the first order Maclaurin series expansion of [image: there is no content] in the parameter P, and [image: there is no content] is the remainder term. Note that this holds for any [image: there is no content], irrespective whether it is smaller or larger than [image: there is no content]. The following lemma upper bounds [image: there is no content]:



Lemma A3.

For any k we have [image: there is no content], where [image: there is no content] is defined in (15).





Proof outline.

We follow the technique used in the proof of Lemma A1. We let [image: there is no content], and use Taylor’s theorem to write [image: there is no content] for some [image: there is no content]. Then, we upper bound [image: there is no content] in the range [image: there is no content]. ☐





Next, we focus on the first summation on the RHS of (A20): From (A9), and for [image: there is no content], we have [image: there is no content]. Hence, we write the first summation on the RHS of (A20), for [image: there is no content] as:


[image: there is no content]



(A21)







Similarly to (A16) we write:


∑k=0KOL−1ρk+1−ρk2−ρz−ρk≤∫ρsρKOL12−ρz−ρdρ+F3,1(P)=log2−ρz−ρs2−ρz−ρKOL+F3,1(P),



(A22)




where


F3,1(P)=(a)ρsPψ2−B1(P)︸(∗)×maxx∈[0,1]12−ρz−x′·(3−ρz)2P8σz2+B1(P)2︸(∗∗)=(b)ρsPψ2−B1(P)·1(1−ρz)2·(3−ρz)2P8σz2+B1(P)2.











Here, in step (a) [image: there is no content] is obtained as [image: there is no content], where [image: there is no content] is upper bounded as in (A12), and [image: there is no content] follows from bounding [image: there is no content], where [image: there is no content] is found using a similar approach to the one in the proof of Lemma A2. Then, applying arguments similar to those leading to (A16), we plug the upper bound on [image: there is no content] stated in the RHS of (A11), and combine with the bound on [image: there is no content] to obtain [image: there is no content]. Step (b) follows from the fact that [image: there is no content] which implies that [image: there is no content] is increasing with [image: there is no content], and therefore, its maximal value is achieved at [image: there is no content].



For the second term on the RHS of (A21), noting that for [image: there is no content], we write:


[image: there is no content]



(A23)







Now, we consider the second term on the RHS of (A20). From (A12) and Lemma A3 we obtain:


[image: there is no content]



(A24)







Therefore, from (A20)–(A24) using the definition of [image: there is no content] in (16d), we obtain:


[image: there is no content]



(A25a)







By following similar arguments for lower bounding [image: there is no content], we also obtain:


[image: there is no content]



(A25b)







From (A25a), we can extract the following lower bound on [image: there is no content]: [image: there is no content]. Similarly, from (A25b), we can extract the following upper bound on [image: there is no content]: [image: there is no content]. Up to this point we assumed that [image: there is no content] and therefore [image: there is no content]. Hence, we restricted our attention only to values of D for which [image: there is no content], which is satisfied for [image: there is no content]. We conclude that if [image: there is no content], we can obtain an upper bound on [image: there is no content] plugging [image: there is no content] into (A19):


[image: there is no content]



(A26)







This corresponds to the bounds (17a). In the next subsection, we consider the case of [image: there is no content].




Appendix C.2. The Case of KOL > Kth


For upper bounding [image: there is no content] when [image: there is no content], we first derive an upper bound on [image: there is no content] for [image: there is no content]. From (A9) we have for any k:


|ρk+1−ρk|≤−P2σz2(1−ρk2)sgn(ρk)+(1−ρz)(sgn(ρk)+ρk)+Res1(P,k)≤(a)P2σz2(1−|ρk|2)+(1−ρz)(1+|ρk|)+B1(P)=(b)P2σz2(1+|ρk|)(2−ρz−|ρk|)+B1(P),








where (a) follows from Lemma A1, and (b) follows since [image: there is no content] is non-negative. Thus, we can use the upper bound in (A10) to further bound:


[image: there is no content]



(A27)




Note that this bound holds for every k, regardless of the value of [image: there is no content]. Further note that the condition [image: there is no content] implies that [image: there is no content]. The following lemma uses (A27) to bound [image: there is no content].



Lemma A4.

For [image: there is no content] it holds that [image: there is no content].





Proof. 

We first recall that [image: there is no content] while [image: there is no content]. Therefore, the bound [image: there is no content] combined with [image: there is no content] implies that [image: there is no content] as well as [image: there is no content]. From [28] (p. 669) we have that if [image: there is no content] then [image: there is no content], and if [image: there is no content] then [image: there is no content]. Note that these statements hold for every k. We now prove by induction the statement: Suppose [image: there is no content], for [image: there is no content], then [image: there is no content]. Note that the induction assumption is satisfied for [image: there is no content]. If [image: there is no content], then [image: there is no content], which implies that [image: there is no content] since [image: there is no content]. If [image: there is no content], then [image: there is no content], which again, implies that [image: there is no content] since [image: there is no content]. Thus, by induction we conclude that [image: there is no content]. ☐





Next, we characterize a lower bound on the distortion achieved after [image: there is no content] time steps. Recall that for [image: there is no content] we have [image: there is no content], where [image: there is no content] is defined in Appendix C.1. By setting [image: there is no content], we obtain [image: there is no content]. Thus, [image: there is no content] constitutes a lower bound on [image: there is no content].



Now, we are ready to analyze the case of [image: there is no content]. We first note that (A20) holds for any value of [image: there is no content]. Hence, we write:


[image: there is no content]



(A28)







For the second term on the RHS of (A28), we write:


∑k=KthKOL−1−P2σz2(1+|ρk|)+Res2(P,k)≤(a)(KOL−Kth)P2σz2−1+ρ¯(P)+2σz2PB2(P)=(KOL−Kth)F4(P).








where (a) follows from Lemma A3, as the lemma holds for any k, and from the fact that [image: there is no content]. Since the sum in (A20) is negative, we require [image: there is no content], which results in [image: there is no content]. Now, we write (A28) as:


[image: there is no content]



(A29)




and note that since (A20)–(A25) hold for [image: there is no content], then replacing [image: there is no content] with [image: there is no content] in (A20)–(A25) and [image: there is no content] with [image: there is no content] we can bound:


[image: there is no content]








where we used the fact that [image: there is no content]. Thus, to obtain an upper bound on [image: there is no content] we write:


[image: there is no content]



(A30)







Finally, plugging [image: there is no content] instead of [image: there is no content] in (A19), we obtain an upper bound on [image: there is no content]. Since the function [image: there is no content] in (A19) monotonically decreases with x, using the lower bound [image: there is no content], we obtain an explicit upper bound on [image: there is no content]. Combining this upper bound on [image: there is no content] with (A30) we obtain the following upper bound on [image: there is no content]:


KOL≤logD(2−ρz−ρ¯(P))σs2(2−ρz−ρs)−F3(P)1F4(P)+2σz2P13−ρzlog(2−ρz)(1+ρs)2−ρz−ρs+2σz2PF1(P)+F2(P),








where since [image: there is no content], dividing by [image: there is no content] changes the direction of the inequality. This concludes the proof.
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