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Abstract: We apply the geometric quantization procedure via symplectic groupoids to the setting
of epistemically-restricted toy theories formalized by Spekkens (Spekkens, 2016). In the continuous
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1. Introduction

The aim of geometric quantization is to construct, using the geometry of the classical system,
a Hilbert space and a set of operators on that Hilbert space that give the quantum mechanical analogue
of the classical mechanical system modeled by a symplectic manifold [1–3]. Starting with a symplectic
space M corresponding to the classical phase space, the square integrable functions over M is the
first Hilbert space in the construction, called the prequantum Hilbert space. In this case, the classical
observables are mapped to the operators on this Hilbert space, and the Poisson bracket is mapped to
the commutator. The desired quantum Hilbert space consists of the sections of the prequantum Hilbert
space, which depends on the “position” variables. These “position” variables are obtained by splitting
the phase space via the polarization P, which is the Lagrangian subspace (i.e., the maximal subspace
where the symplectic form vanishes) of the phase space.

The space of functions on M is a commutative algebra under the operations of pointwise addition
and multiplication. A bivector field on M determines a Poisson bracket so that M can be regarded as an
approximation to a noncommutative algebra. The quantization approach due to Rieffel aims to obtain
such a C∗-algebra, which is approximated by the Poisson algebra of the functions on M [4]. In this
case, the algebra after quantization is a continuous field of C∗-algebras rather than a single algebra.
On the other hand, Hawkins suggests a quantization recipe using symplectic groupoids to obtain a
single C∗-algebra [5]. In this paper, we use the quantization formulation of Hawkins to investigate the
epistemic toy theory due to Spekkens [6,7].

Recently, there has been a growing interest in quantum foundations in light of the quantum
information revolution [8–10]. In this direction, Spekkens introduced this toy theory in support of the
epistemic view of quantum mechanics [6]. The toy theory reproduces a large part of quantum theory by
positing restrictions on the knowledge of an observer. The distinctively quantum phenomena arising
in the toy theory include complementarity, no-cloning, no-broadcasting, teleportation, entanglement,
Choi–Jamiolkowski isomorphism, Naimark extension, etc. On the other hand, the phenomena, such as
Bell inequality violations, non-contextuality inequality violations and computational speed-up, do not
arise in the toy theory.
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The toy theory that we are interested in is the generalization of the original theory to the
continuous and finite variables [7]. This is achieved by positing a restriction on what kind of statistical
distributions over the space of physical states can be prepared. The new theory is called epistricted
theory. In this way, quantum subtheories, the Gaussian subtheory of quantum mechanics, the stabilizer
subtheory for qutrits and the Gaussian epistricted optics can be obtained from statistical classical
theories, Liouville mechanics, statistical theory of trits and statistical optics, respectively.

The epistemic restriction defined on the classical phase-space states that an agent knows the
values of a set of variables that commute relative to the Poisson bracket and maximally ignorant
otherwise. Hence, a symplectic structure, which appears in the function space of the phase space, has
mathematical correspondence with the ingredients of the quantization scheme. As a result, we conclude
that the geometric quantization, via Hawkins’ symplectic groupoid approach, produces a C∗-algebra
that encodes the algebraic structure of the quadrature subtheories. Moreover, this construction gives
us a functor from epistricted theories to the quantum subtheories.

In the second part of this paper, we construct a similar quantization functor of the toy theory
for discrete degrees of freedom. In this case, the toy theory is defined precisely the same as the
continuous case except that the finite dimensional symplectic vector space is over a finite field with
odd prime characteristic. However, in order to apply groupoid quantization, we resort to the methods
of categorical quantum mechanics pioneered by Abramsky and Coecke [11]. The categorical description
of the toy theory is given in [12–14], where the toy theory is formulated as a subcategory of the dagger
compact symmetric monoidal category of finite sets a Rel, and the toy observables correspond to
dagger Frobenius algebras.

We start our construction with the dagger Frobenius algebras of the toy observables, which
are functorially characterized as groupoids by Heunen, Catteneo and the first author in [15]. After
equipping the resulting groupoid with a symplectic structure, we construct the pair groupoid to apply
the quantization recipe of Hawkins. One can also obtain this pair groupoid from a different direction
called CP∗-construction introduced in [16]. In the category of Hilbert spaces, Frobenius algebras
correspond to finite dimensional C∗-algebras under this construction as as consequence of [17]. For the
category Rel, the pair groupoids are the objects of CP∗[Rel]. Hence, our main result establishes a
functor from the dagger Frobenius algebra in Rel for epistricted theories to the Frobenius algebra in
the category of Hilbert spaces.

The outline of this paper is as follows. We begin Section 2 with a brief summary of the geometric
quantization procedure. We then discuss epistricted theories of continuous variables and their
correspondence in the geometric quantization framework. We next briefly review Eli Hawkins’
groupoid quantization recipe from which we obtain the usual Moyal quantization as a twisted group
C∗-algebra from the geometric formulation of epistricted theories. We finally conclude that the resulting
C∗-algebra contains phase-space formalism for quadrature subtheories. In Section 3, we follow the
same quantization procedure for the odd-discrete degrees of freedom. We end the paper with the
conclusion and discussions.

2. Continuous Degrees of Freedom

The main idea in this section is to describe the general framework of geometric quantization in the
context of epistemically-restricted theories with continuous variables. We start with a quick overview
of the standard literature on geometric quantization, and then, we move on to the interpretation
for epistemically-restricted theories. We end the section with the algebraic counterpart of geometric
quantization, introduction Hawkins’ approach of quantization via symplectic groupoids. The outcome
of this approach is a C∗-algebra for the epistricted theory.
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2.1. Overview of Geometric Quantization

There are several ideas behind the construction of geometric quantization; however, the main
objective is to produce quantum objects by using the geometry of the objects from the classical theory.
In the sequel, we follow closely the approach of Bates and Weinstein [2].

2.1.1. The WKB Method

A basic technique for obtaining approximate solutions to the Schrödinger equation from classical
motions is called the WKB method, after Wentzel, Kramers, and Brillouin. The WKB picture appears
as an effort to describe quantum mechanics from a geometric viewpoint. It essentially approximates
the solution of the time-independent Schrödingerequation, in the form:

φ = eiS/h̄,

where S is a solution of the Hamilton–Jacobi Equation:

H(x, ∂S/∂x) = E.

We can then use the geometry of the phase space to realize the solution to the Schrödinger
equation as a Lagrangian submanifold L of the level set H−1(E). More precisely, let us consider the
semiclassical approximation for φ. From the transport equation:

a4S + 2 ∑
∂a
∂xj

∂S
∂xj

= 0

where a is a function on Rn, and after multiplying both sides by a, we obtain that:

div(a2∇S) = 0. (1)

Now, if we consider the vector field:

XH|L = ∑
j

∂S
∂xj

∂

∂qj
− ∂V

∂qj

∂

∂pj

onto Rn where the Hamiltonian H is H(q, p) = ∑ p2
i /2 + V(q) and |dx| = |dx1 ∧ . . . ∧ dxn| is the

canonical density on Rn, its projection X(x)
H onto Rn satisfies the following invariance condition:

L
X(x)

H
(a2|dx|) = 0, (2)

where L denotes the Lie derivative, if we restrict to the Lagrangian submanifold L = im(dS). Since
the vector field XH is tangent to the manifold L and L is diffeomorphisms invariant, Equation (2)
implies that the pullback π∗(a2|dx|) is invariant under the flow of XH , where π : T∗Rn → L denotes
the projection onto L.

This discussion implies that a semi-classical state can be defined geometrically as a Lagrangian
submanifold L of R2n, equipped with a half density function a. This semi-classical state is stationary
whenL lies in the level set of the Hamiltonian, and the half density a is invariant under the Hamiltonian
flow. Transformations of the state correspond to Hamiltonians on R2n. To summarize this geometric
picture, Table 1 exhibits the correspondence between semi-classical objects (of geometric nature) and
quantum objects (of algebraic nature) in this particular case.

Note that in Table 1, to the semi-classical space (R2n, ω), we associate the so-called intrinsic
Hilbert space HR2n , that is the Hilbert space of half densities on R2n, which must be introduced in
order for the invariance condition in Equation (2) to make sense in terms of density functions.
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Table 1. Correspondence between classical and quantum objects.

Object Semi-Classical (Geometric) Version Quantum (Algebraic) Version

Phase space (R2n, ω) Hilbert space HR2n

State Lagrangian submanifold of R2n with half-density half-density on Rn

Transformations Hamiltonian H on R2n operator Ĥ on smooth half densities
Stationary state Lagrangian submanifold in level set of H with

invariant half-density
eigenvector of Ĥ

2.1.2. Basic Symplectic and Poisson Geometry

From now on, we consider finite dimensional vector spaces V to be symplectic, if they are equipped
with a non-degenerate skew form ω. For a vector subspace W of V, its orthogonal complement is
defined by W⊥ = {x ∈ V : ω(x, y) = 0,∀y ∈W}. We have the following special cases for W:

• W is isotropic if W ⊆W⊥.
• W is coisotropic if W⊥ ⊆W.
• W is symplectic if W ∩W⊥ = {0}.
• W is Lagrangian if W = W⊥.

It can be easily checked that if W is Lagrangian, then dim W = 1
2 dim V.

Definition 1. A manifold is called Lagrangian (resp. isotropic, coisotropic and symplectic) if its tangent space
is a Lagrangian subspace at every point.

We also consider Poisson algebras, which are commutative algebras (P,+, •) equipped with a Lie
bracket [, ] that is a derivation for the commutative product. As a particular case in our discussion,
the algebra of functions of a symplectic manifold (M, ω) is naturally a Poisson algebra.

2.1.3. Prequantum Line Bundle

In this section, we follow Dirac’s approach to axiomatize the quantization procedure.

Definition 2. A pre-quantization is a linear map P→ P̂H from a Poisson algebra (more precisely, the algebra of
functions of a Poisson manifold M) into the set of operators on a (pre)-Hilbert spaceH, satisfying the following
properties:

1. ˆIdP = IdP̂H
.

2. ˆ[F, G] = i
h (F̂Ĝ− ĜF̂).

3. F̂∗ = (F̂)∗, where ∗ denotes complex conjugation on left side and adjunction on the right side.

Definition 3. A pre-quantization is called quantization if, in addition to the properties above, the following
condition is satisfied:

4. For a complete set of functions {Fi}, its quantization {F̂i} is also a complete set of operators.

Proposition 1. In the specific case where M is a cotangent bundle T∗N, a pre-quantization (referred to in the
literature as the Koopman–Van Hove–Segal pre-quantization) can be constructed, and it has the following form:

F̂ = F +
h̄

2πi
XF − θ(XF), (3)

where XF is a Hamiltonian vector field with generating function F and θ is a primitive of the Liouville form ωT∗N .
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In order to implement this pre-quantization for a arbitrary symplectic manifold (M, ω), we require
a complex line bundle over M, equipped with a Hermitian structure and a Hermitian connection∇,
for which the pre-quantization formula 3 takes the following form:

F̂ = F +
h̄

2πi
∇XF . (4)

Provided a compatibility condition between curv(∇) and ω, this formula gives a pre-quantization
for (M, ω).

2.1.4. Polarization

It is easy to realize in some examples that the Hilbert space of pre-quantization is too big for
the completeness Condition 4 to hold. By using the ordinary viewpoint of quantum mechanics, only
half of the coordinates of the classical phase space are required to write down the wave functions,
depending on whether the coordinate or momentum representation is considered. In (symplectic)
geometric terms, for general symplectic manifolds, a polarization is defined as follows:

Definition 4. Let (M, ω) be a symplectic manifold. A polarization of M is a Lagrangian involutive distribution
P of M.

Thus, the quantization space consists of functions constant along the leaves of a the distribution
P on M; more precisely, the quantization Hilbert spaceH is the space of sections s of the complex line
bundle on M such that:

∇XP s = 0, (5)

where XP is a vector field tangent to the polarization P .

2.2. Quadrature Epistricted Theories

We now introduce the quadrature epistricted theories for continuous variables [7]. The epistemic
restrictions on classical variables are adopted from the condition of the joint measurability of quantum
observables.

Definition 5. A set of variables are jointly knowable if and only if it is commuting with respect to the
Poisson bracket.

The other restriction besides joint knowability is that an agent can know only the variables that are
the linear combination of the position and momentum variables. Such variables are called quadrature
variables. Hence, the valid epistemic states are the ones for which an agent knows the values of a set of
quadrature variables that commute with respect to the Poisson bracket and that is maximally ignorant
otherwise. This notion is termed classical complementarity.

Example 1 (Darboux coordinates). If we start with the phase space Ω = R2n where a point is denoted by
m = (p1, q1, . . . , pn, qn), epistemic restrictions imply that the functionals f : Ω→ R are of the form:

f = a1q1 + b1 p1 + . . . + anqn + bn pn + c

where a1, b1, . . . , an, bn, c ∈ R and pi(m) = pi and qi(m) = qi are functionals associated with momentum
and position, respectively. Hence, each functional f is associated with a vector f = (a1, b1, . . . , an, bn). It is not
hard to show that the value of the Poisson bracket over the phase space is uniform and equal to the symplectic
inner product:

[ f , g]PB(m) =
n

∑
i=1

(
∂ f
∂qi

∂g
∂pi
− ∂g

∂qi

∂ f
∂pi

)(m) = 〈f, g〉
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where:
〈f, g〉 = fT Jg

and J is the skew symmetric 2n× 2n matrix with components Jij = δi,j+1 − δi+1,j. Hence, the vector space
Ω becomes a symplectic vector space with the symplectic inner product ω = 〈·, ·〉. This allows us to give the
geometric presentation of the quadrature variables.

The only set of variables jointly knowable are the ones that are Poisson commuting. In symplectic geometry,
this set corresponds to the subspace V of vectors whose symplectic inner product vanishes, i.e., ∀f, g ∈ V
〈f, g〉 = 0. For a 2n-dimensional phase space, the maximum possible dimension of such a V is n. Such a maximal
space is a Lagrangian space as defined above, and it corresponds to the maximal possible knowledge an agent
can have. In order to specify an epistemic state, one should also set the values of the variables on V. The linear
functional v acting on a quadrature functional corresponds to the set of vectors in v ∈ V, which is determined
via v( f ) = fTv. That is, for every vector v ∈ V, we obtain distinct value assignment.

In summary, a pure state in the epistricted theory consists of a Lagrangian subspace V ∈ R2n and a
valuation functional v : R2n → R. In geometric quantization, the half density function can be regarded as this
valuation function.

On the other hand, the valid transformations are the symplectic transformations that map the quadrature
variables to itself. These transformations map a phase space vector m ∈ Ω to Sm + a where a is a displacement
vector and S is 2n× 2n a symplectic matrix. The group formed by these transformations is called the affine
symplectic group, which is subgroup of the Hamiltonian symplectomorphism group. Thus, each of these
transformations can be obtained from a Hamiltonian. Finally, the sharp measurements are parametrized by
Poisson commuting sets of quadrature variables (isotropic subspaces V), and the outcomes are indexed by the
vectors in V.

We summarize the correspondence between geometric quantization and epistricted theories
in Table 2.

Table 2. Correspondence between geometric quantization and epistricted theories.

Object Semi-Classical Version in Quantization Epistricted Theories

Phase space (R2n, ω) (R2n, ω)
State Lagrangian submanifold of R2n with

half-density a : R2n → R
Lagrangian subspace with a valuation
function v : R2n → R

Transformations Hamiltonian H on R2n affine symplectic transformation

2.3. Hawkins’ Groupoid Quantization

The aim of this section is to point out that the epistricted theories can be quantized by a twisted
polarized convolution C∗-algebra of a symplectic groupoid in the sense of Hawkins. The main idea
in this method is to find a C∗-algebra that is approximated by a Poisson algebra of functions on a
manifold. C∗-algebra quantization is mainly developed by the work of Rieffel, where the quantization
is stated as a continuous field of C∗-algebras {Ah̄}. Hawkins’ construction gives a single algebraA1 by
involving additional structures on the symplectic groupoid. In his approach, it is possible to reinterpret
geometric quantization for a broader class of examples, coming from deformation quantization of
Poisson algebras. This gives a rigorous treatment to the dictionary strategy of Weinstein relating the
symplectic category and its geometrically quantized counterpart [2].

2.3.1. Symplectic Groupoids

We start with the definition of symplectic groupoid, arising from the usual definition of the Lie
groupoid, requiring compatibility conditions with a symplectic structure on the space of arrows.
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Definition 6. A topological groupoid Σ is a groupoid object in the category of topological spaces, that is Σ
consists of a space of Σ0 of objects and a space Σ2 of arrows, together with five continuous structure maps:

• The source map s : Σ2 → Σ0 assigns to each arrow g ∈ Σ2 its source s(g).
• The target map t : Σ2 → Σ0 assigns to each arrow g ∈ Σ2 its target t(g). For two objects x, y ∈ Σ0, one

writes g : x → y to indicate that g ∈ Σ2 is an arrow with s(g) = x and t(g).
• If g and h are arrows with s(h) = t(g), one can form their composition, denoted hg, with s(hg) = s(g)

and t(hg) = t(h). If g : x→ y and h : y→ z, then hg is defined, and hg : x→ z. The composition map m is
defined by m(h, g) = hg, and it is a well-defined map m : Σm → Σ2, where Σm := {(h, g) : s(h) = t(g)}.

• The unit map u : Σ0 → Σ2 is a two-sided unit for composition.
• The involution map −∗ : Σ2 → Σ2. Here, if g : x → y, then g∗ : y → x is two-sided inverse for

composition.

Σ is said to be a groupoid over Σ0

Definition 7. A Lie groupoid is a topological groupoid Σ where Σ0 and Σ2 are smooth manifolds and such that
the structure maps s, t, m, u and −∗ are smooth. Moreover, s and t are required to be submersions, so that the
domain of m is a smooth manifold.

Definition 8. A Lie groupoid Σ is called a symplectic groupoid if Σ2 is a symplectic manifold with symplectic
form ω, and the graph multiplication relation m = {(xy, x, y) : (x, y) ∈ Σ2} is a Lagrangian submanifold of
Σ2 ⊕ Σ2 ⊕ Σ2, where Σ is the symplectic manifold (Σ2,−ω).

This definition is equivalent to saying that the symplectic form ω is multiplicative, i.e., it satisfies
the following compatibility conditions with the multiplication and projection maps:

m∗ω = pr∗1ω + pr∗2ω, (6)

where pr1 and pr2 are the projections of Σm onto the first and second component, respectively. As m is
Lagrangian, one can find a unique Poisson structure on Σ0 of a symplectic groupoid, such that s is a
Poisson map, and t is anti-Poisson. Hence, we have the following definition.

Definition 9. A symplectic groupoid Σ is said to integrate a Poisson manifold Ω if there exists a Poisson
isomorphism from Σ0 onto Ω.

The following are the basic examples of symplectic groupoids, the first one being of central
importance for the geometric quantization procedure in epistricted theories.

Example 2 (Pair groupoid of a symplectic manifold). As we will describe in more detail later in the paper,
given a smooth manifold M, the manifold M×M is naturally the space of arrows for a Lie groupoid, called the
pair groupoid. In the case where M is equipped with a symplectic structure ω, then the Lie groupoid Pair(M) is
a symplectic groupoid with symplectic structure ω⊕ω.

Example 3 (Cotangent bundle). If M is a manifold, any vector bundle E over M is a Lie groupoid over M;
the multiplication is given by fiber addition; the source and target maps are projection onto the base; whereas the
unit is given by the zero section of the bundle. In the particular case that E = T∗M and that ω is the Liouville
form on the cotangent bundle, it it easy to verify that T∗M is a symplectic groupoid over M.

Here is Hawkins’ strategy for geometric quantization of a manifold Ω. For a detailed discussion,
one can refer to [5]:

• Construct an symplectic groupoid Σ over Ω.
• Construct a pre-quantization (σ, L,∇) of Σ.
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• Choose a symplectic groupoid polarization P of Σ, which satisfies both symplectic and groupoid
polarization.
• Construct a “half form” bundle.
• Ω is quantized by twisted, polarized convolution algebra C∗P(Σ, σ).

Proposition 2. Hawkins’ geometric quantization of the symplectic space Ω = R2n and Darboux coordinates
(Example 1) is the Moyal quantization of the Poisson algebra of the symplectic vector space.

Proof. In the particular case that the symplectic manifold is a vector space Ω = R2n with symplectic
form ω, which is the context of the epistricted theories, we have the symplectic groupoid Ω⊕Ω∗

integrating the symplectic vector space Ω, where the multiplication is given by fiber addition on
Ω∗ = {(p1, p2, · · · , p2n)}, i.e., the symplectic integration comes equipped with Darboux coordinates.

More explicitly, ω̂(u) : v 7→ ω(u, v) gives a map ω̂ : R2n → R2n∗. One obtains a symplectic
structure:

σ((x, y), (z, w)) = ω(x, z)−ω(y, w)

= ω̂(x− y)[
z + w

2
]− ω̂(z−w)[

x + y
2

].

We identify R2n ⊕ R̄2n with the cotangent bundle T∗(R2n) as follows: for the local coordinates of
covectors (u, ξ), (v, η) in T∗(R2n), the cotangent symplectic structure is

σ∗((u, ξ), (v, η)) = ξ(u)− η(v).

This gives us a symplectomorphism Φ : R2n ⊕ R̄2n → T∗(R2n) such that:

Φ : (x, y) 7→ (1/2(x + y), ω̂(x− y))

where Φ∗σ∗ = σ (this example has also been studied by Hawkins (see Example 6.2 of [5])).
One can obtain the the Darboux coordinates (q1, . . . , qn, p1, . . . , pn) of T∗(R2n) from the

symplectomorphism Φ. The projection of T∗(R2n) to R2n∗ is a fibration of groupoids whose fibers are
Lagrangian. Thus, this is a polarization of the symplectic groupoid given by:

P = span{∂/∂p1, . . . , ∂/∂pn}

The symplectic potential, which vanishes on P, can be chosen as θP = −pidqi.
This polarization gives us the half-form pairing, which enables quantizable observables to be

represented as operators on the Hilbert space L2(R2n). Hence, this yields the correspondence between
the kernels of operators on L2(R2n) and Weyl symbols of these operators. This kernel T of an operator
f is given by:

T f (p, q) = C
∫

f (
p + q

2
, ζ)eiζ(q−p)/h̄dζ.

The quantization procedure gives the twisted group algebra C∗(Ω∗, σ) where σ : Ω∗ ×Ω∗ → T,

σ(x, y) = e
−i
{q,p} . This is the usual Moyal quantization of a Poisson vector space (see [18]). In this setting,

the observables correspond to functions in classical phase-space, and the Moyal product of functions
is derived from the product of the pair of observables. In this case, the position and momentum
operators correspond to the generators of the Heisenberg group, and they are related to each other by
a Fourier transform.

Theorem 1. Quadrature quantum subtheories and the Moyal quantization from Proposition 2 coincide.

Proof. To be consistent with the formalism of [7], we work with projector valued measures (PVM)
rather than Hermitian operators. PVMs are used in quantum information and quantum foundations
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to represent measurements, as eigenvalues of Hermitian operators are operationally insignificant and
serve as labels of outcomes. A projector-valued measure with outcome set K is a set of projectors
{Πk : k ∈ K} such that Π2

k = Πk, ∀k ∈ K and ∑k Πk = I. Hence, the position (momentum) observables
are the set of projectors onto position (momentum) eigenstates (in the continuous case, one can also
use Hermitian operators corresponding to the real valued functionals, but the commutation relation of
Hermitian operators does not have a finite counterpart. Therefore, Spekkens preferred to use PVMs in
order to cover finite and continuous cases simultaneously):

Oq = {Π̂q(q) : q ∈ R}

where
Π̂q(q) = |q〉q〈q|.

We now define a unitary representation of symplectic affine transformation to introduce the other
quadrature observables. The projective unitary representation V̂ of the symplectic group acting on the
phase space Ω satisfies V̂(S)V̂(S′) = eiφV̂(SS′) for every symplectic matrix S : Ω→ Ω and where eiφ is
a phase factor. The action of this unitary is defined by the conjugation:

V(S)(·) = V̂(S)(·)V̂†(S).

For a single degree of freedom, let S f be the symplectic matrix that takes the position functional q to
a quadrature functional f , such that S f q = f. Then, the quadrature observable associated with f is
defined as follows:

O f = {Π̂ f (f) : f ∈ R}

where:
Π̂ f (f) = V(S f )(Π̂q(f)).

For the n degrees of freedom Ω = R2n, the quadrature observable associated with f is given by:

O f = {Π̂ f (f) : f ∈ R2n}

where:
Π̂ f (f) = V(S f )(I ⊗ · · · ⊗ Π̂qi(f)⊗ · · · ⊗ I)

for S f qi = f. We also know that the set of quadrature observables {O fi} commutes if and only if
the corresponding functionals { fi} are Poisson-commuting (see [6]). Hence, the commuting set of
quadrature observables can be labeled by isotropic subspaces of Ω. This set defines a single quadrature
observable:

OV = {Π̂V(v) : v ∈ V}

where:
Π̂V(v) = ∏

f(i)
Π̂ f (i)( f (i)v).

On the other hand, in the geometric quantization procedure, any functional f on Ω is mapped
to a Hermitian operator f̂ in a prequantum Hilbert space, which corresponds to the observable
O f = {Π̂ f (f) : f ∈ R2n}. Moreover, the commutation relation for the observables in both quadrature
subtheories and geometric quantization is implied by the Poisson commutation relation of the classical
observables. As the polarization is the commuting set of these Hermitian operators, the state that
is obtained after quantization is the operator Π̂V(v). The choice of the vertical polarization for
the groupoid Ω ⊕ Ω∗ is the responsible of the correspondence between the two quantum states.
The half-form pairing defined above can be computed in terms of the integral kernel of the projection
operator Π̂ f , which has Weyl symbol f . This establishes a correspondence between phase-space
formalism and quantum mechanics, and the Moyal product is deduced from this correspondence.
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In [6], the operational equivalence quantum subtheories and epistricted theories are proven using
Wigner representation, which maps operators in Hilbert space to the functions in the phase-space
formulation of quantum mechanics. It is also a well-known fact that the Wigner representation of
an operator product is given by the Moyal product. As a result, geometric quantization with an
appropriate choice of polarization is operationally equivalent to epistricted theories. We can also
conclude that group algebra C∗(H) = C∗(Ω∗, σ), which is the Hilbert space considered as a group
representation of the Heisenberg group H, contains the algebraic structure of quadrature subtheories.

This discussion leads to the following theorem:

Theorem 2 (Main result in the continuous case). The geometric quantization, via Hawkins’ symplectic
groupoid approach, of the Spekkens toy theory of continuous degrees of freedom produces a C∗-algebra that is
a group representation for the Heisenberg group H, and it encodes the algebraic structure of the quadrature
subtheories, via Moyal quantization.

2.4. Functoriality

The functoriality of geometric quantization is a delicate issue, and it has been proven that
the quantization that fits with the Schröedinger picture is in fact not functorial. There are several
problems even before quantization, in particular that the symplectic category is not quite a category,
since the composition of Lagrangian correspondences is not in general well defined, and also that,
when it is defined, the composition is not continuous with the standard topology in the Lagrangian
Grassmannian. The failure of geometric quantization to functorially represent Schröedinger’s picture
is given, e.g., in Gotay’s work [19].

However, the geometric quantization picture for symplectic groupoids turns out to be functorial
with respect to the choices, i.e., the polarizations (the groupoid one), the half line bundle. The fact that
the choices of polarizations are affine means that there is a higher structure for our C*-algebra quantization,
namely the objects are symplectic manifolds; one-morphisms are Lagrangian polarizations; and
two-morphisms are affine transformations between Lagrangian polarizations. These two-morphisms
are reflected in C*-algebra automorphisms after quantization.

3. Finite Degrees of Freedom

We now discuss how the geometric quantization relates the epistricted theories to quadrature
quantum subtheories for odd-prime discrete degrees of freedom. In [7], the operational equivalence
of these two theories for continuous and odd-prime discrete cases was proven using Wigner
representation. Here, we aim to construct a functor from a subcategory of the category of groupoids to
the category of C∗-algebras. This corresponds to a functor from Frobenius algebras in the category
FRel (Frobenius algebras in the category of sets and relations) to Frobenius algebras in the category of
Hilbert spaces FHilb. Here is the sketch of our discrete quantization:

• We start with the special dagger Frobenius algebra of epistricted theories, Spek, which is a
subcategory of finite sets and relations, FRel.

• We then construct the groupoid G corresponding to Spek via the explicit equivalence in
Heunen et al. [15].

• We next obtain the pair groupoid from G and introduce the symplectic structure on it, which is
compatible with the pair groupoid structure. In this case, each polarization corresponds to a
Lagrangian subspace in epistricted theories.

• We then apply the geometric quantization procedure via Hawkins on the pair groupoid.
• Finally, we end up with the finite dimensional C∗-algebra from which one can construct special

dagger Frobenius algebra over FHilb via [17].

We begin this section by reviewing the epistricted theories in the discrete case.
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3.1. Quadrature Epistricted Theories

The formalism in the finite case is defined over the finite fields with prime order d. These fields
are isomorphic to the integers modulo d, denoted by Zd. Hence, the configuration space and associated
phase-space are (Zd)

n, Ω = (Zd)
2n, respectively. The linear functionals are also in the form:

f = a1q1 + b1 p1 + . . . + anqn + bn pn + c

where a1, b1, . . . , an, bn, c ∈ Zd. Hence, a vector f = (a1, b1, . . . , an, bn) specifies the position and
momentum dependence of the quadrature functional f . The dual space Ω∗ = (Zd)

n consists of these
vectors associated with the functionals. The Poisson bracket, unlike the continuous case, is defined in
terms of finite differences:

Definition 10. The Poisson bracket in the finite case is given by:

[ f , g]PB(m) =
n

∑
i=1

[( f (m + qi)− f (m))(g(m + pi)− g(m))− ( f (m + pi)− f (m))(g(m + qi)− g(m))],

where the operations are in modulo d. The Poisson bracket, [ f , g]PB(m), is also equal to symplectic inner product
〈f, g〉 on the discrete phase space.

Like in the continuous case, an epistemic state is determined by the set of quadrature variables that
are known to that agent and the values of these variables. This corresponds to the pair (V∗, v), where
V∗ is an isotropic subspace of the phase space Ω∗, and v is a valuation vector in V∗∗ = V. Similarly,
the valid transformations are symplectic transformations, which preserve the symplectic inner product,
and they form the affine symplectic group over the finite field Zd. Note that these transformations
over a finite field are discrete in time; hence, they cannot be generated from a Hamiltonian unlike the
continuous case.

Example 4. As an example, we consider the quadrature epistricted theory of trits [7] for a single system.
The configuration space and the phase space are Z3 and Z2

3, respectively. The quadrature functionals in this
system are of the form f = aq + bp + c where a, b, c ∈ Z3. There are four inequivalent quadrature functionals:

q, p, q + p, q + 2p.

Since none of these functionals Poisson commute, an agent can know at most one of them. This implies that
there are twelve epistemic states, as the valuation vectors are chosen from V = Z3. These states are depicted in
Figure 1 as 3× 3 grids:

The valid transformations, which form the affine symplectic group over Z3, correspond to a certain subset
of permutations of the functionals (See Figure 2 for an example).
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Figure 1. Twelve epistemic states.

Figure 2. The valid transformations.

3.2. The Category of Epistricted Theories

We now turn to the category of the epistricted theory of trits. The arguments can easily be
generalized to the epistricted theories for other odd primes. We start with the category of FRel, whose
objects are sets and whose morphisms X → Y are relations r ⊆ X×Y and s ◦ r = {(x, z)|∃y, (x, y) ∈
r, (y, z) ∈ s}. FRel is a dagger symmetric monoidal category when the tensor product is chosen as a
Cartesian product, the single element set 1 = {•} as the identity and the relational converse as the
dagger morphism †.

Definition 11. An object X in FRel with a morphism m : X × X → X is called special dagger Frobenius
algebra if and only if m has the following properties:

• (1×m) ◦ (m† × 1) = m† ◦m = (m× 1) ◦ (1×m†) (F)
• m ◦m† = 1 (M)
• m ◦ (1×m) = m ◦ (m× 1) (A)
• there is e : 1→ X with m ◦ (e× 1) = 1 = m ◦ (1× e) (U).

The conditions of Frobenius algebras are presented graphically in Figure 3. These diagrams
encode composition by drawing morphisms on top of each other, and the monoidal product is the
drawing morphism next to each. The dagger is a vertical reflection.

The category FRel has morphisms η : 1→ X× X satisfying:



Entropy 2017, 19, 220 13 of 20

• (η† × 1) ◦ (1× η) = 1 = (1× η† ◦ (η× 1))(C).

(F)

(M) (A)

(U)

Figure 3. String diagrams of the properties for the objects in FRel .

Proposition 3 ([15]). FRel is a compact closed category.

Remark 1. Frobenius algebras with some additional properties on the category of finite dimensional Hilbert
spaces FHilb correspond to quantum observables [20]. They are called classical structures in this category
theoretical context. In [21], the graphical formulization of complementarity is given using the string diagrams.
This results in complete graphical calculus for stabilizer quantum mechanics [22] and Spekkens’ toy theory [12].

The compact structure can be induced from the Frobenius algebra by η = m† ◦ e. As a result of the
compact structure, we can define transposes of morphism r : X→ Y by dre = (1× r) ◦ η : 1→ X×Y.
The category of Frobenius algebras in FRel with the following morphism is a well-defined category
(see Proposition 14 of [15]).

Definition 12. A morphism (X, mX)→ (Y, mY) in the category of Frobenius algebras in FRel is a morphism
r : X→ Y satisfying:

• (mX ×mY) ◦ (1× σ× 1) ◦ (dre × dre) = dre (R)
• (r× η†) ◦ (m†

X × 1) ◦ (eX × 1) = (e†
Y × 1) ◦ (mY × 1) ◦ (r× η) (I) where σ : X × Y → Y× X is a

natural swap isomorphism.

These morphisms are depicted in Figure 4
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(C)

r

r r

(R)

r r

(I)

Figure 4. String diagram of the properties for the morphisms in FRel.

Proposition 4. The category Spek for the toy theory of trits is a subcategory of FRel.

Proof. The category Spek for the toy theory of trits is defined as the category whose objects are
the single element one and n-fold Cartesian product of the nine-element set IX := {1, 2, . . . , 9}.
The morphisms of Spek can be constructed by composition, the Cartesian product and the relational
converse from the following relations:

• The unit (deleting) relation e : IX→ 1 defined by {1, 4, 7} ∼ •
• The relation m : IX→ IX× IX defined as:

1 2 3
3 1 2
2 3 1

4 5 6
6 4 5
5 6 4

7 8 9
9 7 8
8 9 7

For example, {1} ∼ {(1, 1), (2, 2), (3, 3)}, {2} ∼ {(1, 2), (2, 3), (3, 1)}, etc.
• The permutations σi : IX → IX that correspond to affine symplectic maps on the phase-space.
• The relevant unit, associativity and symmetry natural isomorphisms.

Twelve epistemic states for a single system are given by the following relations:

q known: • ∼ {1, 2, 3}, • ∼ {4, 5, 6}, • ∼ {7, 8, 9}.
p known: • ∼ {1, 4, 7}, • ∼ {2, 5, 8}, • ∼ {3, 6, 9}.

p + q known: • ∼ {1, 6, 8}, • ∼ {2, 4, 9}, • ∼ {3, 5, 7}.
p + 2q known: • ∼ {1, 5, 9}, • ∼ {2, 6, 7}, • ∼ {3, 4, 6}.
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It is straightforward to verify that (IX, m, e) is the special dagger Frobenius algebra.

Remark 2. This structure corresponds to the observable for which q is known. Hence, the relations • ∼ {1, 2, 3},
• ∼ {4, 5, 6}, • ∼ {7, 8, 9} are the copyable (classical) states for this observable. The other observables can be
found by composing m with various valid permutations.

3.3. Frobenius Algebras as Groupoids

We start our procedure of the discrete geometric quantization with constructing the groupoid
corresponding to the Frobenius algebra (IX, m, e). The groupoid characterization of dagger Frobenius
algebras is given in [15]. We now give the groupoid following [15].

Definition 13. The following objects and morphisms in Rel obtained from the Frobenius algebra (IX, m, e)
form a groupoid Σ in the category of sets and functions Set (see Theorem 7 of [15]).

• Σ1 = IX
• Σ2 = Image(m) =

⋃2
k=0{(3k + 1, 3k + 1), (3k + 1, 3k + 2), (3k + 1, 3k + 3), (3k + 2, 3k + 3),

(3k + 2, 3k + 2), (3k + 2, 3k + 1), (3k + 3, 3k + 1), (3k + 3, 3k + 2), (3k + 3, 3k + 3)}
• Σ0 = U = Domain(e) = {1, 4, 7}
• u = U ×U : Σ0 → Σ1
• s = {( f , x) ∈ Σ1 × Σ0|( f , x) ∈ Σ2} : Σ1 → Σ0
• t = {( f , y) ∈ Σ1 × Σ0|(y, f ) ∈ Σ2} : Σ1 → Σ0
• −∗ = {(g, f ) ∈ Σ2|m(g, f ) ∈ U, m( f , g) ∈ U} : Σ1 → Σ1

Remark 3. As proven in [15], this assignment is functorial, if we consider morphisms of groupoids to be
sub-groupoids.

Considering the set IX as the finite field Z2
3, one can equip IX with the symplectic product

ω = 〈·, ·〉.

Lemma 1. The graph of the multiplication m = {(xy, x, x|(x, y) ∈ Σ2)} is a Lagrangian subspace of
Σ2 ⊕ Σ2 ⊕ Σ2.

Proof.

m =
2⋃

k=0

{(3k + 1, 3k + 1, 3k + 1), (3k + 2, 3k + 1, 3k + 2), (3k + 3, 3k + 1, 3k + 3),

(3k + 3, 3k + 2, 3k + 3), (3k + 1, 3k + 2, 3k + 2), (3k + 2, 3k + 2, 3k + 1),

(3k + 2, 3k + 3, 3k + 1), (3k + 3, 3k + 3, 3k + 2), (3k + 1, 3k + 3, 3k + 3)}.

Equipped with the symplectic product ω = 〈·, ·〉, m becomes the Lagrangian subspace of
Σ2 ⊕ Σ2 ⊕ Σ2 = Z6

3 with the basis

{((0, 0)(0, 1), (0, 1)), ((0, 1), (0, 0), (0, 1)), ((1, 0), (1, 0), (1, 0))}

where (a, b) ∈ Z2
3.

3.4. Weyl Correspondence and Pair Groupoid

In order to apply geometric quantization, we need a notion of differential forms suitable for
the symplectic finite vector space. As noticed in [23], Kahler differentials are the ideal tool in this
setting [24].
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We now briefly review the algebraic geometry that we are going to use. Let:

Z3[x1, . . . , xn, y1, . . . , yn]

be the algebra of polynomials in two variables over Z3. The formal derivatives of the these polynomials
are evaluated using the same rules for polynomial functions.

The algebra of Kahler differential Ω(Z2n
3 ) is defined as the Z3-linear combinations of the following

terms:
fi1,...,ik ,j1,...,jl dx1 ∧ . . . dxk ∧ dy1 ∧ · · · ∧ dyl .

One can also define the vector space of Kahler j-forms Ωj(Z2n
3 ) for which there is also a differential:

d : Ωj(Z2n
3 ) −→ Ωj+1(Z2n

3 ).

The symplectic product ω defined in Section 2 corresponds to the following Kahler j-form:

ω =
n

∑
i=1

dxi ∧ dyi,

which satisfies dω = 0. From now on, we will take n = 1 for brevity.
We can now define the pair groupoid and polarization necessary for geometric quantization that

will give us the Weyl operator in the discrete case. We first define a skew-symmetric invertible map
ω̂ : Z2

3 −→ Z2∗
3 as ω̂(u) : v 7→ ω(u, v).

In the discrete geometric quantization procedure for the symplectic space M = (Z2
3, ω),

the groupoid associated with M consists of G = M × M, where M = (M,−ω). G is endowed
with the multiplication (x, y) · (y, z) = (x, z). M embeds in M×M as the diagonal {(x, x)|x ∈ M},
and s and t are the projections s(x, y) = (y, y) and t(x, y) = (x, x). In this groupoid, there is exactly
one arrow from any object to another.

Starting with the groupoid G, one can define a symplectomorphism Φ from G to the cotangent
bundle T∗(M) = Z2

3 ×Z2∗
3 as:

φ : (x, y) 7→ (
1
2
(x + y), ω̂(x− y)).

It is then clear that such a groupoid is symplectic, and it integrates the symplectic space M = (Z2
3, ω).

φ is explicitly given as:

φ(x1, x2; y1, y2) = (
x1 + y1

2
, x1 − y1; x2 − y2,

x2 + y2

2
),

where (x1, x2; y1, y2) ∈ G and (q1, q2; p1, p2) ∈ T∗(M).
Now, we consider two real polarizations of G:

F = span{ ∂

∂x2
,

∂

∂y2
}

P = span{ ∂

∂p1
,

∂

∂q2
}.

The symplectic potentials that vanish on F and P may be taken as:

ΦF = −x2dx1 + y2dy1 = −p1dq1 − p2dq2

ΦP = −p1dq1 + q2dp2.
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We then obtain ΦF −ΦP = −d(q2 p2). Hence, the inner product polarized sections of line bundles is:

∑
q1,q2,p3

f (x1, y1)g(q1, p2)e−iq2 p2/3

= ∑
p2,x1,y1

f (x1, y1)g((x1 + y1)/2, p2)ei(y1−x1)p2/3

= ( f , Wg)

where:
Wg(x1, y1) = ∑

p
g((x1 + y1)/2, p)ei(y1−x1)p/3

can be considered as the integral kernel of the Weyl operator. From Hawkins’ perspective,
the corresponding algebra is the twisted group algebra C∗(Z2∗

3 , σ). As the Weyl operator is the
representation of the finite Heisenberg group H, as shown in [25], C∗(Z2∗

3 , σ) is isomorphic to the group
algebra of C∗(H).

Remark 4. Note that we cannot apply the same procedure to the toy bits, i.e., Ω = Z2, as the symplectomorphism
Φ and other steps of quantization include division by two.

Our main result produces a functorial quantization via symplectic groupoids, in the case of
epistricted theories with an odd prime number of degrees of freedom.

Theorem 3 (Main result for the finite case). The discrete geometric quantization procedure is a functor from
the Frobenius algebra in Rel for epistricted theories to the Frobenius algebra for stabilizer quantum mechanics in
the odd prime discrete case.

Proof. Σ̄ can be equipped with a symplectic structure so that it becomes the symplectic groupoid
where the polarization is P = span{ ∂

∂p1
, ∂

∂q2
} corresponding to • → U×U in (IX× IX, m̄, ē). Hence,

the quantization gives us a subalgebra of C∗(Z2∗
3 , σ) as we only consider the linear combination of

position and momentum operators. The resulting operator algebra is a projective representation of
the finite Heisenberg group given by the above discrete Weyl transform W. The stabilizer states are
joint eigenstates of commuting Weyl operators. In [7], it has been shown that the stabilizer states is
equivalent to quadrature states of epistricted theories.

The resulting finite dimensional algebra C∗(Z2∗
3 , σ) ∼= C∗(H) is equivalent to a dagger Frobenius

algebra in Hilb (see Theorem 4.7 of [17]). By the functoriality of quantization in this specific case
and the functoriality of the above embedding into End(IX) (see Corollary 4.4 of [16]), we obtain a
functor from the dagger Frobenius algebras in Rel to the dagger Frobenius algebras in Hilb. The affine
symplectic transformations of the epistricted theories are mapped to the group representations of the
affine symplectic group, which acts as a superoperator in the resulting C∗-algebra.

We now construct a pair groupoid M from the dagger Frobenius algebra (IX, m, e). We start
with the monoid structure (IX× IX, idIX × η† × idIX, η) in Rel, where η := m† ◦ e. This monoid is a
specific example of endomorphism monoids in [17], which is an analogue of algebras of bounded
linear operators. Note that the new monoid multiplication m′ = idIX × η† × idIX is precisely the
multiplication in m′((x, y), (y, z)) = (x, z) in the pair groupoid, and the unit is the diagonal η = e ◦m :
• → {(a, a)|a ∈ IX}. The abstract polarization P in this context can be cast as • → U×U. We denote
this monoid as End(IX)

The algebra (IX, m, e) can be embedded into endomorphism monoid End(IX) similar to the fact
that every algebra has a homomorphism in the algebra of operators. The embedding homomorphism
h : (IX, m, e)→ End(IX) is defined by:

h := m.
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It is easy to show that h preserves multiplication and the unit. One can also refer to Lemma 3.19 in [17]
for a more general case. Let (IX× IX, m̄, ē = η) denote the image of h in the endomorphism monoid.
We now can construct the groupoid Σ̄ from the dagger Frobenius algebra (IX× IX, m̄, ē) following the
construction in [15] one more time:

• Σ̄1 = IX× IX
• Σ̄2 = Image(m̄)
• Σ̄0 = Ū = Image(ē)
• ū = Ū× Ū
• s̄ = {( f , x) ∈ Σ̄1 × Σ̄0|( f , x) ∈ Σ̄2} : Σ̄1 → Σ̄0
• t̄ = {( f , y) ∈ Σ̄1 × Σ̄0|(y, f ) ∈ Σ̄2} : Σ̄1 → Σ̄0
• −∗ = {(g, f ) ∈ Σ̄2|m(g, f ) ∈ Ū, m( f , g) ∈ Ū} : Σ̄1 → Σ̄1

4. Conclusions and Further Work

We have established the relationship between geometric quantization and quadrature subtheories
for the continuous degrees of freedom. We conclude that the group algebra C∗(H) for Heisenberg
group H contains the quadrature subtheories as a result of groupoid quantization procedure. One can
use this fact to give the operator algebraic approach to quantum optics.

4.1. C∗-Quantization

This construction also suggests that there is a “geometric quantization” functor, from a subcategory
of the category of groupoids to the category of C∗-algebras. Following [15], this corresponds to a
functor from Frobenius algebras in the category FRel (Frobenius algebras in the category of sets and
relations) to Frobenius algebras in the category of Hilbert spaces FHilb. The functor has to be defined
in the subcategory of Frobenius algebras arising from symplectic groupoids, and the morphisms have
to be adapted in order to obtain functoriality.

4.2. The Even Case

We investigate discrete degrees of freedom. The variables in this case are chosen from a finite
field instead of real numbers. Even though Spekkens’ original toy theory [7] is contained in the case
where the finite field is Z/2, we consider odd degrees freedom. The reason is that for Ω = (Z/2)n,
the discrete Wigner representation can take negative values, and therefore, the epistricted theory
does not coincide with the quadrature subtheories [6]. Our main result is to give a discrete version
of groupoid quantization. The resulting algebra is C∗(H) for the finite Heisenberg group H. This
finite C∗-algebra corresponds to a Frobenius structure via the construction of Vicary [17]. Thus, one
can study quantum phenomena such as complementarity in quadrature theories in this algebraic
framework.

4.3. Geometric Quantization Over Finite Fields

In the work of Gurevich and Hadani [26], a functorial description of geometric quantization is
developed for vector spaces over fields with positive characteristics. The odd prime case is resemblant
of the discrete geometric quantization procedure we have described in this paper. We expect to have a
more explicit comparison in the future between our quantization procedure for the odd finite case and
this geometric quantization program.

4.4. Quantum Circuit Dynamics via Path Integrals

For Clifford circuits, Penney et al. define the relative phases of different discrete-time paths in
terms of classical action [23]. They show that for each gate, one can associate a symplectomorphism on
the phase-space, and for each symplectomorphism, one can define a generating function on two copies
of the configuration space. The action functional for a sequence of gates is defined using the sum of
the generating functions. This approach can be cast using discrete geometric quantization used by
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the paper. Using our method, one can extend the results in [23] to different kinds of quantum circuits.
Similarly, geometric quantization of physical theories, where space-time is discrete (e.g., cellular
automata, discrete mechanical systems), will be treated in future work.
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