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Abstract: Understanding epidemic dynamics has always been a challenge. As witnessed from
the ongoing Zika or the seasonal Influenza epidemics, we still need to improve our analytical
methods to better understand and control epidemics. While the emergence of complex sciences in
the turn of the millennium have resulted in their implementation in modelling epidemics, there
is still a need for improving our understanding of critical dynamics in epidemics. In this study,
using agent-based modelling, we simulate a Susceptible-Infected-Susceptible (SIS) epidemic on
a homogeneous network. We use transfer entropy and active information storage from information
dynamics framework to characterise the critical transition in epidemiological models. Our study
shows that both (bias-corrected) transfer entropy and active information storage maximise after
the critical threshold (R0 = 1). This is the first step toward an information dynamics approach to
epidemics. Understanding the dynamics around the criticality in epidemiological models can provide
us insights about emergent diseases and disease control.
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1. Introduction

The mathematical modelling of epidemics dates back to mid-18th century [1], while it was
Kermack and McKendrick [2] who studied Susceptible-Infected-Recovered (SIR) model, being the
first to use the formal models of epidemics, known generally as compartmental mean-field models [3].
In these models, the population is categorised into distinct groups, depending on their infection status:
susceptible individuals are the ones who has never had the infection and can have it upon contact
with infected individuals, infected individuals have the infection and can transmit it to the susceptible
individuals, and recovered individuals are those have recovered from the infection and are immune
since then. This baseline model is captured mathematically by the following set of ordinary differential
equations (ODEs):

dS
dt

= −βSI (1)

dI
dt

= βSI − γI (2)

dR
dt

= γI (3)
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where β is the transmission rate, γ is the recovery rate, and S, I and R are the proportion of susceptible,
infected and recovered individuals respectively. These equations can be further modified to account
for various other factors (e.g., pathogen-induced mortality) by the inclusion of more parameters in the
ODEs, or they can be adapted to reflect different infectious dynamics (e.g., waning immunity).

Compartmental mean-field models are simplistic: for instance, they do not account for the contact
structure in the population, which can influence epidemic dynamics (e.g., [4,5]). However, they were
crucial in understanding the epidemic threshold: an epidemic with the dynamics as described in
Equations (1)–(3) can invade a population only if the initial fraction of the susceptible population is
higher than γ/β [2,3,6]. The inverse of this value is called ‘basic reproductive ratio’ (R0) which is
defined as “the expected number of secondary cases produced by a typical infected individual during
its entire infectious period, in a population consisting of susceptibles only” [7]. An infection will
cause an epidemic only if R0 > 1 (endemic equilibrium in models with population dynamics) and will
die out if R0 < 1 (disease-free equilibrium or extinction) [8]. This is rather intuitive: if each individual
transmits the disease to less than one other individual on average, the infected individuals will be
removed from the population (for instance, due to recovery) faster than they transmit the disease to
the susceptible individuals [9]. However, recurring contacts between a typical infective individual and
other previously infected individuals may cause R0 to overestimate the mean number of secondary
infections, so more exact measures may sometimes be required [10].

The epidemic threshold is a well-known result in epidemiology, and can be related to the concepts
of phase transitions and critical thresholds in statistical physics [11]. A phase transition is “a sharp
change in the properties (state) of a substance (system)” that happens when “there is a singularity in
the free energy or one of its derivatives” and occurs through changing a control parameter λ [11,12].
It is observed in various systems, such as fluid or magnetic phase transitions [12]. The phases are
distinguished by the order parameter ρ, which is typically zero in one phase and attains a non-zero
value in the other [11]. When the control parameter takes the value λc, known as critical point,
the phase transition occurs such that when λ ≤ λc, ρ = 0 while λ > λc, ρ > 0 [11]. For instance,
in the case of liquid-gas transition, the difference between the densities of liquid and gas becomes
zero as the temperature increases above the critical temperature [12]. Relating back to the analogy
in epidemiology, we see that an epidemic occurs only if R0 > 1, as shown in Figure 1. The control
parameter, in this case, is R0, while λc = 1 and the order parameter is the final size of the epidemic
(which can alternatively be the density of the infected individuals or prevalence [11]).
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Figure 1. Epidemic phase transition. Final size of an epidemic as a function of its basic reproductive
ratio R0, for a susceptible-infected-recovered (SIR) model with a homogeneous network structure,
with a number of connections (k) of 4 for each individual. Transmission rate β varies between 0 and
3 with recovery rate γ = 1, resulting in R0 ranging between 0 and 3. The line depicts the analytical
results whereas the red dots show the results from stochastic simulations with a population size of 104.
The epidemic does not occur for R0 < 1, whereas the final size increases as a function of R0 for values
higher than 1. The analytical results and the simulations are in good agreement.
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The basic reproductive ratio is widely used for modelling, predictions and control of epidemics
(see [9] for examples). Furthermore, understanding the dynamics when a pathogen is near the
epidemic threshold is crucial. A maladapted pathogen with R0 < 1 can cause an epidemic if its
R0 exceeds 1 (due to, for instance, mutations or changes in the host population), which is how new
pathogens can emerge by crossing the species barrier [13]. From a phase transition point-of-view,
Reference [14] have studied the change in epidemiological quantities while approaching the critical
point, in order to see if they can be used for anticipating the emergence of criticality and potential
elimination of such dynamics. Their results suggest that theoretically, we can predict critical thresholds
in epidemics [14], which could be of a substantial value in health care. In practice, one of the challenges
lies in pinpointing such critical thresholds in finite-size systems, where a precise identification of phase
transitions requires an estimation of the rate of change of the order parameter, often from finite and/or
distributed data [15,16].

Information dynamics [17–21] is a recently-developed framework based on information
theory [22], which shows promise in characterising phase transitions in dynamical systems.
For instance, in studies of the order-chaos phase transitions in random Boolean networks (driven by
changes in activity [23] and/or network structure [24]), information storage has been shown to peak
just on the ordered side, whereas information transfer was found to maximise on the other (chaotic)
side of the critical threshold. Information transfer, from a collection of sources, has also been measured
to peak prior to the phase transition in the Ising model, when the critical point is approached from the
disordered (high-temperature) side [25]. And similarly, both information storage and transfer were
measured to be maximised near the critical state in echo-state networks (a type of recurrent neural
network) [26], where such networks are argued to be best placed for general-purpose computation.

Furthermore, one of the features of complex computation is a coherent information structure
defined as a pattern appearing in a state-space formed by information-theoretic quantities, such as
transfer entropy and active information storage [27]. The “information dynamics” state-space diagrams
are known to provide insights which are not immediately visible when the measures are considered
in isolation [28]. For example, critical spatiotemporal dynamics of Cellular Automata (CA) were
characterised via state-space diagrams formed by transfer entropy and active information storage.
These state-space diagrams highlighted how the complex distributed computation carried out by CA
interlinks the communication and memory operations [27].

Local information dynamics were also shown to have maxima that relate to the spread of cascading
failures in energy networks [29]. We, therefore, expect that this framework will prove to be applicable
not only to explaining epidemic dynamics around the critical threshold, but also in developing new
predictive methods during emergence of diseases, evolution of pathogens and spillage from zoonotic
reservoirs, as well as applications of stochastic epidemiological models to computer virus spreading
and other similar scenarios [30].

Here we study the phase transition in a SIS model of epidemics using the information dynamics
framework. We model a homogeneous network where a pathogen can spread through contact between
the neighbours. Changing the transmissibility of the pathogen between different realisations of the
same network while keeping the recovery rate fixed, we use basic reproductive ratio as the control
parameter. We track the prevalence of the infection as our order parameter and use the infection status
of individuals to calculate the transfer entropy and active information storage.

2. Materials and Methods

2.1. Model Description

We focus on Susceptible-Infected-Susceptible (SIS) dynamics [31] which were originally defined
using the following ODE mean-field model:

dS
dt

= −βSI + γI (4)



Entropy 2017, 19, 194 4 of 11

dI
dt

= βSI − γI (5)

where β is the transmission rate, γ is the recovery rate.
As described in Section 1 however, such ODE models do not account for contact structure in

the population, and so we use the following network model. We simulate a population of N = 104

individuals, where each is connected to four neighbours (randomly selected from the network),
and assume the network is undirected. Susceptible (S) individuals can become infected through
contact with their infected (I) neighbours with transmission rate β and infected individuals can recover
with recovery rate γ. Each individual has the same rate of transmission and recovery. We scale
the transmission rate by c to calculate per contact transmission rate in the event-based simulations.
It is a closed population, therefore for the total population S(t) + I(t) = N. Also, we assume there
is no mortality due to infection and N remains constant through the simulations (i.e., we neglect
births and deaths in the population). At the beginning of the simulation one random individual gets
infected and the epidemiological process is simulated using the Gillespie’s Direct Algorithm [32].
For each parameter set (summarised in Table 1), we ran either 500 replicates or 10 complete runs
(i.e., simulations that ran for 103 time steps), depending on whichever is attained first. We binned
the continuous time to discrete time steps for our information dynamic analysis and recorded the
infectious status of each individual and their four neighbours once in every time step.

Table 1. Simulation parameters.

Parameter Value

Time steps (t) 103

Population size (N) 104

Number of contacts 4
Transmission rate (µ) 0.7–2.0 (with step size 0.1)
Coefficient for per contact transmission rate (c) 0.33
Recovery rate (µ) 1.0

2.2. Information Dynamics

Disease spreading could be considered as a computational process by which a population “computes”
how far a disease will spread, and what the final states (susceptible or recovered) of the various individuals
will be once the disease has run its course. The framework of local information dynamics [17–21] studies
how information is intrinsically processed within a system while it is “computing” its new state.
Specifically, the information dynamics framework measures how information is stored, transferred and
modified within a system during such a computational process. It is a recently-developed framework,
based on information theory [22], and involving a well-established quantity for measuring the
uncertainty of a random variable X, known as Shannon entropy, which is written as:

H(X) = −
N

∑
i=1

pi log pi (6)

where pi is the probability that X takes the state i. This quantity has been used to derive other measures
such as joint entropy, which quantifies uncertainty of joint distribution of random variable X and Y,
or mutual information, which is the expression of the amount of information that can be acquired
concerning one random variable by observing another [33].

Once we begin to consider how to predict disease spread, we naturally turn to measuring
uncertainties and uncertainty reduction using information theory. Information theory has previously
been used to study the uncertainty (and conversely, the predictability) of disease spreading dynamics
using the permutation entropy of the total number of infections in the population [34]. Another related
study analysed the dynamics of an infectious disease spread by formulating the maximum entropy
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solutions of the SIS and SIR stochastic models, exploiting the advantage offered by the Principle
of Maximum Entropy in introducing the minimum additional information beyond the information
implied by the constraints on the conserved quantities [35].

Our investigation will focus on measuring information dynamics of an epidemic process within
the population, seeking to relate the spread of the disease to information-processing (computational)
primitives such as information storage and transfer. Moreover, while these quantities are defined for
studying averages over all observations, the corresponding local measures—specific to each sample
of a state i of X—can provide us with more suitable tools to study phase transitions in finite-size
systems (e.g., [36]).

The information dynamics framework quantifies information transfer, storage and modification,
and focusses on their local dynamics at each sample. Information storage is defined as “the amount
of information in [an agent’s] past that is relevant to predicting its future” while the local active
information storage [19] is the local mutual information between an agent’s next state (xn+1) and its
semi-infinite past x(k)n expressed as:

ax(n + 1) = lim
k→∞

log
p(x(k)n , xn+1)

p(x(k)n )p(xn+1)
. (7)

The average active information storage is the expectation value over the ensemble:

AX = 〈ax(n + 1)〉 . (8)

On the other hand, information transfer is defined via the transfer entropy [37] as the information
provided by the source about the destination’s next state in the context of the past of the destination [23],
whereas local information transfer from a source Y to a destination X is “the local mutual information
between the previous state of the source and the next state of the destination conditioned on the
semi-infinite past of the destination”, expressed as:

ty→x(n + 1) = lim
k→∞

log
p(xn+1|x

(k)
n , yn)

p(xn+1|x
(k)
n )

(9)

following [17]. The (average) transfer entropy is the expectation value of the local term over the ensemble:

TY→X =
〈
ty→x(n + 1)

〉
. (10)

Transfer entropy was recently analysed on SIS dynamics (generated on brain network structures)
in order to investigate information flows on different temporal scales [38].

In order to determine which embedding length k is most suitable for our analysis, we seek to
set k so as to maximise the average active information storage, as per the criteria presented in [39].
Importantly though, for this criteria to work we need to maximise the bias-corrected active information
storage rather than its raw value. Bias-correction pertains to removing the bias in our estimation
of AX, i.e., the systematic over- or under-estimation of that quantity as compared to the true value.
Typically, as a mutual information quantity, AX will be overestimated from a finite amount of data,
particularly when our embedding length k starts to increase the dimensionality of our state space
beyond a point that we have adequately sampled. We can estimate this bias by computing the mutual
information between surrogate variables with the same distribution as those we originally consider,
but without their original temporal relationship to each other [40]. For AX , one surrogate measurement
As

X is made with a shuffled version of the xn+1 samples (but keeping the x(k)n samples fixed), and then
repeating to produce a population of surrogate measurements. We label the mean of these surrogate
measurements As

X , and our effective or bias-corrected active information storage as:

A′X = AX − As
X . (11)
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Subtracting out bias using surrogates was proposed earlier for the transfer entropy as the
“effective transfer entropy” [41], simply referred to as “bias-corrected transfer entropy” here. Computing
the bias-corrected transfer entropy T′Y→X is performed in a similar fashion to A′X: first, surrogates
Ts

Y→X are computed using a shuffled version of the source samples yn while holding the destination

time series fixed (to retain the destination past–next relationship via p(xn+1|x
(k)
n )), then the mean of the

surrogate measurements Ts
Y→X is computed, before computing the effective or bias-corrected transfer

entropy as:
T′Y→X = TY→X − Ts

Y→X. (12)

To perform the information dynamics calculations in this study we used the Java Information
Dynamics Toolkit (JIDT) [40].

2.3. Measuring Information Dynamics in the SIS Model

We analysed three simulation runs of the SIS model for each parameter combination and required
these runs to be at least 14 time steps of length for R0 ≤ 1.0 (as these runs did not have sustained
transmission of infection for 103 time steps, 14 being the number of time steps in the third longest run
for R0 = 0.7).

We used the past and current status of individuals (1 if infected, 0 if susceptible) and that of
their neighbours at a given time to determine xn+1, yn, and the x(k)n vectors for calculations of active
information storage and transfer entropy. For instance, if the focal individual is infected and its
neighbours are all susceptible at a given time, then xn was equal to one and yn was equal to zero
for all the neighbours. We then calculated the individual’s local transfer entropy by averaging the
pairwise transfer entropy (with a given k) between itself and each of its neighbours. We then averaged
the local transfer entropy across the population to determine the average transfer entropy. For active
information storage, we calculated the local values for each individual (with a given embedding
length k) and averaged these across all the individuals in the population.

To determine the value of k to use, we calculated the bias-corrected active information storage as
per Equation (11) for each run, and then averaged the values across runs for each R0. Subsequently,
we calculated the mean for each embedding length k across all R0 values. The bias-corrected active
information storage maximises for k = 7 (Figure 2) and decreases sharply after k = 8. As such,
applying the criteria discussed above, we select k = 7 for the embedding length to be used.

0.024

0.027

0.030

0.033

1 2 3 4 5 6 7 8 9 10 11 12
k

A
' X

Figure 2. Bias-corrected active information storage A′X in our simulations as a function of embedding
length k. A′X was calculated and then averaged for all three replicates for each R0. The mean value
(shown in y-axis) was then determined for each k (shown in x-axis) across the R0 values. The difference
increases as the k increases, maximising at k = 7, and decreasing subsequently.
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3. Results and Discussion

In our simulations, the epidemic dies out without any sustained transmission when R0 < 1.0,
whereas the number of infected individuals reaches an equilibrium when R0 > 1.0, and the epidemic
becomes endemic in the population. We use the mean number of infected individuals throughout the
simulation runs to calculate the prevalence for each R0 value, shown in Figure 3.

The average transfer entropy is highest after the critical transition (in the supercritical regime),
as shown in Figure 3, reaching its peak at R0 = 1.8 for k = 7. This result aligns well with the peak in
(collective) transfer entropy slightly in the super-critical regime in the Ising model [25]. In alignment
with results in the Ising model, here once the disease dynamics reach criticality, we observe strong
effects of one individual on a connected neighbour (measured by the transfer entropy). However, as the
dynamics become supercritical, the target neighbour becomes more strongly bound to all of its
neighbours collectively, and it becomes more difficult to predict its dynamics based on a single source
neighbour alone; as such, the transfer entropy begins to decrease. We also note that the peak in average
transfer entropy shifts toward lower R0 values when the embedding time is shorter (not shown).

We see that (raw or non-bias-corrected) average active information storage AX increases after the
critical transition, reaching to its peak at R0 = 1.3 (Figure 3).
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Figure 3. Raw average transfer entropy and average active information storage versus R0.
Transfer entropy (left) calculated by averaging local transfer entropy for each individual across the
network and active information storage (right) calculated by averaging local active information storage
for each individual across the network. For both measures, the embedding time is k = 7. The average
transfer entropy (TY→X) is shown in blue, the average active information storage (AX) is shown in gray,
and prevalence is shown in red (note the different y-axes). R0 is shown on the x-axis. After the critical
transition both TY→X and AX increase and reach to a peak (at R0 = 1.8 and R0 = 1.3, respectively),
and subsequently lower down.

To check whether what we observe for TY→X and AX was a real effect or due to increased
bias as the time-series activity increased (with R0), we examined the bias-corrected average transfer
entropy T′Y→X and average active information storage A′X . This is shown in Figure 4 for embedding
length k = 7. The bias-corrected average active information storage shows a similar pattern to AX,
however with a sharper peak closer to the phase transition (R0 = 1.2). This shows that most of what
was measured as AX at larger R0 values was indeed due to increased bias. This is even more striking
for the bias-corrected transfer entropy, as we observe a sharp peak at R0 = 1.2, similar to A′X and much
earlier than TY→X (R0 = 1.8). Therefore, these results suggest that once the disease dynamics reach
criticality, the state of each individual first exhibits a large amount of self-predictability from its past
(information storage). However, as the dynamics become supercritical, the increasingly chaotic nature
of the interactions are reflected in the subsequent decrease in self-predictability.
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Figure 4. Raw and bias-corrected average transfer entropy and average active information storage
versus R0. Raw average transfer entropy TY→X and average active information storage AX are shown
in dark blue and black, respectively (left panel); bias-corrected average transfer entropy T′Y→X and
average active information storage A′X are shown in light blue and gray, respectively (right panel).
Note the different y-axes for both graphs. R0 is shown on the x-axis. Both AX and A′X increase and
reach a peak right after the critical transition, and subsequently decrease. T′Y→X also increases at the
same R0 value (R0 = 1.2) as A′X and plummets thereafter, whereas TY→X reaches its highest value later,
at R0 = 1.8

We argue that the transfer entropy captures the extent of the distributed communications of the
network-wide computation underlying the epidemic spread, while the active information storage
corresponds to its distributed memory. Crucially, the peak of both these information-processing
operations (measured with the bias correction) occurs at R0 = 1.2, rather than the canonical R0 = 1.0.
As mentioned earlier, previous studies of distributed computation and its information-processing
operations [23–25,27], concluded that the active information storage peaks just on the ordered side,
while transfer entropy maximises on the disordered side of the critical threshold. Therefore, in our
case, it may be argued that the concurrence of both bias-corrected peaks, as detected by the maximal
information-processing “capacity” of the underlying computation, at R0 = 1.2, indicates an upper
bound for the critical threshold in the studied finite-size system.

In the proper thermodynamic limit, as the size of the system goes to infinity, the canonical
threshold may well be re-established, but in finite-size systems an additional care may be needed
to forecast epidemic spread for intermediate values of the basic reproductive ratio, for instance,
1.0 ≤ R0 ≤ 1.2 as in the presented study. In other words, in finite-size systems one may consider
a critical interval rather than an exact critical threshold.

Furthermore, in addition to identifying the peak of information-processing capacity of the
underlying computation, which pinpointed an upper bound on the critical basic reproductive
ratio R0 = 1.2, we studied patterns of coherent information structure, via state-space diagrams
formed by transfer entropy and active information storage shown in Figure 5. It is evident that
both information-processing operations (communications and memory) are tightly interlinked in the
underlying computation, suggesting that the studied epidemic process is strongly coherent.
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Figure 5. Bias-corrected average transfer entropy T′Y→X versus bias-corrected average active information
storage A′X . Bias-corrected transfer entropy T′Y→X (shown in the y-axis) and average active information
storage A′X (shown in the x-axis) are calculated separately for three replicates.

4. Conclusions

In this paper, we studied the criticality in an SIS epidemic within an information dynamics
framework. We argued that the transfer entropy captures the extent of the distributed communications
of the network-wide computation and showed that it peaks in the super-critical regime. Similarly, we
considered the active information storage as a measure of the distributed memory, observing that its
maximum is also attained after the canonical critical transition (R0 > 1.0). To our knowledge, this is
the first study to use information dynamics concepts to characterise critical behaviour in epidemics.
Crucially, the concurrence of both peaks, which reflect the maximal information-processing capacity of
the underlying coherent computation, at R0 = 1.2, indicates an upper bound for the critical threshold
in the studied finite-size system. This supports a conjecture that in finite-size systems a critical interval
(rather than an exact critical threshold) may be a relevant notion.

At the time of our study, continuous-time measures of information dynamics were not available.
Recently, transfer entropy in continuous-time was formalised with a novel approach [42]. One future
avenue for improving our analysis would be using continuous-time measures of information dynamics.
Our continuous-time simulation results were binned into discrete time steps in order to conduct
an information-dynamic analysis. Therefore, using continuous time measure could reveal novel
insights that we missed by the discretisation.

We used a very simplistic network topology in this study, where each individual had the same
number of undirected connections that were assigned randomly. However, in real-life, a disease can
spread in interaction networks that are heterogeneous in terms of the number of contacts (e.g., [43]) or
structured differently (e.g., [5,44]). The heterogeneity and the type of the network can influence not
only epidemic dynamics but also disease emergence [4]. Therefore, in future, it would be interesting to
expand our analysis to different network topologies and relate the insights from information-dynamic
analysis to epidemic dynamics and disease emergence probabilities in these networks.

Finally, we note the wider interest in critical dynamics on complex networks in general. This is
particularly the case in complex systems and network approaches to computational neuroscience,
where it is conjectured that the brain is in or near a critical state so as to advantageously use maximised
computational properties here [26,45–48]. (Indeed, as noted earlier, SIS dynamics have been used
to model dynamics on brain networks [38]). Our results in this paper regarding SIS dynamics
continue to add to the quantitative evidence regarding the maximisation of information storage
and transfer as intrinsic computational properties at or near critical states, as previously found in
a diverse range of dynamics and network structures including the Ising model [25], recurrent neural
networks [26], gene regulatory network (GRN) models [23], and regular–small-world–random
transitions in structure [24]. In this way, we have provided another important link for epidemic
spreading models to complex networks, criticality and information dynamics.
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