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Abstract: The emergence of complex datasets permeates versatile research disciplines leading to
the necessity to develop methods for tackling complexity through finding the patterns inherent
in datasets. The challenge lies in transforming the extracted patterns into pragmatic knowledge.
In this paper, new information entropy measures for the characterization of the multidimensional
structure extracted from complex datasets are proposed, complementing the conventionally-applied
algebraic topology methods. Derived from topological relationships embedded in datasets, multilevel
entropy measures are used to track transitions in building the high dimensional structure of datasets
captured by the stratified partition of a simplicial complex. The proposed entropies are found suitable
for defining and operationalizing the intuitive notions of structural relationships in a cumulative
experience of a taxi driver’s cognitive map formed by origins and destinations. The comparison of
multilevel integration entropies calculated after each new added ride to the data structure indicates
slowing the pace of change over time in the origin-destination structure. The repetitiveness in taxi
driver rides, and the stability of origin-destination structure, exhibits the relative invariance of rides
in space and time. These results shed light on taxi driver’s ride habits, as well as on the commuting
of persons whom he/she drove.

Keywords: integration entropy; information; topological data analysis; Q-analysis; high dimensional
data; urban dynamics

1. Introduction

The omnipresent phenomenon of complexity permeates contemporary research topics in physical,
social, biological, informational sciences, as well as the industry sectors, and it is followed by the
explosion of large quantities of data about complex systems. Answering the question “How can
we extract meaningful information from the data in order to decipher the challenges imposed by
the complexity?” can get us closer to resolving problems about the properties of complex datasets
and, accordingly, reconstructing the internal properties of complex systems. The initial steps toward
solutions require the development of a methodology that would accurately detect the pertinent,
intrinsic, dependencies of the elements of the dataset, under the assumption that dependencies
embedded in a dataset lead toward building patterns of behavior at different aggregation levels of
dataset elements.

In order to characterize the (in)distinguishability of substructures embedded in the dataset,
we introduced the information entropy measures, to quantify the information that emerges from
the built-in similarity relationships of dataset elements represented by the connectivity embedded
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at different levels of the hierarchical data structure. The structure of a dataset is mathematically
represented as a simplicial complex, hence providing us the opportunity to apply the rich apparatus of
algebraic topology [1]. Based on the Shannon information measure [2], we define the multi-dimensional
entropies and depart from the hitherto research that relates the concepts of algebraic topology and
information theory, such as the cohomological nature of information [3], persistent entropy [4,5],
the graph’s topological entropy [6] or higher-order spectral entropy [7]. The introduced vector-like
entropies capture the (in)distinguishability of different layers of the rigorously partitioned structure
of the dataset and, further, indicate the way that the changes of data affect the internal structural
relationships of the dataset. Hence, our objective is to relate the structure of a simplicial complex, via
entropy measures, to the pattern formation of dependencies between aggregations of complex datasets.

Topological data analysis (TDA) [8–11] emerges as a powerful tool for the extraction of the shapes
of large datasets, thus complementing conventional statistical methods for data analysis. Though the
rapid advancement of TDA brings various tools under the umbrella of data analysis research, the rich
conceptual repertoire of algebraic topology has not yet been exhausted. The most important tool of TDA
is the persistent homology method [12,13], which is proven as useful in many real-world applications.
The abundance of applications covers a broad range of phenomena in biological and medical science, like
breast cancer research [14], brain science [15–21], biomolecules [22–24], evolution [25] and bacteria [26],
followed by the applications in sensor networks [27,28], signal analysis [29], image processing [30],
musical data [31], text mining [32], phase space reconstruction of dynamical systems [33,34], as well as
complex networks related to either dynamics taking place on networks [35] or structural properties [36,37].

Originating from the same field of mathematics as TDA, i.e., algebraic topology, and based on
the ideas of modeling complex social systems, R.Atkin developed the mathematical framework called
Q-analysis [38–40] with the intention to capture versatile structural properties of social phenomena, as
well as datasets emerging in these phenomena. The applications of Q-analysis span through different
fields and problems, like studying the qualitative and quantitative structure of television programs [41],
analysis of the content of newspaper stories [42], social networks [43–46], urban planning [47,48],
relationships among geological regions [49], distribution systems [50], decision making [51], diagnosis
of failure in large systems [52], controllability of dynamical systems [53] and the game of chess [54],
to mention a few. These applications, and many others, express the usefulness of Q-analysis in
data analysis; nevertheless, in most of the cases, it was applied to the analysis of small datasets
suggesting possible inadequacy for handling the modern explosion of large datasets. Aside from
recent applications of the concepts emerging from Q-analysis on higher-order structural properties of
complex networks [55], an extension of Q-analysis concepts to larger datasets is still lacking.

The objects of interest that are built from the dataset are the same for the TDA and Q-analysis,
that is convex polyhedra, called simplices, and their aggregation into simplicial complex [1],
which builds the higher-dimensional discrete geometrical space. Nevertheless, the definitions of
collections of simplices within simplicial complex are defined in rather different ways. The apparatus
of TDA is rooted mostly on the homology groups, which are defined for the groups of the
same-dimensional simplices called chain groups, where the chain represents a formal sum of the
same-dimensional simplices. On the other hand, the Q-analysis method is grounded on building the
chains of connectivity between multi-dimensional simplices through their multi-dimensional overlapping.
Since the aggregations of simplices emerging from the Q-analysis method explicitly capture the versatility
of relationships between simplices, and accordingly between the elements of the original complex dataset,
we have defined multilevel integration entropies under the framework of Q-analysis.

We have calculated the multilevel integration entropies for the case of GPS coordinates (latitude
and longitude) of a taxi driver’s pick up and drop off of passengers. Namely, this dataset is particularly
convenient due to its different properties. First, the building of this particular dataset can be traced
in time, since a taxi driver accumulates knowledge about visited locations. Second, without loss
of generality, it turns out to be suitable for the clear introduction of the Q-analysis concepts and,
hence, the interpretation of results, due to the origin/destination relationship. Third, this dataset
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can be interpreted from a two-fold point of view. From the taxi driver point of view, the cumulative
aggregation of experience (or knowledge) builds a part of the so-called cognitive map [56]. Namely,
as taxi drivers take passengers, they travel through the city environment and, hence, incrementally
accumulate the experience about the origins and destinations they have visited. In that way, through
the experience, a particular taxi driver builds a mental map (or cognitive map) [57]. Although
there are different definitions of a cognitive map, for the purposes of the current research, we will
accept a very general one: the cognitive map is a mental construct that we use to understand and
know the environment [58]. Hence, the reason for building the cognitive map is that people store
information about their environment, which they then use to make spatial decisions. Or in the
broadest sense, the cognitive map is the cognitive apparatus that underlies...behavior [59]. The reason
for choosing the broad definitions lies in the following: we are considering an abstract mind space
built from the relationships between origins and destinations that has topological and combinatorial
relationships, whereas the cognitive map may also store information about distances between places
(hence, including some metrics), the routes and paths where people have traveled, the names of places
and other information that can be learned from and about the environment. Hence, the abstract mental
space of relationships between origins and destinations can be understood as a subset of the actual
cognitive map and treated as the truncated cognitive map. On the other hand, the taxi drivers’ data
are convenient for considering cognitive maps as the underlying space of behavior, especially since we
know that they originate from the purposes that characterize the specificity of the work characteristics
of the taxi drivers. Namely, the previous research in cognitive maps of taxi drivers showed that, due to
the particularity of their jobs, they recover the urban spatial structure with higher accuracy than other
social groups whose job is not related to traveling within the city [60] or that of novice taxi drivers [61].

From another point of view, the analysis of the datasets of a taxi driver’s GPS coordinates can
be interpreted in the context of human mobility [62], as well. Namely, the research involving people
commuting in an urban area attracted considerable attention [63,64], particularly due to the interest in
the possible prediction of human mobility [65] (where entropy measures have been used in the research
of limitations in the predictability of human mobility). Although our results can be interpreted either
way, we restrict ourselves to the former one. The reason for this choice lies in the necessity that, if we
want to examine human mobility, the data from more taxi drivers should be taken into consideration.
Nevertheless, as will be shown, even the data from one taxi driver’s rides are enough for highlighting
the patterns of behavior in time and space, on the one side, and to emphasize the characterization of
intrinsic structural changes of dataset by introduced entropy concepts, on the other.

The case study of a taxi driver’s GPS datasets demonstrates that the methodology can be applied
to a wide variety of real-world datasets, although further developments in building a more consistent
research program in relation to the conventional topological data analysis remain to be developed.

2. Results

Our aim is to express the collection of elements of datasets in a holistic way as the integrated
configuration of information [66,67], rather than as a simple collection of elements. In that way,
the collection of elements of datasets builds the structure, which captures the patterns embedded
within the dataset. This enables us to build a multidimensional structure of a simplicial complex and
then analyze it using an appropriate apparatus grounded in algebraic topology. In the core of such an
apparatus lies the methodology for the extraction of chains of connectivity between groups of elements
in datasets.

2.1. Simplicial Complex in the Context of Case Study

We have considered the dataset obtained from the GPS coordinates of pick up and drop off
recordings of one taxi driver who had 3623 rides, after data cleaning (see the Appendix), recorded
during the period of three months. The city area is divided into square cells of equal size 2 km × 2 km
each and labeled by numerals from 1 to 968. When the taxi driver picks up a passenger at the location
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that is within the cell i and drops off a passenger at the location that is within the cell j, we say that
the taxi driver drove from origin i to the destination j. The information about drives from origins to
destinations is stored in the origin-destination (OD) matrix, where rows are associated with origins,
columns are associated with the destinations, and the matrix elements are [ODij] = 1 if the taxi driver
had a ride from origin i to destination j, and [ODij] = 0 otherwise. Building a simplicial complex
(see the Appendix for a formal definition) from these data is straightforward: associate origins (rows)
to simplices and destinations (columns) to vertices. In this way, we build the simplicial complex of
origins and, accordingly, its conjugate complex is the simplicial complex of destinations; hence, we
are provided with the two-fold reconstruction of the structure of a cognitive map, or in other words,
a complex system of taxi driver’s rides.

An example of the procedure of building a simplicial complex is illustrated in Figure 1 for the
case when the taxi driver picked up passengers at the location within the cells i and k and dropped
them off at destinations j1, j2, j3, j4 and j2, j4, j5, respectively. The information about it is stored in
the origin-destination (OD) matrix where nonzero elements are associated with the entries [ODij1 ],
[ODij2 ], [ODij3 ], [ODij4 ], [ODkj2 ], [ODkj4 ] and [ODkj5 ]. Hence, relating simplices to rows and vertices
to columns, we identify two simplices σi = 〈j1, j2, j3, j4〉 and σk = 〈j2, j4, j5〉, represented geometrically
as three-simplex and two-simplex, which share one-face.
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Figure 1. An example of simplicial complex construction from the taxi driver dataset when the city
is divided into the grid of cells in the case when the taxi driver picked up passengers at the location
within the cells i and k and dropped them off at destinations j1, j2, j3, j4 and j2, j4, j5, respectively.

Generally, the dataset of locations, which the taxi driver visited, is divided into two datasets:
the set of origins X and the set of destinations Y, which are apparently overlapping. Taking into
consideration that from one origin xi ∈ X the taxi driver can, at different time moments, take rides to
different destinations yj0 , yj1 , yj2 , ..., yjq , then the rule “rides from origin to destination” is associated
with the binary relation λ, which partitions a set of destinations Y into subsets, building the subset
PX(Y) of the power set P(Y) of Y [41,68]. Each element {yj0 , yj1 , yj2 , ..., yjq} ∈ PX(Y) is associated with
an element from the set xi ∈ X, which is λ-related to them. For convenience, in order to make a
distinction between an element xi from the set X and an element of the power set to which an element
is λ-related, we will label the latter as σxi . Although this distinction seems unnecessary, it makes an
important conceptual step in our approach. Namely, whereas “xi” is just an element in the set X,
the σxi represents an integrated collection of elements generated by the λ-relation and, as such, labels
the information of the aggregation of elements. In this way, the integrated collection of elements of
dataset Y becomes an object of interest embodied in the element of another set X, hence introducing
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the technique of naming a collection of objects. In the example presented in Figure 1, simplex σi labels
the integrated configuration of information, which emerged from the compilation of taxi driver rides
from the cell i to cells j1, j2, j3, j4. In the first approximation, the knowledge of visiting any of the j1,
j2, j3, j4 cells cannot be separated from the knowledge of visiting all of them. Although due to the
memory effect (like forgetting), it is possible in reality.

The elements of the set PX(Y) may overlap, since the taxi driver can have rides from different
origins toward some of the same destinations. This property leads us to another partition of the dataset
by focusing on the chains of connectivity between the elements of set X via their dependence on
the elements of Y [38,39]. In order to extract the chains of connectivity within the dataset, we will
reach for concepts of algebraic topology. We can represent each element xi of the set X by a convex
polyhedron [1,69] defined with q + 1 vertices {yj0 , yj1 , yj2 , ..., yjq} and write it as:

σ
q
xi = 〈yj0 , yj1 , yj2 , ..., yjq〉 ,

whenever the OD matrix of relation λ has entry one at positions (i, jα), with α = 0, 1, ..., q (like in the
example in Figure 1). This q-dimensional polyhedron represents a q-simplex [1], and polyhedra among
themselves may share subpolyhedra, called faces [1]. The collection of simplices σ

q
xi together with all

of their faces is called a simplicial complex [1], denoted by KX(Y, λ), and the notation means that the
set X provided the names for simplices (i.e., σ

q
xi ) and is called the set of simplices, whereas the set Y is

the set of vertices that define simplices by the relation λ [68]. Generally, whether we first choose that
the elements of set X are related to the elements of set Y, or vice versa, is rather arbitrary, since either
the dataset or the context of the inquiry does not impose any constrains. Therefore, there are naturally
two simplicial complexes related to the dataset: the first that we have already defined KX(Y, λ) and
the second, defined by the inverse of the λ-relation, λ−1, that is KY(X, λ−1) [69]. Accordingly, in the
first, simplices are built by the integration of elements of Y into the subsets of Y and named by the
elements of the set X, whereas the second simplicial complex is built by the integration of elements
of X into the subsets of X and named by the elements of set Y. The simplicial complex KY(X, λ−1) is
called the conjugate complex of simplicial complex KX(Y, λ). The dimension of simplicial complex
(dim(K)) is equal to the maximal dimension of all simplices.

The elements of the set PX(Y) may share different numbers of elements from Y, that is the faces
shared by polyhedra can have different dimensions. Hence, when a p-simplex σp and an r-simplex
σr share q + 1 vertices, common to the sets of p + 1 vertices and r + 1 vertices that define σp and σr,
respectively, we say that two simplices σp and σr share q-dimensional face or q-face [68] in the structure
of KX(Y, λ). Two simplices σp and σr are said to be q-connected [68] if between them exists a chain of
connection, such that every two adjacent simplices share at least a q-face. The relation of q-connectivity
between simplices of KX(Y, λ) is an equivalence relation, which partitions the simplicial complex
KX(Y, λ), for any given q-value, into disjointed components. Note that the chains of q-connectivity
are not the same as the formal sums of the elements of chain group [1]. Namely, the set of k-simplices
forms the so-called chain group Ck, with the addition as group operation, and the formal sum of a
finite number of oriented k-simplices is a k-chain of simplices. Hence, all members of the k-chain have
the same dimension, whereas the members of the q-connectivity chain may have different dimensions
ranging from dim(K) to q. Further, unlike the q-connectivity chain, which is defined due to the
face-sharing property between simplices, the members of the k-chain do not have to share vertices.

The number of disjointed components for different q-values is stored in the entries of the Q-vector
(or the structure vector) [55,68]:

Q = [Qdim(K) Qdim(K)−1 ... Q1 Q0].
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The equivalence relation for different q-values partitions the simplicial complex into a sequence
of simplicial complexes, where, for the decreasing q-values, each set is a subset of the subsequent set,
or more precisely:

KD ⊆ KD−1 ⊆ ...Kq ⊆ ... ⊆ K0 = K ,

where D = dim(K) is the dimension of a simplicial complex, and Kq is the simplicial subcomplex at
the q-level, containing simplices higher or equal to the dimension q. In this way, the natural filtration
of the simplicial complex is defined, since the filtration parameter takes the values of the sequence
of dimensions.

The origin/destination matrix OD is initially empty; the rides are arranged by the sequence of
unevenly spaced temporal events t0, t1, ..., tn, which are associated with the occurrences of rides, and if
the taxi driver had a ride from origin i to the destination j at the moment tk, then the matrix element
[ODij]

tk−1 is increased by one (i.e., [ODij]
tk = [ODij]

tk−1 + 1). Note that, defined in this way, we build a
sequence of nested simplicial complexes:

∅ = Kt0 ⊆ Kt1 ⊆ · · · ⊆ Kti ⊆ · · · ⊆ Ktn

which resembles the persistent homology filtration [12], with the time ti as a parameter. Nevertheless,
at this moment, our procedure is departing from the approach of persistent homology, since our
interest is in the connectivity chains of a different kind, which are not (but can be) non-bounding
cycles. Figure 2 illustrates the way of building the sequence of simplicial complexes and the structural
changes encoded in the Q-vector entries, by adding new taxi rides in consecutive time moments. In the
example presented in Figure 2, for convenience, simplices and vertices are labeled differently, although
in our case study, the sets of origins and destinations are the same, hence having the same labels.
From the example illustrated in Figure 2 at the moment t + 1, the taxi driver had a ride from origin b to
the destination 3, which as a consequence has changed in the dimension of simplex σb, whereas at the
moment t + 2, the taxi driver had a ride from the origin e to the destination 7, which as a consequence
has change in the dimension of simplex σe. The changes in these time moment transitions affected
q-levels 2 and 1.

2.2. Multilevel Integration Entropies

Within the structure of dataset Qq, disjointed collections of simplices are embedded for a particular
q-value, and hence, the probability of finding a connectivity class that emerges at the q-level is equal to
1/Qq. We define a integration entropy for each q-value as:

HQq = −log2
1

Qq

which measures the uncertainty of finding the q-connectivity class, or the indistinguishability of the
collection of simplices for a q-value, and accordingly, the indistinguishability of the aggregation of
the group of elements of datasets for a q-value. Clearly, HQq = log2Qq. Figure 3a illustrates the
way in which the connectivity class is embedded into the structure of a simplicial complex. If we
have only one connectivity class Qq = 1, then HQq = 0, meaning that the collection of simplices is
distinguishable for the q-value, or if we have Qq = N connectivity classes, where N is the number of
simplices at the q-level, then HQq has maximal value. Note that HQq is the vector quantity:

HQ = [HQdim(K) HQdim(K)−1 ... HQ1 HQ0].
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Figure 2. An example of updating the simplicial complex of origins when new rides of the taxi driver
are added in two consecutive time moments (t+ 1 and t+ 2) from some arbitrary moment t. The origins
and the associated simplices are labeled by the letters, whereas the destinations and the associated
vertices are labeled by the numerals.

Figure 3. An example of the embeddedness of a connected collection of simplices in simplicial
complex (a) and a simplex in the connectivity class (b).

Since q-simplex appears at the levels q, q− 1, q− 2, ..., 1, 0, it is a part of some connectivity class
at each of these levels. The property of embeddedness of a single simplex within the connectivity class
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within the simplicial complex is illustrated in Figure 3b, for one simplex and one connectivity class.
We define the probability pi

q that a simplex appears in i-th connectivity class at the q-level as:

pi
q =

mi
q

nq
,

where mi
q is the number of simplices in the i-th connectivity class at the q-level, nq is the total number

of simplices at the q-level, and the probability is normalized

Qq

∑
i=1

pi
q = 1 .

We define a participation in an integration entropy measure, which quantifies the uncertainty to
find a simplex at the q-level, or in other words, the (in)distinguishability of simplices at the q-level:

Hq = −
Qq

∑
i=1

mi
q

nq
log2

mi
q

nq
= −

Qq

∑
i=1

pi
qlog2 pi

q ,

and this quantity is also vector-like:

H = [Hdim(K) Hdim(K)−1 ... H1 H0].

Two limiting cases emerge for the entropy value Hq: (1) at the q-level, only one connectivity class
exists, then Hq = 0; and (2) at the q-level, Qq connectivity classes exist, and each contains only one
simplex, then Hq = log2Qq.

The amount of new information under the update of relations between datasets is different for
two entropies. The entropy HQq can be changed only if at the q-level, the updated data structure leads
toward merging, splitting or adding new connectivity classes, regardless of the number of simplices
that form them. On the other hand, the amount of new information of Hq may either increase or
decrease by changing the number of simplices in connectivity classes, together with the merging,
splitting or adding of new connectivity classes. For every q, Hq ≤ HQq.

2.3. Results of the Calculations

The values of vector entries of entropy H, for the simplicial complex and its conjugate calculated
at temporal events ti, when the taxi driver had a ride, are presented in Figure 4a,b, respectively, and the
values of vector entries of entropy HQ for simplicial complex and its conjugate calculated at temporal
events t when the taxi driver had a ride are presented in Figure 5a,b, respectively. From Figures 4 and 5,
we notice that the information about the aggregation of simplices and (in)distinguishability of simplices
at different sub-structural levels is changing as new data are added. The first notable characteristic is
that the q-level for which entropies are maximal (indicated by different shades of red) is increasing
in time. Specifically, the values of maximal entropy in the case of the conjugate complex (built by
the destination simplices) are higher for both entropies H and HQ. What clearly distinguishes the
results for H and HQ is the zone of smaller entropy values for lower q-levels, indicated by the blue
color in Figures 4 and 5. Whereas the width of the zones of lower Hq values for the simplicial complex
and its conjugate are increasing over time, for the entropy HQq, this is not the case. The behavior can
be interpreted in the following way: with each new ride, the change of the simplex’s (either origin
or destination) dimension shifts that simplex to a higher dimension fostering the distinguishability
between simplices, and hence, the width of the zone of lower Hq entropy values increases. Nevertheless,
the connectivity of the group of simplices is less affected by the simplex’s changes due to the addition
of new rides.
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Figure 4. Time change of the values of the H entropy entries for simplicial complex of origins (a) and
its conjugate complex (b).
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conjugate complex (b).
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Nevertheless, a closer look at all four figures suggests that differences in entropy values at the same
q-level and at two successive time moments are not too different. Hence, the calculation of similarity
between entropies at two successive moments, performed for the whole time period, may shed light
on understanding the transitions in data structure under the changes of entropy. The comparison of
vector-like quantities that characterize the simplicial complex can be performed in different ways,
for example by finding the critical dimension [47,48] or calculation of the cosine of an angle between
two vectors [38]; we have chosen the latter one for the following reasons. Namely, we are interested
in the changes of the structure of the dataset under the filtration of the simplicial complex through
the successive time steps by calculating the entropies of the nested sequence of simplicial complexes.
Hence, we want to track changes that emerge at different q-levels and that affect the overall structural
changes of the simplicial complex. Therefore, for the comparison between entropies at two successive
moments, we calculate:

ε =
(H(t), H(t + 1))
|H(t)| × |(H(t + 1)| ,

and the same for the HQ, and the norm is Euclidean:

|H(t)| = (H0(t)
2 + H1(t)

2 + ... + Hn(t)
2)1/2 ,

and:

(H(t), H(t + 1)) = H0(t)× H0(t + 1) + H1(t)× H1(t + 1) + ... + Hn(t)× Hn(t + 1) ,

where n = max{dim(K(t)), dim(K(t + 1))}. Hence, the coefficient ε, which we will call the entropy
structural coefficient, takes the value of cos(ϕ), with ϕ being the angle between the vectors H(t) and
H(t + 1). The values of ε range from zero to one, where two entropy vectors are identical, in the latter
case. For the convenience of the analysis of the results, the ε is labeled by χ and θ for H and HQ,
respectively.

The values of entropy structural coefficient χ calculated between entropies H(t) and H(t + 1) for
a sequence of pairs of successive moments (labeled in graphics by τ = t→ t + 1), for the simplicial
complex and its conjugate, are presented in Figure 6a. After the initial significant differences in
entropies, the transitions between two structures settles down close to the value χ = 1, indicating
the steady transitions. Similar behaviors appear in the case of the values of the entropy structural
coefficient θ, calculated between entropies HQ(t) and HQ(t + 1) for two successive moments τ, as
is presented in the Figure 6d, for the simplicial complex and its conjugate. Although the behavior is
similar, in the sense that the transitions settle down close to θ ≈ 1, the moment when steady transitions
start occurs later.

Although the above results, for either H or HQ, indicate a certain regularity in achieving the
relatively steady state of transitions in the structure of data, it is still necessary to verify to what
extent the process of building the data structure carries the property of randomness. Therefore, we
used the randomized datasets as the null hypothesis and compared it with the real-world dataset.
The randomization procedure is performed in two ways, wherein the method of complex formation
is the same as for the original data. Namely, in the first way, at each successive moment, the origin
is the same as in the original data, whereas the destination is chosen randomly, and the simplicial
complex is updated. In the second way, at each successive moment, the origin is chosen randomly,
and the destination is the same as in the original data for a particular moment. In this way, we have
built two sequences of simplicial complexes, calculated the entropies, and compared them with the
results for the original data. Figure 6b,e presents the values of χ and θ, respectively, when the origins
are from the original dataset and the destinations are randomized, whereas in Figure 6c,f, the values of
χ and θ are presented, respectively, when the destinations are from the original dataset and the origins
are randomized. All four figures indicate the significant difference with respect to the non-randomized
data, though the entropy HQ displays more robustness to the randomization. These results suggest the
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existence of regularity in building the simplicial complexes from datasets and accordingly regularity in
building the taxi driver’s cognitive map. It practically means that, for example, the set of destinations
toward which the taxi driver travels from one particular origin changes occasionally; the similarity
between origins due to the shared common destinations is rather stable; and the groups of origins
formed with respect to the similarity of shared destinations build a nonrandom structure.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Entropy structural coefficients χ (a–c) and θ (d–f) for simplicial complex and its conjugate for
the original data (a,d), for the randomized destinations (b,e), and for the randomized origins (c,e) under
the transition τ = t→ t + 1.

The discrepancy from random behavior is also obvious from the comparison between the maximal
values of entries of entropies (max(H) and max(HQ)) for each moment in the original data and in the
case of the randomized sets (as is explained above). Figure 7a,b presents the maximal values of H
and HQ, respectively, for the simplicial complex and its conjugate. In both cases, in the majority of
time moments, the maximal values are between 2.5 and 4.5, and the maximal value for the conjugate
complex is larger than for the simplicial complex. The same relationship is preserved when the origins
are from the original dataset and the destinations are randomized (see Figure 8a,b, nevertheless the
values are significantly different. In the case when the destinations are from the original dataset and
the origins are randomized (Figure 9a,b), the results indicate complete discrepancy with respect to the
original data.
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(a) (b)

Figure 7. Time change of the maximum values of (a) H and (b) HQ entropy entries for simplicial
complex of origins and its conjugate complex of the original data.

(a) (b)

Figure 8. Time change of the maximum values of (a) H and (b) HQ entropy entries for simplicial
complex of origins and its conjugate complex for the randomized destinations.

(a) (b)

Figure 9. Time change of the maximum values of (a) H and (b) HQ entropy entries for simplicial
complex of origins and its conjugate complex for the randomized origins.

3. Discussion

Herein, we have presented extensions of two data analysis methodologies (topological data
analysis and Q-analysis), both originating from algebraic topology. For the case of the taxi driver’s
origin-destination dataset, we have shown that the calculation and comparison of vector-like
integration entropy measures lead toward detecting patterns in the generation of the dataset. Although
the topological data analysis’ and the Q-analysis’ objects of interest, built over the dataset, are
simplices, whose aggregation builds the topological structure of simplicial complex, the extraction
of mesoscopic structures that carry the information about the shape of the dataset is different,
and hence, the two methodologies complement each other. In this work, we have studied the
emergence of mesoscopic structures defined within the framework of Q-analysis, that is the chains
of multidimensional connectivity, and thus, shifted the focus of interest from the changes of
homological objects (i.e., higher-dimensional holes) to the rigorously-defined structures built by
the multidimensional collections of simplices. The partition of the simplicial complex of data into the
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hierarchy of sub-complexes proved to be suitable for the introduction of two multidimensional entropy
measures for the comparison of structural changes of the dataset, which originate from the changes
at different hierarchical levels. Particularly, the taxi driver’s origin-destination dataset comparison,
between vector-like entropy measures for two consecutive rides, reveals steady behavior in transitions
between two consecutive structures, unlike the case of a randomized dataset. Although the previously
built cognitive map of the taxi driver is unknown to us, these results indicate that, after initial building,
the core of accumulated origin-destination structure adds additional knowledge and leads toward the
sporadic small changes in the structure. In other words, after some time, the taxi driver mostly has
rides between previously known origins and destinations. From the analysis of such samples, we may
conclude that the gross of the taxi driver’s rides are repetitive and relatively invariant in space and
time. That is, whenever the taxi driver takes a new ride, it is likely that he/she already rode this ride
before, rather than from a new origin toward a new destination. The cause of this kind of behavior can
be either in the habit of the taxi driver to take rides between well-known origins and destinations to
him/him, or the sample of persons whom he/she drove are inclined to follow a similar pattern, or the
coupling between the two causes.

4. Conclusions and Future Work

It has been shown that the structure of datasets represented by a simplicial complex can be
partitioned into the stratified sequence of rigorously-defined meso-structures, which are themselves
simplicial complexes. The changes of the dataset affect the structure at different strata and, accordingly,
are followed by the (dis)integration of meso-structures. In other words, the changes of the structure of
datasets are followed by the changes of information at different strata of the dataset. The introduction of
vector-like multi-level integration entropy measures proved to be useful for quantifying the information
gain/loss, when meso-structures either join or disjoin. Hence, the comparison between multi-level
integration entropies before and after the changes sheds light on the overall changes of the dataset
structure caused by the (dis)integration of parts emerging at different levels.

Here, the calculations of comparisons between multi-level integration entropies suggest that
the taxi driver’s behavior is repetitive; hence, in accordance with the results of the recent study [70],
the taxi drivers’ learning of new spatial information with respect to the existing knowledge is rather
poor. Nevertheless, in the context of datasets related to taxi drivers, the application will be extended
to the larger group of taxi drivers, in the course of addressing the issues related to discovering the
patterns of human mobility in an urban area [64,65]. Furthermore, future research may shed light on
capturing the relationships between cognitive maps and commuting behavior in an urban environment
and contribute to the further understanding of human mobility.

The results presented in this paper contribute to the research in spatial mental models in the
sense introduced by B. Tversky [71]. We did not interview the taxi driver to acquire his spatial
knowledge or the origin-destination relationships; nevertheless, from the repetitiveness of his behavior
and accumulated knowledge, we may assume that he built the spatial mental model of origins and
destinations. Although this assumption is rather strong, it provided us with an indirect approach to
the research of building the spatial mental model.

Although in this study we limit ourselves to one specific dataset, the proposed method falls into
the broader context of research in complex systems. Specifically, since different simplicial complexes
can be obtained from complex networks, the calculation of proposed entropy measures may reveal
additional insights into the evolution of complex networks in general and add a deeper understanding
of the mechanisms that govern complex network building.

In the present paper, we address the importance, as well as usefulness, of methods that transcend
homology-based tools and propose another strand of research in extracting significant and meaningful
information from real datasets. The flexibility of our approach makes it suitable for the analysis of
datasets of different sizes. Namely, since the method can be applied to small datasets, as well, it may
serve as the bridge between large dataset and small dataset analysis.
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Appendix A.

Appendix A.1. Simplicial Complex

A set of vertices X = {x1, x2, ..., xn}, together with the set of subsets {σq} of this vertex set, called
the set of simplices, defines a simplicial complex K [1]. Each subset σq called the q-simplex is uniquely
defined by q + 1 vertices, and the simplicial complex K is closed under the formation of subsets in the
sense that any subset of a simplex from K is also a simplex from K. A p-simplex, which is defined by
the subset of p + 1 vertices of q-simplex σq, is called a p-face of the simplex σq. The dimension dim(K)
of simplicial complex K is the highest value of D for which σD is a simplex in K. Simplicial complex K
is geometrically represented as a collection of convex polyhedra glued along the common faces, where
a q-simplex is represented by a convex polyhedron with q + 1 vertices.

Take two finite sets X = {x1, x2, ..., xn} and Y = {y1, y2, ..., ym} and the binary relation λ between
them (which by some rule, associates the elements of one set with the elements of another), then we
can build two simplicial complexes. In the first one, as the vertex set may be taken Y = {y1, y2, ..., ym},
and a subset of q + 1 vertices defines a q-simplex σq if, and only if, there exists at least one element
xi ∈ X, which is in the relation λ with each of these q + 1 vertices [39,69]. We will denote the q-simplex,
built in this way, by σ

q
xi = 〈yα0 , yα1 , ..., yαq〉, and the simplicial complex by KX(Y, λ). Reversing the

roles of the vertex set and the simplex set, that is applying the inverse relation λ−1, we define the
second simplicial complex, called the conjugate complex KY(X, λ−1) of complex KX(Y, λ).

The property that any sub-simplex of a simplex is also a simplex induces various levels of
adjacency between simplices and, therefore, multiple levels of connectivity between collections of
simplices. Two simplices are q-near if they share a q-dimensional face [68], and hence, they are
also (q − 1)−, (q − 2)−, ..., one- and zero-near. The collection of simplices in which any pair of
simplices is connected by a chain of simplices where a pair of consecutive simplices is q-near is called
the q-connected component. More formally, two simplices σp and ρr are connected by the chain of
q-connectivity [68] if there is a sequence of simplices σp, σ1, σ2, ..., σn, ρr, such that any two consecutive
simplices are at least q-near and q ≤ p, r. Note that if two simplices σp and σr are q-connected, they are
also (q− 1)−, (q− 2)−, ..., one and zero-connected in K, due to the q-nearness property.

The q-connectivity between simplices induces an equivalence relation on simplices of a complex K,
since it is reflexive, symmetric and transitive. This equivalence relation will be denoted by µq, so that:

(σi, σj) ∈ µq if and only if σi is q-connected to σj.

Let Kq be the set of simplices in K with dimensions greater than or equal to q, then µq partitions
Kq into equivalence classes of q-connected simplices. These equivalence classes are members of
the quotient set Kq/µq, and they are called the q-connected components of K [39]. Every simplex
in a q-component is q-connected to every other simplex in that component, but no simplex in one
q-component is q-connected to any simplex on a distinct q-connected component. The cardinality of
Kq/µq is denoted Qq and is the number of distinct q-connected components in K. The value Qq is the
q-th entry of the so called Q-vector [39,55] (or first structure vector [68]), an integer vector with the
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length dim(K) + 1. The values of the Q-vector entries are usually written starting from the number of
connected components for the largest dimension in descending order, i.e.,

Q = [Qdim(K) Qdim(K)−1 ... Q1 Q0].

The equivalence relations µq of q-connectivity partitions simplicial complex K into the sequence
of nested simplicial sub-complexes, that is the filtration of simplicial complex K under the change of
parameter q:

KD ⊆ KD−1 ⊆ ...Kq ⊆ ... ⊆ K0 = K .

Furthermore, the values of Q-vector entries are equal to the zeroth-order Betti number [1] for each
filtration stage.

Appendix A.2. Data Preparation

Taxi driver’s GPS data coordinates are recorded and collected within the time period of three
months in Shenzhen City, China, during which the taxi driver had 4321 rides, and after data
cleaning, 3623 rides were used in our calculations. In order to build matrices that capture rides
from origins to destinations, the area of Shenzhen is covered by the rectangular 44× 22 grid of 968 cells
2 km × 2 km each. Due to the erroneous GPS coordinate recordings, part of the dataset is deleted
leaving approximately 84% of the rides in the initial dataset. The incorrect GPS recordings included
the following faults either for origin or destination coordinates, or both:

(1) appearance of zero values at the places of latitude and longitude coordinates;
(2) the recordings of some rides were repeating;
(3) the latitude and longitude coordinates of some rides are (far) out of the city border.

The cells on the grid are labeled by the numerals from 1 to 968, starting from the bottom left
corner, and accordingly, the origin/destination matrix OD of the size 968× 968 is built. Whenever the
origin has latitude and longitude coordinates that fall in the cell i ∈ {1, 2, 3, ..., 968} and destination has
the latitude and longitude coordinates that fall in the cell j ∈ {1, 2, 3, ..., 968}, the matrix entry [ODij] is
increased by one.

Although we have performed calculations on the dataset of one taxi driver, the same procedure
for data preparation, as well as the same coverage of the city area by rectangular grid of cells can be
applied for the extraction of behavioral patterns of other taxi drivers.
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