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Abstract: We study information transfer routes among cross-industry and cross-region electricity
consumption data based on transfer entropy and the MST (Minimum Spanning Tree) model. First,
we characterize the information transfer routes with transfer entropy matrixes, and find that the total
entropy transfer of the relatively developed Guangdong Province is lower than others, with significant
industrial cluster within the province. Furthermore, using a reshuffling method, we find that driven
industries contain much more information flows than driving industries, and are more influential on
the degree of order of regional industries. Finally, based on the Chu-Liu-Edmonds MST algorithm,
we extract the minimum spanning trees of provincial industries. Individual MSTs show that the
MSTs follow a chain-like formation in developed provinces and star-like structures in developing
provinces. Additionally, all MSTs with the root of minimal information outflow industrial sector are
of chain-form.

Keywords: transfer entropy; minimum spanning tree; industrial electricity consumption;
industrial causality mechanism

1. Introduction

Information flow is characterized by interaction, and is successfully used in analyzing economic
systems [1–3]. A variety of methods can be used to extract the fundamental features caused by internal
and external environments, such as cross-correlation [4], autocorrelation [5], and complexity [6,7].
However, although appropriate for measuring the relationships, they fail to illustrate the asymmetry
and directionality among components of a system. The Granger causality method, proposed by
Granger [8], has been used to measure the causality, but the information flow estimated by the
traditional Granger causality method just provides binary information for causal relationships, whether
one component is the Granger causality of the others or not. In other words, it is weak in measuring
the strength of causality.

The main idea of exploring the interaction is the strength and direction of coupling. Transfer
entropy (TE), developed by Schreiber [9], has a prominent contribution to detecting the mutual
influence between the components of a dynamic system. It is worth mentioning that Granger
causality and transfer entropy are equivalent for Gaussian distributions according to Barnett et al. [10].
After transfer entropy was proposed, it has been widely used in diverse fields, such as statistics [11,12],
dynamical systems [13–15], social networks [16], physiology [17–19], the study of cellular automata in
computer science [20,21], and so on.
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On the basis of transfer entropy, some other transfer entropy analysis methods were also
developed [22–28]. For instance, Marschinski and Kantz [29] introduced a measure called effective
transfer entropy, by subtracting the effects of noise or of a highly volatile time series from the transfer
entropy. This concept is now widely used, particularly in the study of the cerebral cortex.

In terms of the applications of transfer entropy to finance, Kwon and Yang [30] used the stock
market indices of 25 countries and discovered that the biggest source of information flow is America,
while most receivers are in the Asia-Pacific regions. By means of the minimum spanning tree, Standard
and Poor’s 500 Index (S&P500) is a hub of information sources for the world stock markets. Kwon and
Oh [31] found that the amount of information flows from an index to a stock is larger than the ones
from a stock to an index between the stock market index and their component stocks. By using the
stocks of the 197 largest companies in the world, Sandoval [32] assessed which companies influenced
others according to sub-areas of the financial sector, and also analyzed the exchange of information
between those stocks as seen by the transfer entropy and the network formed by them based on this
measure. Making use of rolling estimations of extended matrixes and time-varying network topologies,
Bekiros et al. [33] showed evidence of emphasized disparity of correlation and entropy-based centrality
measurements for the U.S. equity and commodity futures markets between pre-crisis and post-crisis
periods. M. Harré [34] used a novel variation of transfer entropy that dynamically adjusts to the
arrival rate of individual prices and does not require the binning of data to show that quite different
relationships emerge from those given by the conventional Pearson correlation.

Studying the industry section, Oh et al. [35] have investigated the information flows among
22 industry sectors in the Korean stock market by using the symbolic transfer entropy method.
They found that the amount of information flows and the number of links during the financial crisis
in the Korean stock market are higher than those before and after the market crisis. In the process
of production, industries usually utilize raw materials and energy from other industries as inputs.
Meanwhile, their outputs can also be consumed by other industries. Upstream industries supply raw
materials for downstream industries; in return, downstream industries serve back upstream industries.
Therefore, the industrial structure can be treated as a network, where each sector is represented by a
node, and the intermediate products flow through the connections among the nodes.

Complex networks [36] and correlation-based algorithms like the MST model have been gradually
adopted as efficient pattern-identification tools in complex systems, and are widely applied in financial
markets. Trancoso et al. [37] researched interdependence and decoupling situations among emerging
markets and developed countries in global economic networks, and demonstrated that emerging
markets have not cohesively formed into global networks. However, they evolved into two main
emerging market clusters of East European countries and East Asia. Zheng et al. [38] discussed the lag
relationship between worldwide finance and commodities markets based on the MST evolution process.
Zhang et al. [39] studied the world international shipping market, especially on evolutionary rules
of MSTs, systemic risk, and the transmission relationship of Granger causality dynamics in pre-crisis
and post-crisis times. Additionally, they replaced the Pearson distance of the traditional similarity
index of sequences with Brownian distance, proposed by Székely and Rizzo [40], and better revealed
the non-linear correlation among time series. Yao et al. [41] characterized the correlation evolution of
South China industrial electricity consumption in pre-crisis and post-crisis periods, and demonstrated
the industrial clustering from perspectives of industrial organization and specialization theories. Based
on Granger causality networks, Yao et al. [42] also studied the industrial energy transferring routes
among the industries of South China by distinguishing direct causality from the indirect, and with
complementary graphs, ref. [42] proposed that industrial causal relationship can be heterogeneous,
and provided insights for refining robust industrial causality frameworks.

Recently, most works of MST models studied multiple time series of price-based sequences,
whereas a few studies focused on volume-based ones. These two types are significantly different:
price-based sequences are mainly affected by cost and expectation, and are usually utilized for the
analysis of prices of raw material and expectative behavioral determination; instead, volume-based
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ones directly reflect behaviors of economic units in the markets and they are consequently fitted for
behavior analysis, such as consumption volume and investment volume. We choose monthly electricity
consumption volume as an indicator of industrial production, based on the three reasons below: first,
compared with industrial added value and GDP (Gross Domestic Product), the electricity consumption
volume will be relatively less influenced by inflation, expectation factors, and will objectively reflect the
behaviors of industrial production; second, the electricity consumption volume is the lead indicator for
most economic variables’ future trend especially in China; third, the monthly electricity consumption
volume is more stable in time, allowing us to record and study industrial correlation without delay.

Motivated by these previous studies, we mainly apply transfer entropy and MST models
to analyzing industrial causality among the different industrial sectors. Based on the electricity
consumption sequences, including the industries of five southern provinces in China, we construct
transfer entropy networks to explore the information transfer routes among different industries.

The remaining arrangement of this article is as follows. Section 2 explains the definition of transfer
entropy and the MST method. Section 3 describes the statistical characteristics of industrial electricity
consumptions sequences. In Sections 4 and 5, we demonstrate our detailed results and analysis of the
empirical study. Finally, Section 6 is the conclusion of this paper.

2. Methodology Statement

2.1. Transfer Entropy

Given two discrete processes, Y and X, Shannon entropy [43], which measures the uncertainty of
information, is represented as follows (Considering a discrete process Y):

HY = −∑
y

p(y) log2 p(y) (1)

The base 2 for the logarithm is chosen so that the measure is given in bits. The more bits that are
needed to achieve optimal encoding of the process, the higher the uncertainty is.

According to the explanation of Maxwell’s Demon by Charles H. Bennett, the destruction of
information is an irreversible process and hence it satisfies the second law of thermodynamics.
Therefore, information has negative entropy. Since the generation of information is a process of
involving negative entropy in a system, the sign of information entropy is opposite to the sign of
thermodynamics entropy. Additionally, information entropy follows a law of decreasing.

On the basis of Shannon entropy, Kullback entropy is used to define the excess number of bits
needed for encoding when improperly assuming a probability distribution q(y) of Y different things
from p(y). The formula is represented as follows [44]:

KY = ∑
y

p(y) log
p(y)
q(y)

(2)

When it comes to the bivariate background, the mutual information of the two processes is
given by reducing uncertainty compared to the circumstance where both processes are independent,
i.e., where the joint distribution is given by the product of the marginal distributions, p(x, y)p(x)p(y).
The corresponding Kullback entropy, known as the formula for mutual information, is defined as
follows [45,46]:

MXY = ∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
(3)

where the summation runs over the distinct values of x and y. Any form of statistical dependencies
between different variables can be detected by mutual information. However, it is a symmetric measure
and therefore any evidence related to the dynamics of information exchange is not available.
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Transfer entropy is quantified by information flow, and measures the extent to which one
dynamical process influences the transition probabilities of another process. It is applied for quantifying
the strength and asymmetry of information flow between two components of a dynamical system.
Learning from the experience mentioned above, we also define the transfer entropy relating k1 previous
observations of process Y and k2 previous observations of process X as follows [47,48]:

TEX→Y = hY(k1)− hYX(k1, k2) (4)

where
hY(k1) = −∑ p(yt+1, y(k1)

t ) log p(yt+1|y
(k1)
t ) (5)

hYX(k1, k2) = −∑ p(yt+1, y(k1)
t , x(k2)

t ) log p(yt+1|y
(k1)
t , x(k2)

t ) (6)

Here, yt and xt represent the discrete states at time t of Y and X, respectively. y(k1)
t and x(k2)

t denote
k1 and k2 dimensional delay vectors of the two time series of Y and X, respectively. The joint probability
density function p(yt+1, y(k1)

t , x(k2)
t ) is the probability that the combination of yt+1, y(k1)

t , and x(k2)
t have

particular values. The conditional probability density functions p(yt+1|y
(k1)
t , x(k2)

t ) and p(yt+1|y
(k1)
t )

determine the probability that yt+1 has a particular value when the value of the previous samples
y(k1)

t and x(k2)
t are known and y(k1)

t are known, respectively. The reverse dependency is calculated by
exchanging y and x of the joint and conditional probability density functions. The log is with base 2,
thus the transfer entropy is given in bits.

The calculation of transfer entropy may involve significant computational burden, particularly
when the number of variables is large. Therefore, simply assuming processes Y and X as Markov
processes, we set k1 = k2 = 1. In fact, the parameter settings of k1 and k2 are not influential on the
direction of information flow.

2.2. Symbolization

We estimate transfer entropy using a technique of symbolization, which has already been
introduced with the concept of permutation entropy [49]. Staniek and Lehnertz [50] proposed a
method for symbolization, and demonstrated numerically that symbolic transfer entropy is a robust
and computationally efficient method for quantifying the dominant direction of information flow
among time series from structurally identical and non-identical coupled systems.

The procedure of symbolization is demonstrated as follows:
Let yt = y(t) and xt = x(t) denote sequences of observations from discrete processes Y and X.

Following ref. [50], we define the symbol by reordering the amplitude values of the time series yt

and xt. Amplitude values Xt = {x(t), x(t + l), ..., x(t + (m− 1)l)} are arranged in an ascending order
{x(t + (st1 − 1)l) ≤ x(t + (st2 − 1)l) ≤, ...,≤ x(t + (stm − 1)l)}, where m is the embedding dimension,
and l denotes the time delay. In case of equal amplitude values, the rearrangement is carried
out according to the associated index s, i.e., for x(t + (st1 − 1)l) = x(t + (st2 − 1)l), we write
x(t + (st1 − 1)l) ≤ x(t + (st2 − 1)l) if st1 < st2. Therefore, every Xt is uniquely mapped onto one
of the m! possible permutations. A symbol is thus defined as x̂t ≡ (st1, st2, ..., stm), and with the
relative frequency of symbols, we estimate the joint and conditional probabilities of the sequences of
permutation indices. ŷt is also symbolized by this method. Finally, we estimate the transfer entropy
using symbol sequences ŷt and x̂t on the basis of Formula (4).

The following is an example of symbolization. Assume that m = 3, l = 1, and there are 3! = 6
possible permutations. Let xt = {0.1, 0.3,−0.1, 0.2, 0, 0.2} and yt = {−0.2, 0.4, 0.2, 0.1, 0.2,−0.3}.
The amplitude values {0.1, 0.3,−0.1} corresponds to a permutation or symbol (3, 1, 2), and the
remainder can be processed by the same method. Then, x̂t = {(3, 1, 2), (2, 3, 1), (1, 3, 2), (2, 1, 3)}
and ŷt = {(1, 3, 2), (3, 2, 1), (2, 1, 3), (3, 1, 2)}. We set the mapping relationships as: (1, 2, 3)→ 1 ,
(1, 3, 2)→ 2 , (2, 1, 3)→ 3 , (2, 3, 1)→ 4 , (3, 1, 2)→ 5 , (3, 2, 1)→ 6 . The symbol sequences are also
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denoted such that x̂t = {5, 4, 2, 3} and ŷt = {2, 6, 3, 5}. Therefore, continuous states can be also
transformed into discrete states for the TE (Transfer Entropy) calculation.

If there is no extra explanation, we set m = 2, l = 1 for estimating transfer entropy in our study.
This will be verified if it is a reasonable assumption.

Transfer entropy is explicitly asymmetric under the exchange of source and destination. It can
thus provide information regarding the direction of interaction between two discrete processes.
The asymmetric degree of information flow (ADIF) from X to Y can be defined as follows [51]:

DXY = TEX→Y − TEY→X (7)

If this value is positive, it means that the information flows run mostly from X to Y; whereas
information flows in reverse run mostly from Y to X when the value is negative.

According to formula (8), we can obtain the net information outflow. Assuming that there are n
discrete processes, we define the net asymmetric degree of information flow of X, which measures the
net information outflow of X as follows:

Dnet
X =

n−1

∑
i

TEX→Y(i) −
n−1

∑
i

TEY(i)→X (8)

2.3. Minimum Spanning Tree

Firstly, assuming N sectors, we construct a N × N matrix to save the values of ADIF, and it is an
anti-symmetric matrix.

Enlightened by the distance metric introduced by Onnela et al. [52], we define a pseudo-distance
of MST by the procedure:

dij =

c− Dij, i f Dij > 0

0, otherwise
(9)

Here, dij is the pseudo-distance from i to j. c is an arbitrary constant, and the value of c is
greater than the maximum value of Dij. In our study, we set c = max

{
Dij
}
+ 0.01. Thus, we obtain a

directed graph.
After the above process, we understand that: there is only one direction between two nodes

for rejecting the other direction because of its negative value of ADIF; the greater the value of ADIF,
the shorter the pseudo-distance of the two nodes.

Finally, illuminated by the intuition of taxonomy from the conventional minimum spanning tree,
we step further with Chu–Liu–Edmonds MST algorithm [53,54] using the pseudo-distance above,
and extract the directed minimum spanning tree from the transfer entropy networks, which may be
interpreted with route and transmission recognition.

3. Data Description

The data we used are based on monthly industrial electricity consumption from January 2005
to December 2013 from five southern provinces in China, including GD (Guangdong Province),
GX (Guangxi Zhuang Autonomous Region), YN (Yunnan Province), GZ (Guizhou Province) and
HN (Hainan Province). Specifically, the power grids of these five provinces are operated by the
China Southern Power Grid Limited Companies, which are relatively independent from the grids of
the remaining 26 provinces operated by the State Grid Corporation of China, especially on power
transmission and distribution. Thus, we sum the volume of industrial electricity consumption of these
five provinces as the total electricity consumption volume of South China (NF). Consequently we
obtain 6 observations units—GD, GX, YN, GZ, HN, and NF, covering 28 industries of manufacture
of food, mining and dressing of ferrous metal ores, energy and chemical production, manufacture of
machinery, etc.
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Yao et al. [55] modeled industrial Granger networks using industrial electricity consumption as
an indicator. This paper applied the same techniques. The reason, similar to Yao et al., is that: first,
electricity consumption is a leading indicator of industrial production; and second, the monthly
electricity consumption is timely, compared with a relative longer update period of industrial
input–output tables of five years, and industrial GDP, with inflation by the office of statistics. Therefore,
our study of the industrial causality mechanism based on industrial electricity consumption is less
dependent on time.

In order to calculate TE, we convert industrial electricity consumption to the simple rate of change
following the routine of ref. [35]:

roct =
et+1 − et

et

where et is the industrial electricity consumption in month t. Then, we calculate TE using the time
series roct.

The codes and corresponding industries have been shown in Table 1. Table 2 demonstrates the
statistical properties of the rate of change time series of the 28 South China industry sectors.

Table 1. Code of the nodes and corresponding industries.

Code Industry

V1 Mining and Washing of Coal
V2 Extraction of Petroleum and Natural Gas
V3 Mining and Dressing of Ferrous Metal Ores
V4 Mining and Dressing of Nonferrous Metal Ores
V5 Mining and Dressing of Nonmetal Ores
V6 Mining and Dressing of Other Ores
V7 Manufacture of Food, Beverage, and Tobacco
V8 Textile Industry

V9 Manufacture of Textile Garments, Fur, Feather, and
Related Products

V10 Timber Processing, Products, and Manufacture of
Furniture

V11 Papermaking and Paper Products
V12 Printing and Record Medium Reproduction

V13 Manufacture of Cultural, Educational, Sports, and
Entertainment Articles

V14 Petroleum Refining, Coking, and Nuclear Fuel
Processing

V15 Manufacture of Raw Chemical Materials and
Chemical Products

V16 Manufacture of Medicines
V17 Manufacture of Chemical Fibers
V18 Rubber and Plastic Products
V19 Nonmetal Mineral Products
V20 Smelting and Pressing of Ferrous Metals
V21 Smelting and Pressing of Nonferrous Metals
V22 Metal Products

V23 Manufacture of General-purpose and
Special-purpose Machinery

V24 Manufacture of Transport, Electrical, and Electronic
Machinery

V25 Other Manufactures
V26 Comprehensive Utilization of Waste
V27 Production and Supply of Gas
V28 Production and Supply of Water

From Table 2, we have concluded that: the means range from 0.014 to 0.068; the sequence of
V26 fluctuates the most, and the sequence of V15 has the least fluctuations; the kurtosis of V28 is the
highest, and V15 has the lowest kurtosis; except for V15 and V27, the sequences of the remaining
industries contain a degree of right skew; by means of calculating the JB-statistic (Jarque-Bera Statistic),
we find that the sequences of V1, V4, and V15 follow Gaussian distributions.
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Table 2. Statistical properties of the rate of change time series of 28 South China industry sectors.

Code Mean STD Skewness Kurtosis JB-Statistic Probability

V1 0.028593 0.159676 0.022191 3.728845 2.377116 0.304660
V2 0.050715 0.325692 1.383137 6.100709 76.98059 0.000000
V3 0.030155 0.194552 0.753318 6.280401 58.09648 0.000000
V4 0.022994 0.141241 0.113567 3.899567 3.837782 0.146770
V5 0.02181 0.186587 1.930843 14.32913 638.7092 0.000000
V6 0.068385 0.321179 1.665988 8.443783 181.6184 0.000000
V7 0.014926 0.159499 0.827264 5.225815 34.29224 0.000000
V8 0.031674 0.284571 3.837147 26.56859 2739.081 0.000000
V9 0.033462 0.257691 3.051374 21.80968 1743.420 0.000000

V10 0.025657 0.209002 2.190527 14.91872 718.9044 0.000000
V11 0.014068 0.131022 1.103867 6.753926 84.55699 0.000000
V12 0.021448 0.222096 1.316007 12.19274 407.6430 0.000000
V13 0.02337 0.246749 2.609256 21.83432 1702.926 0.000000
V14 0.024322 0.172692 1.40529 11.33782 345.1580 0.000000
V15 0.017798 0.116727 −0.23907 3.183362 1.169192 0.557331
V16 0.022083 0.135479 1.56146 8.714324 189.0606 0.000000
V17 0.016444 0.193304 2.335657 13.33235 573.2465 0.000000
V18 0.032043 0.236534 2.773104 18.81172 1251.771 0.000000
V19 0.022901 0.160858 1.515492 9.312477 218.6109 0.000000
V20 0.020431 0.135593 0.646182 4.847269 22.65996 0.000012
V21 0.017874 0.121844 0.397835 6.999253 74.12922 0.000000
V22 0.036121 0.24267 2.783564 18.11194 1156.329 0.000000
V23 0.024369 0.177941 2.167856 15.36133 765.0540 0.000000
V24 0.025961 0.180863 1.461672 9.638931 234.6035 0.000000
V25 0.032045 0.233692 0.967952 5.123345 36.80940 0.000000
V26 0.043833 0.367526 4.013498 29.4557 3407.669 0.000000
V27 0.020359 0.180185 −0.43386 8.581308 142.2384 0.000000
V28 0.02955 0.286529 6.398114 58.17704 14303.45 0.000000

4. Empirical Results on Transfer Entropy Networks

4.1. Industrial Analysis

Based on Formula (4), we calculate the transfer entropy of the rate of change on electricity
consumption among different industrial sectors in five provinces of South China. As noted in Section 3,
we list totally 140 exclusive industrial sectors of provinces (i.e., we issue different codes for same
sectors from different provinces) ranking from 1 to 140 by industrial sectors of GD, GX, YN, GZ,
and HN.

Figure 1 shows both the TEs of two sectors inside a given province and the cross-TEs of a given
industrial sector between two provinces. A higher value of transfer entropy will be reflected by a
brighter color in the heat map.

The square area surrounded by (0, 0), (28, 0), (0, 28), and (28, 28) contains many dark grids,
reflecting the situation of the industrial correlation in GD. First, no matter the perspective of in-weight
or out-weight, lower transfer entropy is observed in GD and there is no significant clustering for the
remaining four provinces, implying relative independence of the internal information transfer structure
of GD. Furthermore, other than lower transfer entropy inside the industrial sectors of GD, they show
relatively high transfer entropy to industrial sectors of other provinces. This confirms a higher degree
of order in industrial sectors of GD, but disorder for the influence of other provinces. The column dark
lines in the figure illustrate that the corresponding industries received a lower entropy volume and
have a higher degree of order.
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2a,b, we find high similarity between them: 13 industrial sectors in dark grid blocks are of a higher 
degree of order. We also find that the industrial clusters of NF are more significant than the 
industrial clusters of GD. The reason is likely that NF consists of GD, GX, YN, GZ, and HN, thus 
there is a complementary effect among the five provinces in the industrial division. 

Comparing transfer entropy with the correlation coefficient, we conclude that lower transfer 
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parameter settings of m and l have significantly different TE, but it is not influential on the 
correlation of industrial sectors, and the general features of the heat maps with the different 
parameter settings are similar. Therefore, the parameter setting of m = 2, l = 1 is a better choice for 
relieving the computational burden. 

According to the information extracted from the nine dark grid blocks, we plot the line chart of 
the rate of change time series. Different color lines correspond to different industrial sectors. We 
find that the industrial sectors in Figure 3a have a higher degree of uniformity on the fluctuation of 
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Figure 2. (a) Transfer entropy heat map of South China where m = 2 and l = 1; (b) Transfer entropy heat
map of GD where m = 2 and l = 1; (c) Transfer entropy heat map of South China where m = 3 and l = 1;
(d) Transfer entropy heat map of GD where m = 3 and l = 1; (e) Transfer entropy heat map of South
China where m = 4 and l = 1; (f) Transfer entropy heat map of GD where m = 4 and l = 1; (g) Transfer
entropy heat map of South China where m = 2 and l = 2; (h) Transfer entropy heat map of GD where
m = 2 and l = 2; (i) Spearman’s rank correlation coefficient heat map of South China; (j) Spearman’s
rank correlation coefficient heat map of GD.

Notes: Industrial sectors corresponding to the nine dark grid blocks in Figure 2 cover: Textile
Industry (V8), Manufacture of Textile Garments, Fur, Feather, and Related Products (V9), Timber
Processing, Products, and Manufacture of Furniture (V10), Papermaking and Paper Products (V11),
Printing and Record Medium Reproduction (V12), Manufacture of Cultural, Educational, Sports,
and Entertainment Articles (V13), Manufacture of Medicines (V16), Manufacture of Chemical Fibers
(V17), Rubber and Plastic Products (V18), Nonmetal Mineral Products (V19), Metal Products (V22),
Manufacture of General-purpose and Special-purpose Machinery (V23), Manufacture of Transport,
Electrical, and Electronic Machinery (V24).

By summing the electricity consumption of a given industry of the five provinces of GD, GX, YN,
GZ, and HN, we gain the total electricity consumption of the 28 industries of South China. Figure 2a is
the transfer entropy heat map of South China. Nine grid blocks with lower transfer entropy imply that
ordered industrial sectors tend to cluster and each grid block is one industrial cluster. Blocks close to
the diagonal stand for those with a low transfer entropy and a high degree of order among the internal
industrial sectors. Blocks far from the diagonal stand for clusters with higher transfer entropy and a
high degree of order for other external clusters. Thus, transfer entropy can be used for a measure of
the degree of order of an industrial cluster. Comparing Figure 2a,b, we find high similarity between
them: 13 industrial sectors in dark grid blocks are of a higher degree of order. We also find that the
industrial clusters of NF are more significant than the industrial clusters of GD. The reason is likely
that NF consists of GD, GX, YN, GZ, and HN, thus there is a complementary effect among the five
provinces in the industrial division.

Comparing transfer entropy with the correlation coefficient, we conclude that lower transfer
entropy always corresponds to a higher correlation coefficient. Figure 2a–h show that the different
parameter settings of m and l have significantly different TE, but it is not influential on the correlation
of industrial sectors, and the general features of the heat maps with the different parameter settings
are similar. Therefore, the parameter setting of m = 2, l = 1 is a better choice for relieving the
computational burden.

According to the information extracted from the nine dark grid blocks, we plot the line chart of
the rate of change time series. Different color lines correspond to different industrial sectors. We find
that the industrial sectors in Figure 3a have a higher degree of uniformity on the fluctuation of the
rate of change, while the ones in Figure 3b do not show synchronization features. Hence, the transfer
entropy is able to interpret the homogeneity of the industrial sectors to some extent, and it has shown
that lower entropy volume always corresponds to a higher degree of order.



Entropy 2017, 19, 159 10 of 19

Entropy 2017, 19, 159 11 of 20 

11 
 

transfer entropy is able to interpret the homogeneity of the industrial sectors to some extent, and it 
has shown that lower entropy volume always corresponds to a higher degree of order. 

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Month

R
at

e
 o

f 
C

h
a

n
g

e

0 20 40 60 80 100 120
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Month

R
a

te
 o

f 
C

h
a

n
g

e

(a) (b) 
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Figure 3. Line chart of the rate of change time series: (a) contains 13 industrial sectors corresponding
to nine dark grid blocks in Figure 2; (b) contains the remaining 15 industrial sectors.

For the information flow among the industries of each province, and referring to Formulas (7) and
(8), we compute the ADIF of five provinces in South China, and present the heat maps and histograms
in Figure 4.
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Figure 4. Heat maps of the five provinces based on ADIF (Asymmetric Degree of Information Flow): 
(a) GD; (c) GX; (e) YN; (g) GZ; (i) HN; Net ADIF histograms: (b) GD; (d) GX; (f) YN; (h) GZ; (j) HN. 

Notes: according to the formula in Section 2, the ADIF matrix is anti-symmetric. We set 0 for a 
negative ADIF on the heat maps for a more clear explanation. 

With the heat maps and histograms, we find even distributions of bright spots of GD, but it 
appears to have uneven distributions of YN. Referring to the histogram of YN, we see the net 
information outflow of V9 and V26 is much higher than the others. This also confirms the balanced 
development and industrial specialization of GD and the seriously imbalanced development and 
probable homogeneous information of YN. 

Figure 4. Heat maps of the five provinces based on ADIF (Asymmetric Degree of Information Flow):
(a) GD; (c) GX; (e) YN; (g) GZ; (i) HN; Net ADIF histograms: (b) GD; (d) GX; (f) YN; (h) GZ; (j) HN.

Notes: according to the formula in Section 2, the ADIF matrix is anti-symmetric. We set 0 for a
negative ADIF on the heat maps for a more clear explanation.

With the heat maps and histograms, we find even distributions of bright spots of GD, but
it appears to have uneven distributions of YN. Referring to the histogram of YN, we see the net
information outflow of V9 and V26 is much higher than the others. This also confirms the balanced
development and industrial specialization of GD and the seriously imbalanced development and
probable homogeneous information of YN.
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It is worth mentioning that Comprehensive Utilization of Waste (V26) will be greatly affected
if the production of other industrial sectors increases. Other than HN, the remaining four provinces
exhibit significant net information outflow, especially in YN and GZ. Our finding demonstrates that the
increase (decrease) of electricity consumption of V26 will lead to the increase (decrease) of electricity
consumption of other industries and similarly verifies this process of information feedback: V26 as a
measure of waste reproduction implies the upgrade of green economies in South China.

4.2. Reshuffled Analysis

With the industrial electricity consumption of the whole of South China, we study the in-weight
and out-weight of transfer entropy and compute the reshuffling transfer entropy by the three methods
below [56]:

RTEX→Y =
1
M

M

∑
i=1

TEX(i)→Y (10)

RTEX→Y =
1
M

M

∑
i=1

TEX→Y(i) (11)

RTEX→Y =
1
M

M

∑
i=1

TEX(i)→Y(i) (12)

Here, for all i, X(i) is a shuffled time series of X, and Y(i) is a shuffled time series of Y. Assuming
that the data size is n, there are n! possibilities to shuffle the time series. Hence we set M = 1000
intermediately. These three methods randomly shuffle the state of each time point, but the expectation,
standard deviation, and distribution before and after the shuffling remain approximately the same.
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Figure 5. Transfer entropy of South China: (a) initial out-weight boxplot; (b) out-weight boxplot 
after shuffling X; (c) out-weight boxplot after shuffling Y; (d) out-weight boxplot after shuffling both 
X and Y; (e) initial in-weight boxplot; (f) in-weight boxplot after shuffling X; (g) in-weight boxplot 
after shuffling Y; (h) in-weight boxplot after shuffling both X and Y. 

From Figure 5, we conclude that Figure 5f preserves the most features in Figure 5e. This 
implies that the target sequence Y contains much information, since the general distribution of 
in-weight does not change by shuffling X, but by keeping X unchanged. Besides, only shuffling Y 
(Figure 5c,g) and simultaneously shuffling X and Y (Figure 5d,h) achieve similar effects. By 
comparing TE with the shuffled data based on the three methods, we demonstrate that the inflows 
and outflows of transfer entropy from real data are not obtained by chance. Therefore, the 
characteristics of target sequences can approximately determine the values of the transfer entropy. 
The industries representing for target sequences tend to be driven industries, other than driving 
industries. Driven industries usually contain much more information flows and are more influential 
on determining the order of degree distribution of the whole industrial system. 

5. Route Extraction of the Causality Structure and Dynamics 

Effective models of transfer entropy networks provide the basic framework for extracting the 
causality structure and dynamics of the rate of change on electricity consumption among industrial 
sectors. Considering the characteristics of weighted directed networks, we extract the most probable 
route of directed transfer entropy networks of different provinces, which is composed of the links of 
the lowest weight based on the Chu-Liu-Edmonds MST algorithm and provide related decision 
support of macroeconomic adjustment for economic systems. 

Figure 5. Transfer entropy of South China: (a) initial out-weight boxplot; (b) out-weight boxplot after
shuffling X; (c) out-weight boxplot after shuffling Y; (d) out-weight boxplot after shuffling both X
and Y; (e) initial in-weight boxplot; (f) in-weight boxplot after shuffling X; (g) in-weight boxplot after
shuffling Y; (h) in-weight boxplot after shuffling both X and Y.

From Figure 5, we conclude that Figure 5f preserves the most features in Figure 5e. This implies
that the target sequence Y contains much information, since the general distribution of in-weight does
not change by shuffling X, but by keeping X unchanged. Besides, only shuffling Y (Figure 5c,g) and
simultaneously shuffling X and Y (Figure 5d,h) achieve similar effects. By comparing TE with the
shuffled data based on the three methods, we demonstrate that the inflows and outflows of transfer
entropy from real data are not obtained by chance. Therefore, the characteristics of target sequences
can approximately determine the values of the transfer entropy. The industries representing for target
sequences tend to be driven industries, other than driving industries. Driven industries usually contain
much more information flows and are more influential on determining the order of degree distribution
of the whole industrial system.

5. Route Extraction of the Causality Structure and Dynamics

Effective models of transfer entropy networks provide the basic framework for extracting the
causality structure and dynamics of the rate of change on electricity consumption among industrial
sectors. Considering the characteristics of weighted directed networks, we extract the most probable
route of directed transfer entropy networks of different provinces, which is composed of the links
of the lowest weight based on the Chu-Liu-Edmonds MST algorithm and provide related decision
support of macroeconomic adjustment for economic systems.

The basic processes of the algorithm covers three steps: (1) Judge whether all nodes of the original
graphs are attainable with a fixed root; if there is not any available option, no MST can be extracted
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from this graph; (2) Traverse all the edges for the least in-edge of the nodes except the root node,
accumulate the weights, and form a new graph with the least weights; (3) Judge whether any loop
exists in that graph, if not, that graph is the MST we acquire; otherwise, shrink that directed loop into
a node and go back to Step (2).

5.1. Analysis of a Single Province

Traditional stimulus policies for developing industries are sometimes groundless in choosing
target industries. According to the leading industry theory and strategic emerging industry theory,
the ignorance of the intrinsic topology of causality probably leads to serious industrial overcapacity.
Therefore, with the causality structures among industries, policymakers tend to determine a more
precise regulation strategy on industrial systems by pointing out those key nodes, especially the root
nodes of industries, and reduce the potential overcapacity problems caused by overall stimulus [55].

Based on different root-chosen methods, we extract the MSTs of Figures 6 and 7 from the ADIF
transfer entropy network of each province. Figure 6 is rooted in the industry of maximal information
outflows [30] while Figure 7 is rooted in the industry of minimal information outflows. We can
obviously observe that the hierarchical structure of information flows along the arrows.
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Figure 6 shows the information spreading routes of a given root. The MSTs of GD and GX 
follow a significant hierarchical structure, implying the routes and effects of influence from the roots 
are heterogeneous, and the influence on some nodes is indirect. The MSTs of other provinces are 
star-like, and hence the influence from the roots is homogeneous. From the perspectives of industrial 
correlation, the correlation of GD and GX will be higher than the remaining three provinces and 
therefore tend to balance development. 

Figure 6. Provincial MSTs (Minimum Spanning Trees) rooted in the industry of maximal information
outflow: (a) GD (root: V9); (b) GX (root: V28); (c) YN (root: V26); (d) GZ (root: V21); (e) HN (root: V15).

Figure 6 shows the information spreading routes of a given root. The MSTs of GD and GX follow
a significant hierarchical structure, implying the routes and effects of influence from the roots are
heterogeneous, and the influence on some nodes is indirect. The MSTs of other provinces are star-like,
and hence the influence from the roots is homogeneous. From the perspectives of industrial correlation,
the correlation of GD and GX will be higher than the remaining three provinces and therefore tend to
balance development.
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Figure 7. Provincial MSTs rooted in the industry of minimal information outflow: (a) GD (root: V5); 
(b) GX (root: V13); (c) YN (root: V10); (d) GZ (root: V19); (e) HN (root: V23). 
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Figure 7. Provincial MSTs rooted in the industry of minimal information outflow: (a) GD (root: V5);
(b) GX (root: V13); (c) YN (root: V10); (d) GZ (root: V19); (e) HN (root: V23).

Based on Figures 6 and 7, we find the diameter of Figure 7 is usually greater than the one of
Figure 6, and the MSTs rooted in the industry of minimal information outflow are usually of chain-like
form and with feedback loops. The structure of minimal information outflow can characterize the
maximal order of the system and can be used as a reference of the system evolutionary direction.

Combining the industrial need to regulate with the topology of causality, policymakers may
precisely stimulate industries by choosing root nodes, hub nodes, and probably reduce serious
overcapacity problems of other industries.

5.2. Inter-Provincial Analysis

Including the 140 provincial industries of the five provinces of South China, we study their
cross-province interactive relationship. Rooted on a node of GD, Figure 8 is rooted in the industry of
maximal information outflow while Figure 9 is rooted in the industry of minimal information outflow.

Comparing the MST of Figure 8 with the MST of Figure 9, we find a star-like structure in Figure 8
and a chain-like structure in Figure 9. According to the information in Table 3, we found 12 feedback
loops inside the chain-like structure in Figure 9, and some of the loops are nested. We also observe that
the node with maximal information outflow is surrounded by more nodes than the node with minimal
information outflow. It demonstrates that the root node in Figure 8 plays a greater role than the one in
Figure 9. The reason why the two MSTs are different from each other is probably because the more
information the root node has, the more efficient the network is in the method of information transfer.
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We introduce Figure 8 by three parts: the node group linked with the root node V24;

the hierarchical structure that information flows spread along according to the determined route
V133→ V105→ V115→ V11 (four key nodes are HN Smelting and Pressing of Nonferrous Metals
(V133), GZ Smelting and Pressing of Nonferrous Metals (V105), HN Mining and Dressing of Ferrous
Metal Ores (V115), GD Papermaking and Paper Products (V11)); feedback loop V19→ V21→ V126
→ V56→ V128→ V129→ V136→ V9→ V19. We notice that most of the red nodes are directly or
indirectly linked with V115 and V11 which are far away from the root node, and many of grey nodes,
labeling industries of HN, are close to the root node.
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Table 3. The information of the above MSTs.

Root Key Nodes Number of Feedback Loop

Figure 8 V24 Radial nodes of hierarchical structure
(V133, V105, V115, V11) 1

Figure 9 V20
Nodes with an out-degree more than 3
(V12, V13, V50, V53, V72,V73, V82,V86,

V103, V112, V127, V130,V135)
12

Notes: The feedback loop doesn’t contain two-node loop in our study.

6. Conclusions

Based on the transfer entropy matrixes of each provincial industry, we found a lower transfer
entropy of the relatively developed GD, and higher transfer entropy for the remaining four provinces.
According to the principle of entropy increase, we proposed that GD exhibits a higher degree of
internal industrial order, but the remaining provinces tends to be more disordered, and hence, transfer
entropy can be a measure of the degree of industry order.

Besides the other provinces, GD shows significant block-clustering of internal transfer entropy,
implying its independence of the internal industrial information transfer structure. In this aspect,
the transfer entropy can be used as a measure of the industrial clustering emergence. By reshuffling,
we found the target industries or driven industries tend to contain much more information flows than
driving industries, and are more influential on determining the degree of regional industrial order.

Finally, based on the Chu-Liu-Edmonds MST algorithm, we studied their provincial MSTs.
Individual MSTs show chain-like structures in developed provinces and star-like structures in
developing areas. Rooted in the minimal information outflow sectors, the generated MSTs all follow a
chain-like structure, which are similar to the cross-province results. Therefore, the chain-like structure
and feedback loop can be used as a measure of industrial ordered evolution.
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