
entropy

Article

Random Walks Associated with Nonlinear
Fokker–Planck Equations

Renio dos Santos Mendes 1,2,*, Ervin Kaminski Lenzi 2,3, Luis Carlos Malacarne 1,
Sergio Picoli 1 and Max Jauregui 1

1 Departamento de Física, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900,
Brazil; lcmala@dfi.uem.br (L.C.M.); spjunior@dfi.uem.br (S.P.); 8jauregui@gmail.com (M.J.)

2 National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150,
Rio de Janeiro 22290-180, Brazil; eklenzi@uepg.br

3 Departamento de Física, Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti 4748,
Ponta Grossa 84030-900, Brazil

* Correspondence: rsmendes@dfi.uem.br; Tel.: +55-44-3011-5445

Academic Editor: Angelo Plastino
Received: 24 February 2017; Accepted: 30 March 2017; Published: 1 April 2017

Abstract: A nonlinear random walk related to the porous medium equation (nonlinear Fokker–Planck
equation) is investigated. This random walk is such that when the number of steps is sufficiently
large, the probability of finding the walker in a certain position after taking a determined number
of steps approximates to a q-Gaussian distribution (Gq,β(x) ∝ [1− (1− q)βx2]1/(1−q)), which is a
solution of the porous medium equation. This can be seen as a verification of a generalized central
limit theorem where the attractor is a q-Gaussian distribution, reducing to the Gaussian one when the
linearity is recovered (q→ 1). In addition, motivated by this random walk, a nonlinear Markov chain
is suggested.

Keywords: anomalous diffusion; random walks; long-tailed distributions; Markov chains

1. Introduction

In the beginning of the last century, important results concerning Brownian motion were obtained
by Einstein [1], Langevin [2], Fokker [3], and Planck [4], among others. Those investigations were
mainly based on the random walk of a particle moving in a fluid in thermodynamical equilibrium.
In this context, the particle’s position could be essentially viewed as a composition of successive
aleatory steps due to the action of a random force, related to the interaction with other particles
of the medium. Thus, the particle’s position can be found by solving the corresponding Langevin
equation [2,5]. Another approach to describing the diffusive aspect of the particle motion focuses on
the probabilities of finding a particle in their possible positions (states), whose dynamics is governed
by a linear Fokker–Planck equation [3,4,6]. An important particular solution of this equation is the
Gaussian distribution.

The limiting behavior of the probability of the composition of successive aleatory steps in a
random walk when the number of steps is very large is directly related to the central limit theorem [5–7].
Basically, this theorem says that the limiting distribution of the sum of independent random variables
is a Gaussian distribution [7,8]. Probably the most famous situation where this fact occurs is in a simple
random walk where the steps are independent and of the same length. In this case, the probability of
finding the walker in a certain position after taking a determined number of steps corresponds to a
binomial distribution, which—in agreement with the central limit theorem—approximates a Gaussian
distribution when the number of steps is sufficiently large [7,9].
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Starting from a random walk (discrete case) with steps that are independent and of equal length,
we can obtain a normal diffusion process (continuous case) when we let the number of steps increase
without bound. This diffusion process is governed by a linear Fokker–Planck equation, whose
solution is the Gaussian distribution. Thus, obtaining a diffusion process as the continuous limit of
a random walk can be visualized as a verification of the central limit theorem. On the other hand,
starting from a normal diffusion process governed by a Fokker–Planck equation whose solution is a
Gaussian distribution, we can employ a discretization process in order to obtain a random walk. This
random walk will be such that the distribution of the position of the walker after taking a determined
number of steps converges to the solution of the Fokker–Planck equation—namely the Gaussian
distribution—when the number of steps tends to infinity. Thus, we generate a random walk that
verifies the central limit theorem.

Generalizations of the central limit theorem that consider weak relaxation of the basic hypothesis
of independence (weak dependence) are available in the literature [7,10,11]. More recently, some results
concerning the central limit theorem have been obtained for strongly correlated situations [12–14] (see
also [15–17]) in scenarios related to nonextensive statistical mechanics [18,19]. For instance, when the
usual statistical mechanics does not give a good description of the thermodynamical equilibrium state,
it was verified by using numerical simulations that a system with long-range interactions leads to a
strong violation of the central limit theorem [20–23]. In addition, there are many situations where the
diffusive-like process of particles in a medium is not the usual one, and is usually described in terms
of phenomenological anomalous diffusion equations. In particular, these equations have solutions
which are different from the Gaussian distribution.

The idea of the present article is to study a generalized random walk by starting from a nonlinear
diffusion equation (or nonlinear Fokker–Planck equation). This random walk will show strong
correlations since—as we will show—the distribution of the position of the walker after taking a large
number of steps will approximate the solution of the nonlinear Fokker–Planck equation, which is not
the Gaussian distribution. In this direction, we will verify a kind of generalization of the central limit
theorem. The organization of this article is as follows: Section 2 contains a brief discussion of relevant
aspects of random walks and master equations in order to motivate the corresponding generalizations
based on a nonlinear Fokker–Planck equation, which will be shown in Section 3; a more general
scenario is indicated in Section 4; and finally, we conclude in Section 5.

2. Usual Random Walk

Consider the basic problem of a particle performing one-dimensional successive steps, each of
length a and time interval τ, with equal waits. The equation for the probabilities is

Pn+1(m) =
1
2

Pn(m + 1) +
1
2

Pn(m− 1) , (1)

where Pn(m) is the probability of finding the particle in position x = am at time t = τn with m and
n ≥ 0 being integers. As it is known, when the initial condition is localized in a given position m
(i.e., P0(m) = δm,0; here, δm,0 = 1 if m = 0, and otherwise δm,0 = 0) , the above equation leads to the
binomial distribution

Pn(m) =
1
2n

(
n

n−m
2

)
=

1
2n

n!( n−m
2
)
!
( n+m

2
)
!
, (2)

where m is odd (even) if n is odd (even) and |m| ≤ n; Pn(m) = 0 for other values of m. This solution,
when multiplied by 2n, may be written as the following table
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n\m · · · −4 −3 −2 −1 0 1 2 3 4 · · ·

0 · · · 0 0 0 0 1 0 0 0 0 · · ·
1 · · · 0 0 0 1 0 1 0 0 0 · · ·
2 · · · 0 0 1 0 2 0 1 0 0 · · ·
3 · · · 0 1 0 3 0 3 0 1 0 · · ·
4 · · · 1 0 4 0 6 0 4 0 1 · · ·
...

...

(3)

where the nonzero numbers form the Pascal triangle. If the variables n1 = (n + m)/2 and
n2 = (n−m)/2 are employed, the distribution given in Equation (2) reduces to the usual form of the
binomial distribution, 2nPn(n1) = n!/(n1! n2!).

Formally, using the approximations

∂Pn(m)

∂n
' Pn+b(m)− Pn(m)

b
and

∂2Pn(m)

∂m2 ' Pn(m + c)− 2Pn(m) + Pn(m− c)
c2 (4)

for large n and |m| with b = 1 and c = 1, the random walk Equation (1) can be approximated by the
linear Fokker–Planck equation (usual diffusion one)

∂Pn(m)

∂n
=

1
2

∂2Pn(m)

∂m2 or
∂ρ(x, t)

∂t
= D

∂2ρ(x, t)
∂x2 , (5)

with x = am, t = τn, ρ(x, t) = Pn(m)/a and D = a2/2τ. In fact, subtracting Pn(m) from both sides of
Equation (1) and taking a macroscopic limit, we can obtain Equation (5) directly.

The solutions of Equation (5) that have probabilistic interpretation, with P0(m) = δ(m) or
ρ(x, 0) = δ(x), are given by

Pn(m) =
exp(−m2

2n )√
2πn

or ρ(x, t) =
exp(− x2

4D t )√
4πD t

. (6)

Both expressions are related to the Gaussian distribution, defined by

G(µ, σ; x) =
exp(− (x−µ)2

2σ2 )
√

2πσ
, (7)

where µ and σ are, respectively, the mean and the variance of the distribution. For instance, from the
last expression in Equation (6), we have ρ(x, t) = G(0,

√
2Dt; x).

We have shown that—starting from the random walk Equation (1) and using the approximations
given in Equation (4)—it is possible to obtain the linear Fokker–Planck Equation (5). So, we went from
a discrete case to a continuous one. Consistently, the distribution given in Equation (2) should converge
to the Gaussian distribution given in Equation (6) when the number of steps n in the random walk
increases without bound. This actually happens by virtue of the central limit theorem (indeed, this can
be verified directly from Equation (2) by using Stirling’s formula). Thus, the mentioned procedure can
be seen as a verification of the central limit theorem. Conversely, starting from Equation (5) and using
the discretizations given in Equation (4), we can obtain an equation of a random walk (in particular,
we can obtain Equation (1)). This random walk will be such that the distribution of the position of
the walker after taking a determined number of steps converges to the solution of the Fokker–Planck
Equation (6) when the number of steps tends to infinity. Thus, we generate a random walk that verifies
the central limit theorem.

As we pointed out, there are anomalous diffusive processes where Equation (5) does not give
the correct description. In this direction, generalizations of Equation (5) that preserve linearity have
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been made by the introduction of a diffusion coefficient which depends on time and space [24], spatial
fractional derivatives (Lévy diffusion) [25–27], and a combination of them [28,29]. These anomalous
cases and many others may be viewed as a continuous limit of

Pn+1(m) = ∑
s

pn(m, s) Pn(m + s) , (8)

where the sum covers all possible states and pn(m, s) is the probability of moving from the position
m + s to the position m at the (n + 1)th step. When the process is continuous in time, the master
equation must be used instead of Equation (8). Moreover, Equation (8) can be written in the usual form

Pn+1(m) = ∑
m′

Tn(m, m′) Pn(m′) , (9)

where Tn(m, m′) = pn(m, m′ − m). Note that recursive application of Equation (8) naturally
leads to a generalization of the binomial distribution given in Equation (2), since by using
pn(m, s) = (1/2)δs,1 + (1/2)δs,−1 and the initial condition Pn(m) = δm,0, one recovers Equations (1)
and (2). Notice also that this choice for the transition probabilities pn(m, s) is the simplest one related
to Equation (5) for large n. Other choices basically may arise as convenient discretizations of the
derivatives in Equation (5).

3. Nonlinear Random Walk

In addition to linear diffusions, there are anomalous diffusive situations that involve nonlinearities.
Theoretically, we could ask ourselves if it is possible to generalize what has been shown in the previous
section to a nonlinear context. As a guide for a possible generalization, we will start with the porous
media equation [30], considering it in the frame of probability distributions (i.e., as a kind of a
Fokker–Planck equation). We choose to begin our study from the porous media equation because
it is one of the best-known nonlinear diffusion equations. We believe that this type of investigation
provides new insights into recent studies of nonlinear diffusive processes like the ones related to
non-extensive statistical mechanics [31–36]. In general (as we shall see), the approach presented here
aims to indicate a possible route to investigating a broad class of central limit theorems, which can be
useful in physical contexts.

The porous media equation [30] reads

∂ρ(x, t)
∂t

= D
∂2[ρ(x, t)]ν

∂x2 , (10)

where ν is a real parameter. This equation appears, for instance, in the discussion of the percolation
of gases through porous media (ν ≥ 2 [37]), thin saturated regions in porous media (ν = 2 [38]), thin
liquid films spreading under gravity (ν = 4 [39]), radiative heat transfer by Marshak waves (ν = 7 [40]),
solid-on-solid model for surface growth (ν = 3 [30]), among others (see also [41]). Moreover,
this nonlinear equation was firstly investigated as a Fokker–Planck one in connection with Tsallis
statistics by Plastino and Plastino [42]. After that, several other studies were performed [31–36,43,44].
In particular, a nonlinear master equation that may be used to reobtain the nonlinear Fokker–Planck
equation was proposed [45]. Related to the last equation, generalized Block [46] (with its path integral
solution) and von Neumann [47] equations were also investigated.

The q-Gaussian distribution of parameters q < 3 and β > 0 is characterized by the density [12]

Gq,β(x) =


√

β

Cq
e−βx2

q if 1 > (1− q)βx2

0 otherwise,
(11)
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where

ey
q =

{
[1 + (1− q)y]1/(1−q) for q 6= 1

ey for q = 1
(12)

is the q-exponential function, defined for every real y such that 1 + (1− q)y > 0, and

Cq =



2
√

πΓ( 1
1−q )

(3−q)
√

1−qΓ( 3−q
2(1−q) )

for q < 1
√

π for q = 1
√

πΓ( 3−q
2(q−1) )√

q−1Γ( 1
q−1 )

if 1 < q < 3

(13)

is a normalization constant (if q ≥ 3, the normalization integral diverges). We note
immediately that for q < 1, a q-Gaussian distribution has compact support—namely, the interval
[−1/

√
(1− q)β, 1/

√
(1− q)β]; if 1 ≤ q < 3, the support of this distribution is the whole real line.

The solution of Equation (10), which generalizes the usual Gaussian solution given in Equation (6),
is written in terms of a q-Gaussian distribution as

ρ(x, t) = Gq,β(x) , with q = 2− ν and β =

(
C1−q

q

2(3− q)Dt

)2/(3−q)

, (14)

where D = (2− q)D and Cq is given in Equation (13). We note immediately that Equation (6) is
recovered from Equation (14) when q = 1 (ν = 1). We also mention that the nonlinear logarithmic
equation corresponds to q = 2 and that using D finite instead of D is more convenient [48].

Following the line of reasoning of the previous section, it is possible to obtain a simple nonlinear
random walk from the nonlinear Fokker–Planck Equation (10) by considering a discrete version of
the spatial derivatives. Indeed, using the substitutions m = x/a, n = t/τ and Pn(m) = aρ(x, t),
Equation (10) yields

∂Pn(m)

∂n
=

1
2

∂2[Pn(m)]ν

∂m2 , (15)

where, for simplicity, we have also considered that D = a1+ν/(2τ). Using the discretizations given in
Equation (4) in Equation (15), we obtain

Pn+1(m) =
1
2
[Pn(m + 1)]ν +

1
2
[Pn(m− 1)]ν − [Pn(m)]ν + Pn(m). (16)

In fact, as in the linear case given in Equation (5), this equation is formally approximated by
Equation (15) for large n and |m|. Note that Equation (16) generalizes the simplest random walk
(Equation (1)) and goes in the direction of Equation (10) for long time. In contrast to Equation (1), we
will see later that Equation (16) for ν 6= 1 allows the walker to remain in the same position after taking
one step. If instead of considering D = a1+ν/(2τ) we put D = a1+ν/2, the procedure of discretization
of Equation (10) described above yields

Pn+1(m) =
τ

2
[Pn(m + 1)]ν +

τ

2
[Pn(m− 1)]ν − τ[Pn(m)]ν + Pn(m) , (17)

which says that the walker can stay in the same position after taking one step, even in the case ν = 1.
For ν 6= 1, the solution of Equation (16) with the initial condition P0(m) = δm,0 will approximate

the solution of the nonlinear Fokker–Planck Equation (10), given in Equation (14). This can be seen as
a verification of a generalized central limit theorem that involves a q-Gaussian distribution [12]. Before
we continue with our line of reasoning, we mention that another point of view based on Equation (5)
and its associated stochastic differential equation has been employed to discuss a random walk [49].
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A more general framework than that of Equation (16) is to consider the random walk described by

Pn+1(m) = ∑
s

pn(m, s)[Pn(m + s)]ν − [Pn(m)]ν + Pn(m) , (18)

where in this case pn(m, s) is a quantity related to the probability of moving from the position m + s to
the position m at the (n + 1)th step. By choosing pn(m, s) conveniently, a large class of equations that
mix nonlinearities, spatial- and time-dependent diffusion coefficients, and spatial fractional derivatives
may be obtained as a limiting case.

We note that the dynamics generated by Equation (18) may preserve the normalization of the
probabilities. Indeed, we have

∑
m

Pn+1(m) = ∑
m

∑
s

pn(m, s)[Pn(m + s)]ν −∑
m
[Pn(m)]ν + ∑

m
Pn(m)

= ∑
m

∑
m′

pn(m, m′ −m)[Pn(m′)]ν −∑
m
[Pn(m)]ν + ∑

m
Pn(m) .

(19)

If pn(m, m′−m)[Pn(m′)]ν ≥ 0 for any m and m′, ∑m p(m, m′−m) = 1 for any m′, and ∑m[Pn(m)]ν

and ∑m Pn(m) are finite, then we can change the order of the summation in the first term of the
right-hand side of Equation (19) and obtain ∑m Pn+1(m) = ∑m Pn(m). We see from Equation (18) that
Pn(m) is certainly non-negative if each initial probability P0(m) is also non-negative and −Pn(m)ν +

Pn(m) ≥ 0, which leads to ν ≥ 1. In contrast, if ν < 1 and every initial probability P0(m) is non-negative,
∑m Pn(m) remains unchanged for any n, but some of the Pn(m)’s became imaginary for a sufficiently
large n. However, if we consider Equation (17) rather than Equation (16), we can choose τ small
enough to avoid imaginary probabilities for a large number of steps. In the following, our discussion
will focus on the case ν ≥ 1, which is compatible with the examples of anomalous diffusion cited in
the first paragraph of this section.

Let us consider that the quantities pn(m, s) do not depend on the position m; i.e., pn(m, s) = pn(s)
for any m. Defining the expected values En(sk) = ∑s sk pn(s) and E(α)

n (mk) = ∑m mk[Pn(m)]α, which
contains the usual one, E(mk), as the particular case α = 1, it follows from Equation (18) that

E1(mw) = ∑
m

∑
s

mw p0(s)[P0(m + s)]ν − E(ν)
0 (mw) + E0(mw)

...

En(mw) = ∑
m

∑
s

mw pn−1(s)[Pn−1(m + s)]ν − E(ν)
n−1(m

w) + En−1(mw) .

(20)

Adding these equations yields

En(mw) = E0(mw)−
n−1

∑
u=0

E(ν)
u (mw) +

n−1

∑
u=0

∑
m

∑
s

mw pu(s)[Pu(m + s)]ν

= E0(mw)−
n−1

∑
u=0

E(ν)
u (mw) +

n−1

∑
u=0

∑
m′

∑
s
(m′ − s)w pu(s)[Pu(m′)]ν .

(21)

Using the binomial theorem, we obtain

En(mw) = E0(mw)−
n−1

∑
u=0

E(ν)
u (mw) +

w

∑
k=0

(−1)k
(

w
k

) n−1

∑
u=0

∑
s

sk pu(s)∑
m′

m′w−k
[Pu(m′)]ν (22)

and, therefore,

En(mw) = E0(mw) +
w

∑
k=1

(−1)k
(

w
k

) n−1

∑
u=0

eu(sk)E(ν)
u (mw−k) . (23)
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In particular, one has

En(m) = E0(m)−
n−1

∑
u=0

eu(s)E
(ν)
u (1) , and

En(m2) = E0(m2)− 2
n−1

∑
u=0

eu(s)E
(ν)
u (m) +

n−1

∑
u=0

eu(s2)E(ν)
u (1) .

(24)

If one considers Equation (16), then pn(s) = (δs,1 + δs,−1)/2 and eu(1) = 1, eu(s) = 0, eu(s2) = 1,
eu(s3) = 0, and so on. Moreover, E0(m) = E0(m2) = 0, since P0(m) = δm,0. Thus, using these facts,
we obtain En(m) = 0 and

En(m2) =
n−1

∑
u=0

E(ν)
u (1) =

n−1

∑
u=0

∑
m
[Pu(m)]ν . (25)

For ν ≥ 1, we have [Pn(m)]ν ≤ Pn(m), and consequently, En(m2) ≤ n. Thus, the case ν ≥ 1 is
consistent with a subdiffusive regime. In this case we also have that

E(ν)
n (m2) = ∑

m
m2[Pn(m)]ν ≤∑

m
m2Pn(m) = En(m2) , (26)

which implies that E(ν)
n (m2) ≤ n. Finally, we see from Equation (25) that for ν = 1, we obtain

En(m2) = n, recovering the variance of the simple random walk.
The solution of Equation (16) multiplied by 2n gives a generalized version of the Pascal triangle

shown in Equation (3). However, for |m| ≤ n, when m is odd (even) and n even (odd), the values in
this generalized triangle are usually different from zero, as we show in the following:

n\m · · · −2 −1 0 1 2 · · ·

0 · · · 0 0 1 0 0 · · ·
1 · · · 0 1 0 1 0 · · ·
2 · · · 21−ν 2−22−ν 22−ν 2−22−ν 21−ν · · ·
...

...

(27)

Simple relations for generic elements of this triangle are generally cumbersome when compared
with the usual case (ν = 1). For instance, the element corresponding to m = n is 2n−ν0−ν1−···−νn−1

,
which reduces just to 1 when ν = 1.

As we pointed out, the solution of the simplest random walk given in Equation (2) becomes
equal to zero for m odd (even) when n even (odd). This fact does not occur for n > 1 when ν > 1,
but its signature can be identified for ν close to 1 and n not so large. Thus, these facts justify using
the term “formally” when obtaining Equations (5) and (15) from Equations (1) and (16), respectively.
In order to get rid of the null probabilities in the solution of the simple random walk (ν = 1) given
in Equation (2), we will consider the distribution P̃n(m) = (Pn(m) + Pn−1(m))/2. We could have
considered, for instance, the arithmetic mean of n values; however, our choice is the simplest one.
Figure 1 shows P̃n(m) for ν = 1 compared with the Gaussian distribution given in Equation (6), and
also exhibits the corresponding standard deviation. Analogous illustrations are shown in Figure 2 for
the case ν = 1.5. We have chosen to represent σ1+ν versus n in panel (B) of Figures 1 and 2, since from
Equation (14), we verify that σ ∝ n1/(1+ν). In the case ν < 1, we remarked after Equation (19) that it is
possible to obtain the random walk given in Equation (17) by choosing τ to be small enough. More
precisely, for each τ > 0, there will be a maximum step number nτ such that Pn(m) is not imaginary
for all n < nτ . In addition, for ν < 1, we can obtain an analogous version of Figure 2A that shows an
agreement with a q-Gaussian distribution with unbounded support (q ≥ 1), and consequently, with
σ ∝ n1/(1+ν).
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Recent efforts have obtained a generalization of the central limit theorem for sequences of random
variables that show a special type of strong correlation, usually referred to as q-independence [12,14]
(see also [15–17]). The attractor in this generalized theorem is a q-Gaussian distribution with q ≥ 1,
which has unbounded support. In contrast, in this work we have exhibited a nonlinear random walk
such that when the number of steps increases without bound, the distribution of the position of the
walker converges to a q-Gaussian distribution with compact support (q < 1).

(A) (B)
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m'
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10-4

10-5
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n

Figure 1. (A) Scaled probability distribution, P′(m′) = n2P̃n(m), versus scaled position, m′ = n−2m,
for the usual random walk (ν = 1). The continuous line is the Gaussian distribution given in
Equation (6), and the black squares represent the probabilities P̃n(m) after 30 times steps (i.e., n = 30);
(B) The dependence on n of a power of the standard deviation, σ2, for the usual case (ν = 1).

(A) (B)

-2 0 2
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m'
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5
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20

 

 

n

Figure 2. (A) Scaled probability distribution, P′(m′) = n1+ν P̃n(m), versus scaled position,
m′ = n−1−νm, for the nonlinear random walk with ν = 1.5. The continuous line is the q-Gaussian
distribution given in Equation (14) with q = 2− ν, and the black circles represent the probabilities
P̃n(m) after 30 times steps (i.e., n = 30); (B) The dependence on n of a power of the standard deviation,
σ1+ν, for the nonlinear case with ν = 1.5.

4. A More General Perspective

Before we conclude this work, we would like to remark that the introduction of the nonlinear
Markov framework (see Equation (18))—proposed in connection with the nonlinear Fokker–Planck
equation—may be extended to other kinds of generalized random walks. In this direction, we briefly
indicate two scenarios. First, a very general nonlinear Markov process may be described by

Pn+1(m) = ∑
m′

Tn(m, m′, {Pn(k)}) Pn(m′) , (28)
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where Tn(m, m′, {Pn(k)}) is related to a transition probability from m′-state to m-state, and may depend
on the probabilities Pn(k)’s. If the transition matrices Tn do not depend on the Pk’s, the usual case
given in Equation (9) is recovered. In addition, if Tn(m, m′, {Pn(k)}) = pn(m, m′ −m)Pn(m′)ν−1 for
m′ 6= m and Tn(m, m, {Pn(k)}) = (pn(m, 0)− 1)Pn(m)ν−1 + 1, one obtains Equation (18). If in this
context Tn(m, m′, {Pn(k)}) has the status of probability, one has for all n, m, and m′ that

Tn(m, m′, {Pn(k)})≥0 and ∑
m

Tn(m, m′, {Pn(k)})=1 . (29)

This equality is a consequence of the normalization condition ∑m Pn(m) = 1. Furthermore, when
there is a stationary distribution P(m), it must satisfy the equation

P(m) = ∑
m′

Tn(m, m′, {P(k)}) P(m′) . (30)

Rather than discussing further general properties of a nonlinear Markov chain, we conclude
with an extension related to the porous media Equation (10). According to the central limit theorem,
the distribution of the random variable y = n−γ ∑n

i=1 xi—where γ = 1/2 and xi are independent and
identically distributed random variables with null expectation and finite variance—converges to the
Gaussian distribution p(y) = (2π)−1/2 exp(−y2/2) as n → ∞. On the other hand, when one looks
for generalizations of the central limit theorem, several possibilities may be considered going from
γ 6= 1/2 to non-Gaussian probability distributions. In fact, in addition to the previous discussion
about the nonlinear Fokker–Planck Equation (10), several other situations could be considered. A very
general illustrative possibility is to consider a diffusion coefficient that depends on space and time,
spatial fractional derivatives, and nonlinearities; for instance,

∂Pn(m)

∂n
=

∂

∂m

(
D

∂µ−1Pn(m)ν

∂|m|µ−1

)
(31)

with D ∝ nα|m|β (t = τn and x = am). Instead of considering the discrete version of Equation (31) and
analyzing the random walk as in the previous section, we conclude our discussion with the following
observation on the exponent γ. Noting that the normalization condition for P implies P ∼ 1/m
(via dimensional analysis), Equation (31) leads to the scaling law m ∼ nγ, with

γ =
1 + α

µ + ν− β− 1
. (32)

In addition to the usual diffusion (µ = 2, ν = 1, and α = β = 0), where γ = 1/2, this expression
contains several relevant particular cases. For example, the Richardson diffusion [24] (µ = 2, ν = 1,
and α = 0) has γ = 1/(2 + β), Lévy diffusion [25–27] (α = 0, ν = 1, and β = 0) leads to γ = 1/µ, and
porous media diffusion [37] (µ = 2, α = 0, and β = 0) exhibits γ = 1/(1 + ν).

5. Conclusions

In summary, we have considered a random walk that arises from a nonlinear Fokker–Planck
equation and some of its consequences. More precisely, the random walk analyzed here generalizes
the simplest one (a free particle walking a given distance in a positive or negative direction at each
step of time) via a nonlinear Markov chain obtained from the porous media equation. In this study, we
identified generalizations of the Pascal triangle and the central limit theorem, where the generalized
attractor is a q-Gaussian distribution, reducing to the Gaussian one when the linearity is recovered.
The verification of this theorem is viewed as the solution of the partial differential equation that
corresponds to the long time behavior of the Markov chain. In addition, we indicated a possible
scenario for a very general nonlinear Markov chain, suggesting that it may be useful in situations
related to anomalous diffusion equations.
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