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Abstract: In dilation or erosion processes, a shock filter is widely used in signal enhancing or
image deburring. Traditionally, sign function is employed in shock filtering for reweighting of
edge-detection in images and decides whether a pixel should dilate to the local maximum or evolve
to the local minimum. Some researchers replace sign function with tanh function or arctan function,
trying to change the evolution tracks of the pixels when filtering is in progress. However, analysis
here reveals that only function replacement does usually not work. This paper revisits first shock
filters and their modifications. Then, a fuzzy shock filter is proposed after a membership function
in a shock filter model is adopted to adjust the evolve rate of image pixels. The proposed filter
is a parameter tuning system, which unites several formulations of shock filters into one fuzzy
framework. Experimental results show that the new filter is flexible and robust and can converge fast.
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1. Introduction

Image enhancement is a method for improving the quality or sharpening certain details of
an image and is widely used in many fields such as fingerprint recognition [1], medical image
processing [2–4], remote sense image processing [5], and underwater image processing [6]. There is
an enormous amount of different approaches to performing image enhancing, which can broadly
be divided into domain transform [2,5,7,8], histogram equalization [3,9], and feature-oriented
filtering [10–13]. As a feature-oriented filtering approach, shock filters are easily implemented and are
effective in edge enhancing in image enhancing tasks.

In the past few years, there has been a growing amount of research concerning partial differential
equations (PDEs) for computer vision and image processing [8,14–19]. PDEs have come into a general
framework for enhancement purposes and are developed in a coupled or independent manner. Shock
filters are such a PDE-based approach for the enhancement of image signals proposed by Osher and
Rudin [12], which is attractive for many other applications such as motion deblurring [20], geometry
processing [13], and image restoration [21]. In contrast to Fourier- or wavelet-based methods, or linear
approaches, shock filters avoid Gibbs phenomena in spatial domains.

The first shock filter was proposed by Kramer and Bruckner in 1975 [22], where the Laplacian of
a pixel was calculated first and the sign of the Laplacian was employed to decide which influence zone
the pixel belongs to. If the Laplacian is positive, the pixel is considered to be in a maximum influence
zone and will perform a dilation process, while if the Laplacian is negative, the pixel belongs to
a minimum influence zone and will perform an erosion process. The dilation and erosion processes are
iterated until the borderlines between the maximum and minimum zones are sharply discontinued to
an appropriate level. Kramer and Bruckner formulated their shock filters in a discrete way. In contrast
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to their discrete shock filter, Osher and Rudin introduced a continuous shock filter based on PDEs [12],
which most of the current shock filter formulations are based on for modification.

Shock filters are popular in many applications [23–25] because of several advantages: Firstly, they
create sharp discontinuities at edges in images and flat signals in other area. Second, they do not
change the total variation of an image, so they are stable. However, although the conventional shock
filters are attractive in many fields, especially in image enhancing, they are noise sensitive and will
enhance the noise when they enhance the signals.

The goal of this paper is to propose a novel shock filter called a fuzzy shock filter, which is
an adapted version of the shock filters. It provides a general framework for the different function
that estimates the flow direction of the pixels; namely, we can select different functions or different
parameters to sharpen or flatten a pixel in the same framework. The proposed fuzzy shock filter is
more flexible and robust.

The paper is organized as follows. In Section 2, we revisit the formulation of the conventional
shock filter proposed by Osher and Rudin and then other modified formulations are provided and
discussed. In Section 3, we start by analyzing the value of edge response of images and then propose
our fuzzy shock filter. Section 4 shows a number of experimental results of the proposed method,
and some comparisons are provided. Section 5 concludes the paper.

2. Shock Filter and Its Modifications

The formulation of the conventional shock filter is described as Equation (1). Considering
a continuous image I(x, y) : R2 → R . Then, a sequence of sharpened images {I(x, y, t)|t ≥ 0} evolve
by the PDE: {

dI(x,y,t)
dt = −sign(∆I(x, y, t))‖∇I(x, y, t)‖

I(x, y, 0) = I(x, y)
(1)

where ∇I is the gradient of I, I(x, y, 0) is the original image, sign(x) is the sign function, and ∆I is
Laplacian of I (as shown in Figure 1).
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A number of modifications of the shock filter have been proposed in recent years. The second
derivative of an image has been used as an edge detector instead of a Laplacian operator, and better
performances are reported in other papers [13,26,27]. For instance, more recently, it was mentioned
in [13] that (∇It)

T Ht(∇It) with Ht, the Hessian of It, is adopted as an edge detector. To make the filters
more robust, the edge detector can even take the convolution with Gaussian in [26]. Taking into account
of the modification of edge detectors and note I(x, y, t) as It, then shock filter can be described as{

dIt
dt = −sign(L(It))‖∇It‖
I0 = I(x, y)

(2)
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where L(It) is an edge detector such as Laplacian or the second derivative of It along the
gradient direction.

Another way to improve the shock filter is to replace the sign function with other functions
such as tanh (hyperbolic tangent function) and atan (arctan function) [28], as shown in Figure 1.
In Equations (1)–(3), sign, tanh, and atan functions are defined, respectively, as

sign(x) =


1, x > 0;
0, x = 0;
−1, x < 0.

tanh(x) = (ex − e(−x))/(ex + e(−x))

atan(x) =
2arctan(x)

π
.

In the shock filter, the sign function is employed to find the sign of the edge response value of
an image pixel and different sign will be further used to decide which influence zone (maximum zone
or minimum zone) the pixel belongs to. The extended shock filter is given by{

dIt
dt = −F(L(It))‖∇It‖
I0 = I(x, y)

(3)

where the F function can be sign(x), tanh(x), or atan(x).

3. Fuzzy Shock Filter

3.1. Edge Response Value Analysis

In Equation (3), L(It) can be any second-order edge detector. We adopt

L(I) =
1

‖∇I‖2

(
I2
x Ixx + 2Ix Iy Ixy + I2

y Iyy

)
(4)

which corresponds to the second derivative of image I in the direction of the normal to the isophotes.
Take Figure 2a (Shape) as the test image for instance: We iterated Equation (3) several times. Figure 3
shows the changes in L(I) values at different iteration times when F(s) = tanh(s). Situations are
similar when F(s) = atan(s). Figure 3 shows that, with the increment in iteration times, the values of
L(I) keep increasing either when F(s) = tanh(s) or when F(s) = atan(s). However, once the value of
L(I) falls out of a certain scope, the values of sign(L(I)), tanh(L(It)), and atan(L(It)) are very similar
according to the function curves in Figure 1. It is not difficult to find that most of the values of L(I) are
out of the span of [−10, 10] in Figure 3, which are on the edge area of the image especially observed
from the mesh figure in Figure 3. Therefore, we believe that simply replacing the sign function with
tanh(x) or atan(x) cannot improve the performance of the conventional shock filter theoretically.
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In the experiments, we tested Model (3) using F(s) = tanh(s), F(s) = atan(s), and F(s) = sign(s),
respectively. Figure 4 shows the values of the peak signal-to-noise ratio (PSNR) at different iteration
times during the filtering. It is obvious in Figure 4 that the trends of the PSNR coincide when the
F function is sign, tanh, or atan. Therefore, it is easy to deduce again that to merely replace sign(x) with
tanh(x) or atan(x) will not change the filtering result.Entropy 2017, 19, x  5 of 10 
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3.2. Fuzzy Shock Filter

The F function in the shock filter is used to decide which influence zone a pixel belongs to.
If a pixel belongs to an influence zone of a local maximum, the pixel will be enhanced (the value of it
will be increased in proportion to its gradient); otherwise, it will be flattened (the value of it will be
decreased in proportion to its gradient). Noise can also be enhanced if they are in a maximum zone
during the shock filter. Thus, we introduce a fuzzy membership function gaussmf into shock filter and
modify it to 

dIt
dt = −‖∇It‖gaussmf(|L′(It)|, σ, c)sign(L(It))

L′(It) = Norm(L(It))

I0 = I(x, y)
(5)

where gaussmf(x, σ, c) = e
−(x−c)2

2σ2 is employed as a membership function, Norm is normalization
function and |*| is the absolute value of *. Tuning the parameter pair (σ, c) in Equation (5) to different
values can obtain different filters. Figure 5 shows that, when (σ, c) = (5, 1), the function curve of
gaussmf is very similar to that of the tanh function. Namely, different (σ, c) results in different change
track of a pixel in the image, and different filters are therefore obtained.
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4. Experiments

We demonstrate the effectiveness and robustness of our method using a variety of images,
as shown in Figures 7–10. We start our experiment with comparing conventional shock filter and the
proposed fuzzy shock filter as shown in Figure 7. Several filters are applied to the “Shape” dataset.
We observe that the filtering results of different filters are similar in a visual way.
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the conventional shock filter; (c) F(x) = tanh(x); (d) F(x) = atan(x); (e) fuzzy shock filter with σ = 5 and
c = 0.6; (f) fuzzy shock filter with σ = 0.3 and c = 0.6.
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Figures 8 and 9 show the filtering results of two dataset (Giraffe and Shape) at different iteration
times using the proposed fuzzy shock filter with (σ, c) = (5, 0.6). It is obvious to find that our filter
converges fast. Figure 10 show the comparison of the proposed fuzzy shock filter with different (σ, c)
parameters when iteration times t = 5.

On the other hand, the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [29] are two widely used objective standard for image quality evaluation:

PSNR = 10× log(
(2b − 1)

2

MSE
)
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where b is image bit, MSE describes the Mean Square Error between the original image and the
processed image. The larger the value of PSNR is, the less distortion the processed image has. SSIM
is a standard to evaluate the structure similarity between two images, which is introduced firstly by
Laboratory for Image and Video Engineering at University of Texas at Austin. Given two images x
and y, the SSIM of them is calculated by

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

)
where µs is the mean value of s, σ2

s is the variance of s, and σxy is the standard deviation of x and y.
c1 = (k1L)2, c2 = (k2L)2 are constants for stability, where L is a dynamic range of pixel value. In our
experiments, k1 = 0.01, k2 = 0.03. It can be deduced that the value range of SSIM is from −1 to 1, and
the SSIM of the two same images is 1. Table 1 shows the PSNR and SSIM of the Shape data at different
iteration times using different filters, where sign, atan, and tanh note three filters described in Equation
(3), FS(s, t) means the proposed fuzzy shock filter with (σ, c) = (s, t).

Table 1. Evaluation using PSNR and the structural similarity index (SSIM).

Test
Images

Iteration
Times Quantity sign atan tanh FS(0.2, 0.7) FS(5, 1) FS(0, 1) FS(0.3, 0.6)

Shapes

5 PSNR 26.3889 26.4506 26.4017 42.8651 26.4969 55.1689 35.3540
5 SSIM 0.8839 0.8842 0.8832 0.9980 0.8865 0.9999 0.9870

20 PSNR 36.6110 36.6484 36.6189 49.5914 36.7211 58.2816 43.0428
20 SSIM 0.9863 0.9866 0.9864 0.9996 0.9866 0.9999 0.9978

5. Conclusions

We studied the shock filter and its modifications and have proposed a fuzzy shock filter using
a fuzzy membership function. The proposed fuzzy shock filter presented the shock filter in a new way
whereby several shock filter formulations can be united into one framework through the proposed
membership function. The new fuzzy shock filter has provided a new parameter tuning shock filter
model, which is flexible and robust, and can converge in short iteration times.
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