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Abstract: The characterisation of healthy ageing of the brain could help create a fingerprint of normal
ageing that might assist in the early diagnosis of neurodegenerative conditions. This study examined
changes in resting state magnetoencephalogram (MEG) permutation entropy due to age and gender
in a sample of 220 healthy participants (98 males and 122 females, ages ranging between 7 and 84).
Entropy was quantified using normalised permutation entropy and modified permutation entropy,
with an embedding dimension of 5 and a lag of 1 as the input parameters for both algorithms. Effects
of age were observed over the five regions of the brain, i.e., anterior, central, posterior, and left
and right lateral, with the anterior and central regions containing the highest permutation entropy.
Statistically significant differences due to age were observed in the different brain regions for both
genders, with the evolutions described using the fitting of polynomial regressions. Nevertheless,
no significant differences between the genders were observed across all ages. These results suggest
that the evolution of entropy in the background brain activity, quantified with permutation entropy
algorithms, might be considered an alternative illustration of a ‘nominal’ physiological rhythm.
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1. Introduction

Neurophysiological studies of the human brain have long emphasised the rate of age effects in
healthy individuals. Different studies have shown however that gender also plays an important role in
the development of the brain throughout life [1–4].

The use of magnetoencephalograms (MEGs) to study the background activity of the brain has
increased over the years as magnetoencephalography, a non-invasive analysis technique used to
record the magnetic fields generated by electrical activity in the human brain [5–7], has become more
widespread. Large arrays of superconducting quantum interface devices (SQUIDs) immersed in liquid
helium at 4.2 K and below, are used to record the weak magnetic fields generated by the brain in a
magnetically shielded room to reduce contamination by environmental noise [8–10].

The brain, as the main centre for the processing of all levels of activity, coordination, conscious
and subconscious movement, is made up of soft nervous tissue and is one of the largest organs in the
body [11–13]. The brain is subject to changes with age and thus, many studies have been conducted in a
bid to understand how the structure and function of the brain are affected by the ageing process [14,15].
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Brain growth can be divided into two stages; maturation, which lasts on average three to four
decades, and ageing which starts in the 4th decade [15]. During maturation, the brain develops steadily,
one area at a time with several post-mortem studies describing a general pattern of posterior to anterior
maturation [14]. Furthermore, studies evaluating the changes in the oscillation frequencies in the
brain have been able to reveal some of the changes the brain undergoes during maturation [3,16–19].
Ageing effects such as the steady shrinking of the brain, deterioration of the myelin sheaths and
decreasing hormone levels [5,9,20,21] have also been studied with results observed being similar to
those occurring in adolescence, but with decreased rate so that the transitions were not as radical
during maturation [19,22,23]. From studies in the literature [15,20,24–26], it is evident that the effects
of ageing have a greater effect on the anatomy of the brain, while maturation has a greater impact on
the functioning, integration and connectivity of the brain.

Age-related changes of the electrical and magnetic activity of the brain have been investigated by
means of conventional linear analysis, non-linear methods such as correlation dimension [2], fractal
dimension [27], Lempel–Ziv complexity [4] as well as estimators such as sample entropy and multiscale
entropy [28]. Results from these studies combined with various statistical analyses have been able to
reveal the significant effects of age and gender on the brain.

Entropy is a measure that can be used to characterise the complexity of a time series so as to aid
the identification and quantification of regular (e.g., periodic) signals, random signals, and chaotic
signals. Many entropy measures have been proposed in recent years, such as Kolmogorov (or metric)
entropy [29,30], approximate entropy (ApEn) [31,32] entropy of symbolic dynamics (SymDyn) [33],
permutation entropy (PE) [34,35] and modified permutation entropy (mPE) [36].

Symbolic dynamics is arguably a computationally efficient way to analyse the dynamics of a time
series. This branch of analysis techniques is an area of increasing research in the neuroscience field
and has the potential to both highlight and characterise various effects of age, gender, pathology, etc.,
on the brain. PE is one such method that falls into the category of symbolic dynamics [37].

PE is a simple, robust and computationally efficient method that can be used to estimate the
complexity of a time series whilst also taking into account the temporal order of these values. In
addition to this, PE can be used to determine embedding parameters as well as to identify couplings
between time series [38]. PE characterises the permutation patterns in a time series and directly
accounts for the temporal information in the time series [9]. PE operates under the assumption that the
time series under study has a continuous distribution. In spite of the proficiency of PE in time series
analysis, the technique neglects equalities within signals, using the reasoning that in a continuous
series, data-points with equal values are rare and can be ignored [36]. It must be noted that in PE the
partitions are derived from comparing a data-point with its neighbouring data-points and in so doing,
it emphasises that the technique is applicable to all series, even non-stationary chaotic series [9].

Over the years, various improvements to PE have been made in a bid to improve the results
obtained by using the method. Such improvements include the introduction of: fine-grained PE (FGPE)
which makes use of a precision regulation factor to incorporating the size of the differences between
data-points into permutations [39]. Weighted PE (WPE) which is a method based on weighted PE
patterns and depends on the amplitudes of constituent data points, multiscale PE which can account
for the relative complexity of time series over multiple scales [40,41] multivariate multi-scale PE which
incorporates the simultaneous analysis of multi-channel data in its analysis [42,43] and composite
multi-scale permutation entropy (CMSPE) which can accurately account for subtle transitions in the
time series more accurately that PE [44].

The introduction of a modification to PE where equal data of the embedding vector are mapped
to the same rank led to a quantity called modified permutation entropy (mPE) by Bian et al. [36]. Their
reasoning was that low resolution discrete signals tend to have repeated equal values which may be
indicative of a feature of a system, therefore neglecting these repetitions, as done in PE, could result in
the incorrect description of the complexity of a time series. However, though the motivation behind
their work may have been centred on the fact that equalities are more frequent within discrete low
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resolution signals, it cannot be said as to whether or not mPE would be more proficient that PE when
applied to all continuous signals even with low resolutions [36].

The aim of this pilot study was to determine the “normal” behaviour of PE according to age
and gender influences in a large population. In this study we hypothesised that PE can highlight
the changes imposed on resting state MEG by age and gender. As evidenced above, there are many
different PE modifications. However, as all the modifications have embedded in them the original
PE algorithm, this study makes use of the original PE. In addition, mPE was also be used in this
study to determine if background MEG resting state activity contains significant repetitive activity
throughout life.

The structure of this paper is as follows: Section 2 contains a description of the MEG data used
as well as brief descriptions of the PE and mPE algorithms, results from the study are presented and
described in Section 3, while Section 4 has a detailed discussion of the results and their relevance.
The conclusions of the study are presented in Section 5.

2. Materials and Methods

MEGs were recorded in a shielded room using a whole head neuroimaging magnetometer
(neuromag with the layout shown in Figure 1) with 148 channels (MAGNES 2500WH, 4D
Neuroimaging) at the “Centro de Magnetoencefalografía Dr. Pérez-Modrego” (Madrid, Spain).
The subjects lay comfortably awake in a relaxed state with eyes closed while 5 min of data were
acquired. The MEGs were recorded at sampling frequency of 678.17 Hz using a hardware band-pass
filter from 0.1 to 200 Hz. These recordings were then down-sampled to 169.549 Hz. A digital Hamming
window finite impulse response band-pass filter of order 560 with corner frequencies at 1.5 Hz and
40 Hz was used to filter the data. The function filtfilt (MATLAB version 2016a) was used to avoid
phase shift as it filters in the forward and reverse directions. Consequently, the resulting sequence
has precisely zero-phase distortion and doubles the filter order [37]. This filtering process resulted in
the removal of artefacts such as mains hum. Randomly spaced artefacts such as squid jumps and eye
blinks were difficult to eliminate as they occurred rarely and only affected a few individuals in the
sample population. However, these few random noise contaminations were not significant enough to
skew the results.

The data set used was made up of 220 (98 male/122 female) healthy participants. Subjects
ranged from 7 to 84 years, with no significant differences in terms of age found between males
(mean ± standard deviation 42.92 ± 21.0) and females (45.0 ± 22.1). Subjects were grouped according
to age and Table 1 summarises the relevant information about the different age groups.

Table 1. Age grouping of participants.

Group Age Subjects Males Females

1 <19 22 11 11
2 19–40 84 44 40
3 41–60 39 20 19
4 61–70 48 11 37
5 >70 27 12 15

2.1. Permutation Entropy

Permutation entropy (PE) is an entropy-based calculation that identifies changes in the
permutation patterns in a time series and directly accounts for the temporal information in the
time series. PE is based on the premise of measuring the entropy within a time embedded
series [9,44]. The computation relies on the selection of a suitable embedding dimension and time
delay. Cao et al. [45] observed that a low embedding dimension of 3 or 4 was not suitable to accurately
track the dynamical changes in a signal, with the study done by [36] revealing that as the embedding
dimension increased, PE’s ability to discriminate between different groups increased. Therefore, this
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study investigated the effects of changing the embedding dimension between 3 and 7 to identify the
most suitable value for use.

Any time series given by {x(i)}N
i=1 can be embedded in the m-dimensional space to obtain vectors

X(i) with a time delay l [34,36]:

X(i) = [x(i), x(i + l), . . . , x[i + (m− 1)l]] (1)

where m is the embedding dimension. Then, using the (time) index j∗ of the element in the
reconstruction vector, each X(i) can be arranged in increasing order:

x[i + (j1 − 1)l] < x[i + (j2 − 1)l] < . . . < x[i + (jm − 1)l] (2)

If A(i) = [j1, j2, . . . , jm] is a permutation of [1, 2, . . . , m], describing the order relations among the
coordinates of vector X(i) then there are m! possible permutations of Ak, where k = 1, 2, . . . , m!. In this
paper, we let pk be the probability for A(i) = Ak at any instant i which resulted in these probabilities
being estimated by the relative frequencies of their occurrence in the considered time series. As a result,
the permutation entropy of order m is defined by the Shannon–Entropy of this probability distribution:

PE(m) = −
m!

∑
k=1

pk ln pk (3)

here we set pk ln pk = 0 if pk = 0. The maximum value of PE(m) is reached for a uniform distribution
on all permutations, i.e., PE(m) = ln(m!) when pk =

1
m! for all k = 1, 2, . . . , m!. Therefore, permutation

entropy could be normalised as:

nPE =
PE(m)

ln(m!)
(4)

where 0 ≤ nPE ≤ 1. The lower limit represents a more regular time series while the upper limit
represents a more random series.

2.2. Modified Permutation Entropy

Modified PE is well defined also in the case of tied ranks. That means, some coordinates of the
embedding vectors (1) might be equal. Hence, (2) is replaced by the more general case:

x[i + (j1 − 1)l] ≤ x[i + j2 − 1)l]≤ . . . ≤ x[i + (jm − 1)l] (5)

We assign now the same rank to equal values, and thus get more than m! order patterns.
For instance, in the case m = 3 we get m! = 6 order patterns (1; 2; 3), (1; 3; 2), (2; 1; 3), (2; 3; 1),
(3; 1; 2), (3; 2; 1) representing all vectors with no ties, and 7 additional patterns for the case of ties,
(1; 2; 2), (2; 1; 1), (1; 2; 1), (2; 1; 2), (1; 1; 2), (2; 2; 1), and (1; 1; 1). In this way we distinguish all
together 13 order patterns. In the general case, the number of possible order patterns is calculated by
the Bell number:

B(m) =
m

∑
r=0

(
r

∑
s=0

(−1)r−s r!
s!(r− s)!

sm

)
(6)

Some values are given in Table 2.

Table 2. Relationship between embedding dimension and Bell number.

m 2 3 4 5 6 7

m! 2 6 24 120 720 5040
B(m) 3 13 75 541 4683 47,293

B(m)/m! 1.5 2.16 3.125 4.50 6.50 9.38
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Let pk denote the probability for the k-th pattern, then mPE is defined like PE in (3), however,
the index k runs now until B(m) instead of m!. Moreover, the normalised mPE (nmPE) is now defined
analogously to (4) as:

nmPE (m) =
mPE (m)

B (m)
(7)

From B(m) > m! follows that we need longer time series for reliable estimates of pk with respect to
mPE (m), unless there are many k-values with pk = 0.

2.3. MEG Data Reduction and Analysis

The values of nPE and nmPE were computed for each channel and participant (both males and
females). Each algorithm was run for values of m ranging between 3 and 7 with the optimum embedded
dimension for both methods of analysis, determined as m = 5. This study made use of time delay (lag)
l = 1. Statistical analyses were performed with 148 nPE and nmPE scores per subject. The 148 nPE
and nmPE values were averaged into five regions similar to work done by Fernández et al. [4] and
Méndez et al. [46]: anterior (a), central (c), left lateral (ll), right lateral (rl) and posterior (p). Figure 1
illustrates the location of the sensors in the neuroimaging device as well as the brain regions to which
they are nearest.
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Figure 1. Sensor-space representation of the layout of the location of the 148 SQUID channels in the
neuromag used to record MEG signals. The five highlighted regions represent the sensor groupings
used to define the different parts of the brain i.e., anterior (a), central (c), left lateral (ll), right lateral (rl)
and posterior (p). These regions were also used for the statistical analyses [4].

2.4. Statistical Analysis

The statistical analyses were performed using IBM Statistical Package for the Social Sciences
(SPSS) Statistical Data Editor version 23, and probabilities p < 0.05 were considered as significant.
The differences between nPE and nmPE results were analysed using a two-tailed bivariate correlation
analysis and pairwise sample t-test. For the bivariate correlation analysis the data was pre-analysed to
ensure that it met the data requirements such as bivariate normality [47]. Likewise for the pairwise
t-test the data used met all the requirements and there were no outliers in the difference between the
groups [48]. The relationship between nmPE values and age was determined by means of linear and
polynomial regression models. Furthermore, the effects of age and gender on nmPE variable was
studied by means of two way analysis of variance (ANOVA), with Bonferroni correction used for
multiple comparison tests.
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3. Results

The first part of our study was an initial investigation to identify the ideal embedding dimension
parameter to use for both the nPE and nmPE algorithms. The nPE and nmPE values were calculated
for every individual for all 148 channels with m ranging from 3 to 7. Embedded dimension is an
input parameter that is dependent on the sampling frequency and is used to define the length of the
embedding vector used to analyse the MEG signals.

To assist in this selection process, a qualitative approach was taken, where visualisation of the
results was done using both nmPE and nPE values. Results from this analysis showed that the ideal
values for m ranged between 4 and 6 for nPE (with 5 showing the clearest visual differences), while for
nmPE m = 4 and m = 5 yielded the best results. As m = 5 showed the clearest visual differences this
value of m was used in the rest of the study. This qualitative stage provided a quick identification of the
regions of the brain with higher PE than others. In addition to this, it acted as a visual tool to inspect
how the values of each node sensor, and broadly each brain region, changed with age. For instance
the sensor nodes with highest PE values for both genders are located over the anterior region of the
brain. Moreover, females in group 5 (i.e., >70 years), have sensor nodes with higher nmPE values
in the anterior and central regions of the brain when compared to their male counterparts. Though
these qualitative analyses may not be used to determine significance, the use of colour maps as a
visualisation tool can highlight areas of the brain with potentially interesting information between
inter- and intra- gender and age groups.
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Figure 2 shows the qualitative results obtained using m = 5. As can be observed in the figure,
the colours represent the nmPE values for that channel, with lower nmPE values represented by
colder colours on the maps and implying less irregularity in the time series, while higher values of
nmPE are represented by warmer colours and imply the presence of higher irregularities in the time
series. Figure 3 shows the average values of the nPE and nmPE results in the five regions of the brain.
The results, from the bivariate Pearson’s correlation analysis, showed there was a strong correlation
greater than 0.998 with p < 0.0001 between nPE and nmPE results for males and >0.901 with p < 0.0001
between nPE and nmPE results for females across all brain regions, thus indicating a high correlation
between the results from nPE and nmPE. The pairwise t-test evaluation of the spread of the data
obtained from PE and nmPE was then conducted and it was observed that for both males and females
there were no significant differences in terms of the results obtained by both methods (p > 0.05).
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of the brain represented according to age and gender groups. Males are represented by graph the two
graphs in (a,b) while females are represented by the graphs in (c,d).

To determine if the resting state MEG signals contained a significant amount of repeated
information in the continuous series, an exploratory analysis describing data according to these
two variables was conducted, after which the results from nPE and nmPE were compared. Subjects
were divided into groups by age and gender as shown in Table 1. A two-tailed bivariate Pearson’s
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correlation analysis and pairwise t-test were done to establish if the results obtained from using PE
were significantly different to those obtained using nmPE.

Figure 3 also summarises the evolution of nmPE and nPE values for both males and females with
age. Slight differences between nPE and nmPE values for males were observed in the central region
(nPE > nmPE) for the 41–60 years age range only. Additionally, very small differences for females
were also observed in the following regions: 19–40 years (group 2)—central (nmPE < nPE) and left
lateral region (nPE < nmPE), 61–70 years (group 4)—anterior region (nPE < nmPE) and >70 years
(group 5)—anterior (nPE < nmPE), central (nmPE < nPE), posterior (nmPE < nPE) and right lateral
(nPE < nmPE).

As can be seen in Figure 3, the values for nmPE and nPE were very similar. Therefore, once the
initial analyses to observe the differences between the results from nPE and nmPE were concluded, the
remaining analyses were done using just the nmPE results. The results from the nmPE algorithm were
used because the algorithm can be viewed as being more robust than nPE due to its ability to account
for repetitive activity in the resting brain [36].
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positive tendency of nmPE values in both gender groups. (a) anterior (a); (b) central (c); (c) left lateral
(ll); (d) posterior (p); (e) right lateral (rl).
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To better understand this effect of the significant differences observed in group 2, we investigated
nmPE values within this 19–40 years group. Separate standard (non-significant) linear regression
models were fitted to the data for males and females, to observe the differences between the rate of
change of the data for both genders, considering age as an independent variable as seen in Figure 4.
The slopes for both models indicated a positive tendency of nmPE values in both males (slopec = 0.0002,
slope11 = 0.0002, slopep = 0.0008, sloperl = 0.0003) and females (slopec = 0.0011, slopell = 0.0007,
slopep = 0.0012, sloperl = 0.0004) and therefore indicating an increasing tendency for both genders.
The slopes for females were greater than those for males signifying a steeper increase in females than
in males within the 19–40 years group. In addition to this, significant gender × age differences were
observed in the central region of the brain in group 5 (i.e., >70 years). A greater slope for the females
was also observed indicating that nmPE values in this region were significantly higher in females than
in males for this age group. However, due the use of non-significant linear regressions a two-way
ANOVA was used to determine the significance of the observed results.

Results from the between-subjects effects of the two-way ANOVA showed that gender (on its
own) did not show any significant effects with p > 0.05 (pa = 0.706, pc = 0.611, pll = 0.764, pp = 0.424,
prl = 0.843), indicating that neither males nor females had significantly higher nmPE in all brain
regions. Age had a significant effect for both genders across all regions of the brain with p < 0.0001.
The gender × age interactions were significant in the central, left lateral, posterior and right lateral
regions of the brain with pc = 0.026, pll = 0.021, pp = 0.012, prl = 0.048 respectively. When this interaction
was analysed further using pairwise comparisons with Bonferroni correction, it was observed this
effect was only significant, in these four regions, for individuals in group 2 (i.e., between 19–40 years).

Once the exploratory analysis was concluded the next goal was to model the age influences on
MEG signals. Looking at Figure 3 it might be assumed that the regional data follows some form
of polynomial form, be it quadratic, cubic or quartic. Thus, a generalised model of b0 + b1 × age +
b2 × age2 + b3 × age3 + b4 × age4 was fitted to the data with separate fittings done for both genders.
The results are displayed in the in Table 3. The results displayed in Table 3 display the coefficients of
the fitted regression models. The selection criterion for the regression was a curve that best described
the data evolution, had a high R2 and adjusted R2 value as well as having a p < 0.0001.

Table 3. The regional and gender polynomial regression fitting for the nmPE data, including the R2

values, All fitted regressions in each region of the brain (Reg.) with model polynomial degree (Poly
Deg.) had significance p < 0.0001 and R2 > 0.85.

Reg. Gender Poly Deg. b0 b1 b2 b3 b4 R2 Peak Age

a Male 4 0.6133 0.1367 −0.077 0.0186 −0.0016 1 63.15
Female 4 0.7449 −0.09028 0.05838 −0.01462 0.00127 1 83.00

c Male 2 0.6538 0.02364 −0.003164 0 0 0.9873 54.98
Female 4 0.7027 −0.04919 0.03855 −0.01015 0.00088 1 83.00

ll
Male 3 0.6607 0.0005792 0.00468 −0.0008604 0 0.9503 54.05

Female 3 0.6849 −0.01831 0.008348 −0.0009491 0 0.9992 64.63

p Male 2 0.6754 −0.02775 0.01707 −0.0023 0 0.9982 58.53
Female 3 0.6841 −0.02263 0.01169 −0.001394 0 0.9883 64.11

rl
Male 2 0.6493 0.0141 −0.000193 −0.0003022 0 0.973 55.00

Female 3 0.6836 −0.01962 0.008502 −0.0008528 0 0.9996 87.24

In this study, a 148 channel neuromagnetometer (neuromag) was used to collect the MEG data.
Figure 1 shows both the location and orientation of the channels of this magnetometer. As the SQUID
channels lie near well-defined anatomic brain regions, this simplified brain region model was used to
loosely define the brain regions used in this study as well as to define the evolution of nmPE values in
said regions.

The regression data displayed in Table 3 above were used to describe the data trends observed
in Figure 3. The results displayed in Table 3 show that similar “levels” of changes with ageing are
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common to both males and females in the anterior, left lateral, posterior and right lateral regions of
the brain. However, different rates of changes with ageing can be seen for the central region, with
females having a more “complex” evolution than males. These regression data help in highlighting
the following:

• The evolution of nmPE values for males and females by highlighting the manner in which
permutation entropy changes with age in the brain for both genders.

• Differences in the “rates” of evolution for males and females.
• The estimated age when the highest nmPE values occur in the MEG signals.

4. Discussion

The interactions between neurons in the brain play a crucial role in the maintenance of the
metastable state of the resting brain [49]. The MEG signal is a reasonable measure of the summed
activity of approximately ≥ 50, 000 neurons lying in the vicinity of the recording sensors [50].
The entropy of the MEG may act as a reliable indicator of the changes in cortical neuronal interaction.
This implies that the entropy within the MEG may relay a real change in cortical functional organisation
of the brain. Therefore, the changes in entropy of the MEG may be expected to measure, indirectly and
coarsely, the changes in the entropy occurring within the neuronal network itself [51].

In this study, two permutation entropy algorithms (nPE and nmPE) were applied to analysing the
MEG data during resting state across the human lifespan. The advantages of using nPE include its
simplicity, robustness, and low complexity in computation without further model assumptions [9], as
well as its robustness in the presence of observational and dynamic noise [9]. The added advantage of
using nmPE was that its symbolisation procedure takes into account repeated values of PE [36].

After determining the statistical differences between results obtained using nPE and nmPE,
polynomial regressions were fitted to describe the age effects, for both males and females (R2 > 0.95).
Further analysis, with age as an independent factor, showed linear increases in nmPE for both genders,
however no significant gender differences were observed during this analysis.

4.1. Evaluation of Ideal Input Parameters

Both the nmPE and nPE algorithms as highlighted by Bandt and Pompe [9], Bai and Li [35] and
Bain et al. [36] rely on the identification of the most ideal input parameters of embedded dimension
and time delay (lag) i.e., m and l respectively.

The embedding dimension (m), also known as the order, defines the amount of information/
pattern length that is analysed using the set PE algorithm. This, coupled with the lag/time delay,
is what is used to extract useful knowledge about the dynamics of the MEG [52]. As embedded
dimension can be associated with the different frequency characteristics of the MEG, analysing the
effects of changing this input parameter can be used to obtain relevant information about the brain
at resting state [53]. Therefore, from this it is evident that the smaller the value of m, the wider the
spectral content that can be obtained and therefore, this enables more fast-changing signal components
to be analysed [54].

With this in mind, an analysis to observe the impact of changing m for both nPE and nmPE was
carried out. Altering m between 3 and 7 and then observing the effects using colour maps revealed that
the clearest differences for m when using nPE were 4, 5, and 6, while for nmPE the ideal values of m
were 4 and 5. With eyes closed at rest, there is an increase in the power of oscillations in the alpha band
over the visual cortex, i.e., the posterior and central regions of the brain [55,56]. As the predominant
brain oscillation when at rest with eyes closed lies in the alpha range (8–12.9 Hz), an ideal embedding
factor of m = 5 can be viewed to correlate with this, i.e., the similar results observed for lower and
higher values of m imply that there is little PE activity in the MEG that can be associated with activity
in the low (delta) or high (gamma) frequency ranges [54]. Therefore, as the observed changes in the
posterior region of the brain could be attributed to the changes in the alpha band frequencies, an
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investigation into the changes in PE over the alpha frequency range (8–12.9 Hz) could possibly reveal
interesting information about the evolution of the alpha frequency [54].

Together with the embedding dimension, the time delay l is also associated with the dynamics of
the signals under study and thus, if the time interval between data points is small, fast changes can be
analysed. Additionally, if the time intervals between samples are large, then only slow changes can be
taken into account. There is evidence [34–36,51,55] showing that most information can be extracted
using a time delay value if l = 1. Therefore, this resulted in the use of l = 1 in this study [55].

4.2. Evaluation of Differences between nPE and nmPE

The results obtained using nPE and nmPE on the MEG recordings were compared using both
two-tailed bivariate Pearson’s correlation and pairwise t-test for all five regions of the brain, and for
both genders. The two-tailed bivariate analysis can be used to evaluate correlations between sets of
variables and can indicate whether a statistically significant linear relationship exists between two
variables as well as the strength of the relationship. Therefore if the resting MEG data containing
significant repeated values in the patterns obtained with m = 3 to m = 7, it would be expected that the
above analysis would reveal low correlation between the nPE and nmPE results in the regions where
the activity reflected this. However, the results from the analysis showed that there was a correlation
greater than 0.998 (p < 0.0001) for males, and greater than 0.901 (p < 0.0001) for females, between nPE
and nmPE results. Furthermore, the results in Figures 2 and 3 show that the anterior and central
regions of the brain generally have higher nPE and nmPE values when compared to other regions of
the brain. This was observed for all age groups, and is a result that is in accordance with that obtained
by [4]. In the context of the characterisation of healthy ageing, this result suggests that these two brain
regions have higher resting state activity than the other three brain regions, and thus have higher
entropy than the other brain regions.

After observing the strong correlation between the nPE and nmPE results, a pairwise t-test was
performed to compare the means and spread of data and see if they were statistically different from
each other. The results from this analysis yielded significance values p > 0.05 for both males and
females in all 5 brain regions, thus signifying that there were no significant differences in the nPE and
nmPE means and spread of data. A two way ANOVA was used to study the effects of age and gender
on the results obtained using nmPE. Results showed that age had a significant effect on the nmPE
values (p < 0.000), while gender on its own did not show any significant effects on the nmPE values
(p > 0.05) for all 5 brain regions. Regressions were fitted to the data for all brain regions with results
from this analysis showing a polynomial relationship between brain region and age for both genders,
with the anterior and central brain regions exhibiting the most complex regressions.

4.3. Evaluation of Age and Gender Effect

4.3.1. Age Effects

Age had a significant effect in all five regions of the brain, with regression models showing how
nmPE values evolve with age for both males and females. The growth of the brain can be loosely
classified into two stages, maturation and ageing. The brain reaches full maturity in the 3rd and 4th
decade of life, with group 2 representing this stage [15]. The brain matures regionally, and at different
rates, the results from the fitting of the regression models have been able to highlight this [14]. After
maturation, the brain begins to age, and during this stage the brain experiences various changes such
as decreases in volume and hormone levels, as well as synaptic pruning [15]. A delay in the peak
nmPE for both males and females, of almost a decade after maturation of the brain, was observed in
this study. Both genders reflected peak nmPE values in the ageing stage of the brain which could imply
that effects of ageing affect the resting MEG in both gender groups in a similar manner. Nonetheless,
these peak results seem to suggest that male brains adjust “quicker” than female brains to these
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dynamic conditions, as highlighted by the delay of almost a decade in the peak nmPE for females
when compared to males.

Regression models also highlighted differences in the central region of the brain between the
two genders. Males (model degree 2) had a significantly less complex evolution model than females
(model degree 4). These differences could possibly be as a result of the sexually and regionally specific
reductions in brain volume, as well as, the differences in grey matter (GM) and white matter (WM)
between adult males and females [57–60]. Males have more GM that is made up of active neurons
while females have more WM that is responsible for communication in the brain. Therefore, if MEG
is associated more with WM activity, this could explain the differences in the observed regression
models [24,25]. Moreover, as noted in [59] the neurons in female brains are more tightly packed in the
layers of the cortex when compared to male brains, therefore the more complex evolutions of nmPE
observed in the central region could be a reflection of these physiological differences.

4.3.2. Gender Effects

Various studies analysing healthy males and females [1–4,61–65] have successfully identified
gender as an independent distinguishing characteristic between the gender groups. These studies
have shown that significant differences exist between the genders from childhood, to adolescence
and adulthood, i.e., throughout life. However, in this study, when investigation of the nmPE values
was done to observe if gender alone could be used to distinguish male and female nmPE values, no
significant differences were observed. Therefore, though there are identified differences between males
and females in the structure if the brain, as well as in the evolution of nmPE values with age, there
were no clear gender differences.

This lack of clear gender differences could suggest that at resting state, the permutation entropy
values for both genders are very similar, and thus successfully distinguishing between males and
females is challenging. Therefore, an analysis based on gender alone, using permutation entropy
algorithms, may not be sufficient to highlight the differences between male and female resting state
MEG activity.

4.3.3. Age and Gender

Every individual analysed in this study is a subject of both age, and, gender simultaneously
and evaluation of the combined effects of both gender and age on the nmPE values revealed that
gender and age had significant effects on nmPE values in four of five regions of the brain, (central,
left lateral, posterior and right lateral) and that these were only significant in the 19–40 years age
range i.e., group 2 [59]. Assuming that permutation entropy can be viewed as a complexity measure,
as suggested by [9], then complementary to the results obtained using other complexity measures
such as Lempel–Ziv Complexity (LZC), there are gender differences that can be observed using nmPE.
Although in their analysis Fernández et al. [4] observed significant differences only in the anterior
region of the >19 years group, results from the use of nmPE on MEG has highlighted additional
information about the “normal” evolution of the brain. It is possible that the significant changes
observed in the brain in the >19 years group using LZC have effects that manifest themselves in the
19–40 years group and can be detected using nmPE.

Linear regressions done in this age range (19–40 years) showed that the intercept for the males
was generally higher than that of females. However, the slopes for females were greater. This result can
be loosely connected to the different physiological and anatomical changes that occur in the brain due
to maturation [52,59]. Nevertheless, some possible factors such as environment, intelligence quotient
(IQ), changes in the internal hormone levels, as well as some possibly unknown factors may have an
impact on these gender differences observed between the ages of 19 and 40 [58,61].



Entropy 2017, 19, 141 13 of 17

4.4. Significance and Clinical Implications of the Results

In this study we describe what can be viewed as an illustration of a physiological rhythm i.e., the
evolution of permutation entropy in the brain across life. It has been shown that pathology not only
causes an abnormality in the normal functioning of the brain but can also exert a discontinuation (break)
in the normal pattern of brain evolution as a function of age. Therefore disease not only modifies
the potential biological marker of interest but also modifies the pathological rhythm. It is necessary
to create a fingerprint of healthy ageing that can be used when analysing MEG data especially that
obtained from individuals with pathological conditions. Therefore, with this in mind, our results can
be seen as a contribution to the generation of this fingerprint of healthy ageing and thus, can be used
as a baseline for analysis.

Being a cross sectional study that generalises lifespan data across multiple cohorts was a limitation
to this study as a longitudinal study would have been more situated to address the issue of evolution
across life span. However, bearing this limitation in mind, we still believe that the results from
this comprehensive study provide useful information that can be used to understand permutation
entropy evolution.

4.5. Limitations and Future Work

The MEG data used in this study were collected using a MAGNES 2500WH neuromag with
148 channels for 5 min. Intuitively, due to the fixed hardware parameters of the device such
as the analogue-to-digital converter (ADC), and sampling rate, the quality of the MEG signals
and subsequently the nmPE values analysed in this study were subject to these said limitations.
Furthermore, due to the existence of other data acquisition devices, with different sensor layouts, and
number of sensors the exact observed regressions may vary. Nevertheless, due to anatomic regions
in the brain remaining constant, despite the mode of data acquisition, it is arguable that the results
obtained in this analysis are useful and provide relevant normative information about the brain at rest.
However, future work into the use of MEG data acquired from different devices with different SQUID
positioning and sampling rates, i.e., devices with different parameters, is required to define a more
robust evolution of nmPE values with age that can be used in a more general setting.

The MEG data were filtered using a band-pass filter with corner frequencies at 1.5 Hz and 40 Hz.
Although this ensures the removal of noise from the mains hum and any DC offset present in the data,
there still might be some residual artefacts present in the signals, such as those from electromyograph
signals, electrooculograph signals and electrocardiograph signals. Although the signals were visually
inspected to ensure that the contamination from those signals was minimal, these contaminants might
have had an impact on the results as they also lie in the same frequency band covered by the filter
i.e., between 1.5 Hz and 40 Hz [6]. Therefore, with this in mind, future work involving the use of
preprocessing methods, such as blind source separation, to remove artefacts from the MEG signal will
be done so as to decrease the possible impact of these artefacts on our results [6].

A limitation to this study was that the effects of changing the lag value as an input parameter to
both the nPE and nmPE algorithms were not investigated, but rather a default lag value of l = 1 was
used. Although in [53] it was observed that changing the value of l can result in the identification of
additional information associated with different frequency characteristics and related to the intrinsic
time scale of the system, these effects were not evaluated in this study. Thus, future work will involve
an investigation to analyse the effects of changing the lag value must be conducted in the future so
as to identify any potentially useful additional frequency dependent information contained in the
MEG recordings.

Another limitation to this study was that we only made use of two permutation entropy
algorithms. Permutation LZC (PLZC) has been recently introduced [35] with claims that this method
is arguably more computationally efficient than PE. Therefore, in light of this, future work analysing
the resting brain MEG across the life span using this method may also reveal additional information
about the brain at rest.
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As our study covered the entire spectrum of brain oscillations, it is difficult to conclude that alpha
oscillations were the main driver behind the changes observed in our results. Therefore, though it
cannot be ruled out that this significant presence (of the alpha oscillations) could have influenced the
results that we have presented in this study, we cannot comment on this conclusively. Thus, future
work to analyse the effects of the alpha frequency on PE values should be done as it could possibly
reveal interesting information that could aid in understanding the how these oscillations affect the
brain at rest.

5. Conclusions

In this study, the use of nPE and nmPE to characterise the behaviour of the changes in permutation
entropy of MEG signals according to both age and gender was investigated. Further investigation to
determine ideal algorithm parameters led to the identification of the optimum embedding dimension
that revealed the clearest visual results. Analysis of the 5 brain regions; anterior, central, left lateral,
posterior and right lateral, indicated that significant age effects could be identified using the PE
algorithms. Polynomial regressions fitted to describe these evolutions revealed that males hit a peak in
nmPE a decade before females, with significant gender differences identified in the 19–40 years age
range. Overall, our results show that permutation entropy algorithms can be used to highlight the
changes imposed on the resting state MEG by age. Therefore, this methodology could provide an
alternative characterisation of healthy ageing that might be used to obtain a fingerprint of this process
using MEG recordings.
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