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Abstract: We consider two-receiver broadcast channels where each receiver may know a priori
some of the messages requested by the other receiver as receiver message side information (RMSI).
We devise a general approach to leverage RMSI in these channels. To this end, we first propose
a pre-coding scheme considering the general message setup where each receiver requests both
common and private messages and knows a priori part of the private message requested by the
other receiver as RMSI. We then construct the transmission scheme of a two-receiver channel with
RMSI by applying the proposed pre-coding scheme to the best transmission scheme for the channel
without RMSI. To demonstrate the effectiveness of our approach, we apply our pre-coding scheme
to three categories of the two-receiver discrete memoryless broadcast channel: (i) channel without
state; (ii) channel with states known causally to the transmitter; and (iii) channel with states known
non-causally to the transmitter. We then derive a unified inner bound for all three categories. We show
that our inner bound is tight for some new cases in each of the three categories, as well as all cases
whose capacity region was known previously.

Keywords: broadcast channel; capacity region; receiver message side information; channel
state information

1. Introduction

Communication over wireless channels motivates the study of broadcast channels [1]. In these
channels, a transmitter wishes to send a number of messages to multiple receivers via a noisy shared
medium, which can also be time-varying due to, for example, fading or interference. The time-varying
factor is commonly referred to as the channel state.

The messages to be sent by the transmitter may already be present in parts at some of the receivers,
referred to as receiver message side information (RMSI). This form of side information appears in
multimedia broadcasting with packet loss. Suppose that a multimedia file is requested by multiple
receivers, and the transmission is subject to packet loss. After a few rounds of transmissions, each
receiver may a priori know some of the packets re-demanded (due to packet loss) by other receivers.
This form of side information appears also in the downlink phase of applications modeled by the
multi-way relay channel [2]. For example, consider two stations exchanging data through a satellite.
Since each station is also the source of the message to be transmitted by the satellite to the other station
in the downlink phase, this phase can be modeled by a broadcast channel with RMSI. As proper
use of RMSI may increase transmission rates over broadcast channels, we investigate the capacity
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region of two-receiver broadcast channels with RMSI. We consider three categories of the two-receiver
discrete memoryless broadcast channel: (i) channel without state; (ii) channel with causal channel
state information at the transmitter (CSIT) including the cases where the channel state may also be
available causally or non-causally at each receiver (It does not make a difference whether the channel
state is available causally or non-causally at a receiver. This is due to block decoding, where the
receiver decodes its requested message(s) at the end of the channel-output sequence.); and (iii) channel
with non-causal CSIT including the cases where the channel state may also be available causally or
non-causally at each receiver.

As we will see later, we construct transmission schemes of two-receiver broadcast channels
with RMSI using a pre-coding scheme and the best transmission schemes for the channels without
RMSI. We here present existing capacity results for the aforementioned three categories of both the
two-receiver discrete memoryless broadcast channel without and with RMSI.

1.1. Broadcast Channel without RMSI

1.1.1. Without State

The capacity region is known for several special types of the discrete memoryless broadcast
channels, such as the degraded [3], less noisy [4] (p. 121), more capable [5], deterministic [6,7] and
semideterministic [8] broadcast channel. The capacity region is also known for the discrete memoryless
broadcast channel with degraded message sets (a special message setup where one of the receivers
requests only a common message) [9]. Marton’s inner bound with a common message [4] (p. 212) is
tight for all cases in this category whose capacity region is known. This inner bound is achieved using
superposition coding and Marton coding [4] (p. 207).

1.1.2. With Causal CSIT

Under this category, the capacity region is known for the following two special cases: the degraded
broadcast channel with private messages where the channel state is available causally at: (i) only
the transmitter [10]; or (ii) the transmitter and the non-degraded receiver [4] (p. 184). Superposition
coding and the Shannon strategy [11] were used to characterize the capacity region of these two cases.
Superposition coding achieves the capacity region of the degraded broadcast channel without state,
and the Shannon strategy is a capacity-achieving strategy for the discrete memoryless point-to-point
channel with causal CSIT.

1.1.3. With Non-Causal CSIT

Under this category, the capacity region is known for a few special cases, such as the degraded
broadcast channel with private messages where the channel state is available non-causally at the
transmitter and the non-degraded receiver [10], and the semideterministic broadcast channel with
private messages where the channel state is available non-causally at only the transmitter [12].
Khosravi-Farsani and Marvasti [13] (Theorem 2) used superposition coding, Marton coding and
Gelfand–Pinsker coding [14] to derive the best-known inner bound for the discrete memoryless
broadcast channel with non-causal CSIT (i.e., it is tight for all cases with known capacity region).
Superposition coding plus Marton coding achieves the best-known inner bound for the discrete
memoryless broadcast channel without state, and Gelfand–Pinsker coding achieves the capacity region
of the discrete memoryless point-to-point channel with non-causal CSIT.

1.2. Broadcast Channel with RMSI

1.2.1. Without State

The capacity region is known for the following three special cases: (i) the discrete memoryless
channel with complementary RMSI [15,16] where both receivers need to decode all of the source
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messages, i.e., all of the messages not known a priori; (ii) the discrete memoryless channel with
degraded message sets [17] where one of the receivers needs to decode all of the source messages
and one only part of the source messages; and (iii) the less noisy channel with the general message
setup [18] (Theorem 3) where each receiver has both common- and private-message requests and
knows part of the private message requested by the other receiver.

1.2.2. With Causal CSIT

Under this category, the capacity region is known for the two-receiver discrete memoryless
broadcast channel with complementary RMSI where the channel state is available causally at only the
transmitter [19].

1.2.3. With Non-Causal CSIT

Under this category, the capacity region is known for the two-receiver discrete memoryless
broadcast channel with complementary RMSI where the channel state is available non-causally at the
transmitter and one of the receivers [20].

2. Summary of the Main Results

We propose a pre-coding scheme to construct the transmission scheme of a two-receiver broadcast
channel with RMSI by applying the pre-coding scheme to the best transmission scheme for the channel
without RMSI. We design the pre-coding scheme considering the general message setup where each
receiver requests both common and private messages and knows part of the private message requested
by the other receiver as RMSI. This provides a general approach for utilizing RMSI in two-receiver
broadcast channels. We use our pre-coding scheme and derive a unified inner bound for three
categories of the discrete memoryless broadcast channel: (i) channel without state; (ii) channel with
causal CSIT (causal category); and (iii) channel with non-causal CSIT (non-causal category). The steps
to derive our unified inner bound are shown in Figure 1 in which rectangles with solid sides represent
the bounds established in this work. Here, we briefly explain the steps.

Marton’s
Inner Bound

Causal CSIT
Inner Bound

Non-causal
CSIT Inner

Unified
Inner Bound

Unified
Inner Bound
with RMSI

Superposition Coding
Marton Coding

Shannon Strategy
Gelfand-Pinsker Coding

1

2

3

4

1

2

3

4

5

Without RMSI With RMSI

5 Proposed Pre-coding

Message

Bound

with Common

Step 1

Step 2 Step 3

Figure 1. The steps to derive our unified inner bound (the rightmost rectangle) for the three categories:
(i) channel with receiver message side information (RMSI), without state; (ii) channel with RMSI and
causal channel state information at the transmitter (CSIT); and (iii) channel with RMSI and non-causal
CSIT. The rectangles with dashed sides represent the bounds derived prior to this work (i.e., Marton’s
inner bound with a common message [4] and non-causal CSIT inner bound [13]). The rectangles with
solid sides represent the bounds derived in this work. The arrows provide the key techniques to derive
each bound.
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Step 1: We first derive an inner bound for the causal category without RMSI. We use superposition
coding, Marton coding and the Shannon strategy to construct the transmission scheme. By choosing
the common message to be a constant, our scheme reduces to the one used by Kramer [21] for the
discrete memoryless broadcast channel without RMSI, with causal CSIT. Our inner bound is tight for
all of the cases without RMSI, with causal CSIT, whose capacity region is known (mentioned in the
previous section).

Step 2: We then unify our inner bound for the causal category without RMSI, and the best-known
inner bound for the non-causal category without RMSI by Khosravi-Farsani and Marvasti [13]
(Theorem 2). This result is analogous to the work of Jafar [22] in which a unified capacity-region
expression is provided for the point-to-point channel with causal CSIT and the point-to-point channel
with non-causal CSIT. Clearly, the capacity region of a non-causal case is larger than or equal to the
capacity region of the corresponding causal case (where only the transmitter knows the channel state
causally instead of non-causally, and the knowledge of the receivers about the channel state is the same
in both cases). This relationship is not necessarily true for their inner bounds especially when one
transmission scheme is not a special case of the other. One of the advantages of having a unified inner
bound is that it allows us to show that the best-known inner bound ([13] (Theorem 2)) for a non-causal
case is larger than or equal to the best inner bound (our inner bound) for the corresponding causal case.

By considering that the channel state is zero with probability one for the channel without state,
our unified inner bound reduces to Marton’s inner bound with a common message [4] (p. 212) for the
discrete memoryless broadcast channel without state. Consequently, our inner bound covers all three
categories without RMSI.

Step 3: Moving on to the channel with RMSI, we propose a pre-coding scheme in order to take
RMSI into account. We use our pre-coding scheme in conjunction with the schemes achieving the
best inner bounds for the causal and non-causal categories without RMSI, and derive a unified inner
bound, which is the best inner bound for all three categories with RMSI. This inner bound reduces to
the unified inner bound without RMSI by setting RMSI to zero.

Capacity results: Using our inner bound, we obtain the following new capacity results for the
discrete memoryless broadcast channel with RMSI. We also show that our inner bound is tight for all
of the cases whose capacity region was known prior to this work. This demonstrates the effectiveness
of our proposed approach for utilizing RMSI.

• For the channel with RMSI, without state, we establish the capacity region of two new cases,
namely the deterministic channel and the more capable channel. In a concurrent work with the
preliminary published version of this work [23], Bracher and Wigger [24] established the capacity
region of the semideterministic channel without state for which our inner bound is also tight.

• For the channel with RMSI and causal CSIT, we establish the capacity region of the degraded
broadcast channel where the channel state is available causally at: (i) only the transmitter;
(ii) the transmitter and the non-degraded receiver; or (iii) the transmitter and both receivers.

• For the channel with RMSI and non-causal CSIT, we establish the capacity region of the degraded
broadcast channel where the channel state is available non-causally at: (i) the transmitter and the
non-degraded receiver; or (ii) the transmitter and both receivers.

3. System Model

We consider the two-receiver discrete memoryless broadcast channel with independent and
identically distributed (i.i.d.) states p(y1, y2 | x0, s)p(s), depicted in Figure 2, where X0 ∈ X0 is
the channel input, Y1 ∈ Y1 and Y2 ∈ Y2 are the channel outputs and S ∈ S is the channel state.
Considering n uses of the channel, Xn

0 = (X0,1, X0,2, . . . , X0,n) is the transmitted codeword, and
Yn

i = (Yi,1, Yi,2, . . . , Yi,n) , i = 1, 2, is the channel-output sequence at receiver i.
The source messages {Mi}4

i=0 are independent, and Mi is uniformly distributed over the set
Mi = {1, 2, . . . , 2nRi}, i.e., transmitted at rate Ri bits per channel use. Receiver 1 requests {M0, M1, M3}
and knows M4 as RMSI. Receiver 2 requests {M0, M2, M4} and knows M3 as RMSI. For Receiver 1,
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M1 is the part of the private-message request that is not known a priori to the other receiver, and M3 is
the part that is known. For Receiver 2, these are M2 and M4, respectively.

{M̂01, M̂1, M̂3}
Y1,i

p (y1, y2 | x0, s)
X0,i

Y2,i

Receiver 1

Receiver 2

Transmitter{M0,M1,M2,M3,M4}

{M̂02, M̂2, M̂4}

SiSi/Sn

Sn

Sn

M4

M3

Figure 2. The two-receiver discrete memoryless broadcast channel with i.i.d. states p(y1, y2 | x0, s)p(s)
where the channel state may be available either causally or non-causally at each of the transmitter
and receivers. Receiver 1 requests (M0, M1, M3) while it knows M4 as side information. Receiver 2
requests (M0, M2, M4) while it knows M3 as side information. (M̂01 , M̂1, M̂3) is the decoded version of
(M0, M1, M3) at Receiver 1, and (M̂02 , M̂2, M̂4) is the decoded version of (M0, M2, M4) at Receiver 2.

The channel without state is a special case of our channel model by considering S = {0}, i.e.,
pS (0) = 1. This implies that the transmitter and receivers know that the channel state is equal to
zero at all channel uses. The channel without RMSI is also a special case of our channel model by
considering (M3, M4) = (0, 0).

A
(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
causal code for the channel consists of a sequence of maps for

the encoding:

f j :M0×M1×M2×M3×M4×S j→X0, j = 1, 2, · · · , n,

where × denotes the Cartesian product and S j denotes the j-fold Cartesian product of S , i.e.,
X0,j = f j(M0, M1, M2, M3, M4, Sj) where Sj = (S1, S2, . . . , Sj). This code also consists of two
decoding functions:

g1 : Ỹn
1 ×M4 →M0 ×M1 ×M3,

g2 : Ỹn
2 ×M3 →M0 ×M2 ×M4,

where Ỹi = Yi × S , i = 1, 2, if the channel state is available at receiver i, and Ỹi = Yi otherwise.
(M̂01 , M̂1, M̂3) = g1(Ỹn

1 , M4) is the decoded (M0, M1, M3) at Receiver 1, and (M̂02 , M̂2, M̂4) = g2(Ỹn
2 , M3)

is the decoded (M0, M2, M4) at Receiver 2 where Ỹn
i = (Yn

i , Sn) if the channel state is available at
receiver i and Ỹn

i = Yn
i otherwise.

A
(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
non-causal code for the channel consists of an encoding function:

f :M0×M1×M2×M3×M4×Sn→X n
0 ,

i.e., Xn
0 = f (M0, M1, M2, M3, M4, Sn). This code also consists of two decoding functions, which are

defined the same as for the causal code.
A
(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
code for the channel without state is defined by choosing S = {0}

in the definition of either the causal code or the non-causal code.
The average probability of error for a code is defined as:

P(n)
e = P

(
(M̂01 , M̂1, M̂3) 6= (M0, M1, M3) or (M̂02 , M̂2, M̂4) 6= (M0, M2, M4)

)
.
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Definition 1. For causal (non-causal) cases, a rate tuple (R0, R1, R2, R3, R4) is said to be achievable for the
channel if there exists a sequence of

(
2nR0 , 2nR1 , 2nR2 , 2nR3 , 2nR4 , n

)
causal (non-causal) codes with P(n)

e → 0 as
n→ ∞.

Definition 2. The capacity region of the channel is the closure of the set of all achievable rate tuples
(R0, R1, R2, R3, R4).

Definition 3. The two-receiver discrete memoryless broadcast channel with states is said to be physically
degraded if:

p (y1, y2 | x0, s) = p (y1 | x0, s) p (y2 | y1) ,

and it is said to be stochastically degraded or degraded if there exists a Y′2 such that (X0, S)→ Y1 → Y′2 form a
Markov chain, and we have:

pY2|X0,S (y2 | x0, s) = ∑
y1

pY1|X0,S (y1 | x0, s) p
Y′2|Y1

(y2 | y1) .

Definition 4. The two-receiver discrete memoryless broadcast channel without state is said to be deterministic
if the channel outputs are deterministic functions of the channel input, i.e., Yi = φi(X0), i = 1, 2.

Definition 5. The two-receiver discrete memoryless broadcast channel without state is said to be more capable
if I (X0; Y1) ≥ I (X0; Y2) for any probability mass function (pmf) p(x0).

4. Broadcast Channel without RMSI

In this section, we address the two-receiver discrete memoryless broadcast channel without RMSI,
i.e., (M3, M4) = (0, 0). We first derive an inner bound for the channel with causal CSIT. We then present
the best-known inner bound for the channel with non-causal CSIT [13] (Theorem 2). We finally show
that we can have a unified inner bound that covers both causal and non-causal cases, although the
achievability schemes are different.

4.1. With Causal CSIT

We utilize superposition coding, Marton coding and the Shannon strategy to derive an inner
bound for the discrete memoryless broadcast channel with causal CSIT, stated as Theorem 1.

Theorem 1. A rate triple (R0, R1, R2) for the two-receiver discrete memoryless broadcast channel with causal
CSIT is achievable if it satisfies:

R0 + R1 < I(U0, U1; Ỹ1), (1)

R0 + R2 < I(U0, U2; Ỹ2), (2)

R0 + R1 + R2 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)− I(U1; U2 | U0), (3)

R0 + R1 + R2 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)− I(U1; U2 | U0), (4)

2R0 + R1 + R2 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)− I(U1; U2 | U0), (5)

for some pmf p(u0, u1, u2) and some function x0 = γ(u0, u1, u2, s). Ỹi = (Yi, S), i = 1, 2, if the channel state is
available at receiver i and Ỹi = Yi otherwise.

The proof of this theorem is similar to the proof of Marton’s inner bound with a common
message [4] (p. 212) for the discrete memoryless broadcast without state. In the encoding, we just need
to add the Shannon strategy, and in the decoding, we need to consider Ỹn

i instead of Yn
i as the channel
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output sequence at receiver i. We here present the proof as we refer to it in Appendix A and in the next
section for the channel with RMSI.

Proof of Theorem 1. (codebook construction) The codebook of the transmission scheme is formed
from three sub-codebooks constructed using the pmf p(u0, u1, u2). Before constructing the
sub-codebooks, using rate splitting, Mi, i = 1, 2, is divided into the two independent messages Mi1 of
rate Ri1 and Mi2 of rate Ri2, such that Ri = Ri1 + Ri2. Sub-codebook 0 consists of i.i.d. codewords:

un
0(m0, m11, m21),

generated according to ∏n
j = 1 pU0

(u0,j). Sub-codebook i, i = 1, 2, consists of codewords:

un
i (m0, m11, m21, mi2, li),

generated according to:

n

∏
j = 1

pUi |U0
(ui,j |u0,j(m0, m11, m21)),

where li∈{1, . . . , 2nR′i}, i.e., for each un
0(m0, m11, m21), 2n(Ri2+R′i) codewords are generated.

(Encoding) For the encoding, given {mi}2
i = 0, we first find a pair (l1, l2), such that:

(Un
0 (·) , Un

1 (·, l1) , Un
2 (·, l2)) ∈ T n

ε′ ,

where T n
ε′ is the set of jointly ε′-typical n-sequences with respect to the considered distribution [4]

(p. 29). If there is more than one pair, we arbitrary choose one of them, and if there is no pair, we choose
(l1, l2) = (1, 1). We then construct the transmitted codeword as x0,j = γ(u0,j (·) , u1,j (·) , u2,j (·) , sj),
j = 1, 2, . . . , n.

(Decoding) Receiver 1 decodes
(
m̂01 , m̂11, m̂12

)
, if it is the unique tuple that satisfies:(

Un
0 (·) , Un

1 (·, l1) , Ỹn
1
)
∈ T n

ε for some m21 and l1;

otherwise, an error is declared. Receiver 2 similarly decodes (m̂02 , m̂21, m̂22), if it is the unique tuple
that satisfies: (

Un
0 (·) , Un

2 (·, l2) , Ỹn
2
)
∈ T n

ε for some m11 and l2;

otherwise, an error is declared. ε in the decoding is strictly greater than ε′ in the encoding.
To derive sufficient conditions for achievability, we assume without loss of generality that the

transmitted messages are each equal to one by the symmetry of code construction, and (l1, l2) = (l∗1 , l∗2)
where 1 ≤ l∗i ≤ 2nR′i . Receiver 1 makes an error only if one or more of the following events happen:

E0 : (Un
0 (1, 1, 1) , Un

1 (1, 1, 1, 1, l1) , Un
2 (1, 1, 1, 1, l2)) /∈ T n

ε′ for all l1 and l2,

E11 :
(
Un

0 (1, 1, 1) , Un
1 (1, 1, 1, 1, l∗1), Ỹn

1
)

/∈ T n
ε ,

E12 :
(
Un

0 (1, 1, 1) , Un
1 (1, 1, 1, m12, l1) , Ỹn

1
)
∈ T n

ε for some m12 6= 1 and l1,

E13 :
(
Un

0 (1, 1, m21) , Un
1 (1, 1, m21, m12, l1) , Ỹn

1
)
∈T n

ε for some m21 6= 1, m12 6= 1 and l1,

E14 :
(
Un

0 (m0, m11, m21) , Un
1 (m0, m11, m21, m12, l1) , Ỹn

1
)
∈ T n

ε

for some (m0, m11) 6= (1, 1), m21, m12 and l1.
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Events leading to an error at Receiver 2 are written similarly. Based on the error events and using
the packing lemma [4] (p. 45) and the mutual covering lemma [4] (p. 208), sufficient conditions for
achievability are:

R′1 + R′2 > I(U1; U2 | U0),

R12 + R′1 < I(U1; Ỹ1 | U0),

R0 + R1 + R21 + R′1 < I(U0, U1; Ỹ1),

R22 + R′2 < I(U2; Ỹ2 | U0),

R0 + R2 + R11 + R′2 < I(U0, U2; Ỹ2).

We finally perform the Fourier–Motzkin elimination to obtain the conditions in (1)–(5).

4.2. With Non-Causal CSIT

Superposition coding, Marton coding and Gelfand–Pinsker coding were used to derive an
inner bound for the discrete memoryless broadcast channel with non-causal CSIT [13] (Theorem 2).
This inner bound, stated as Proposition 1, is the best-known inner bound for the non-causal category
without RMSI.

Proposition 1. A rate triple (R0, R1, R2) for the two-receiver discrete memoryless broadcast channel with
non-causal CSIT is achievable if it satisfies:

R0 + R1 < I(U0, U1; Ỹ1)− I(U0, U1; S), (6)

R0 + R2 < I(U0, U2; Ỹ2)− I(U0, U2; S), (7)

R0 + R1 + R2 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)− I(U1; U2 | U0)− I(U0, U1, U2; S), (8)

R0 + R1 + R2 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)− I(U1; U2 | U0)− I(U0, U1, U2; S), (9)

2R0 + R1 + R2 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)− I(U1; U2 | U0)− I(U0, U1, U2; S)− I(U0; S), (10)

for some pmf p(u0, u1, u2 | s) and some function x0 = γ(u0, u1, u2, s). Ỹi = (Yi, S), i = 1, 2, if the channel
state is available at receiver i and Ỹi = Yi otherwise.

Here, we review the scheme achieving this inner bound in order to highlight its differences with
the scheme for the channel with causal CSIT.

(Codebook construction) The transmission scheme is formed from three sub-codebooks.
These sub-codebooks are constructed using the pmf p(u0, u1, u2 | s) (i.e., (U0, U1, U2) is not independent
of S). Before constructing the sub-codebook, using rate splitting, Mi, i = 1, 2, is divided into the two
independent messages Mi1 of rate Ri1 and Mi2 of rate Ri2, such that Ri = Ri1 + Ri2. Sub-codebook 0
consists of i.i.d. codewords:

un
0(m0, m11, m21, l0)

generated according to ∏n
j = 1 pU0

(u0,j) where l0 ∈ {1, . . . , 2nR′0}, i.e., for each (m0, m11, m21), 2nR′0

codewords are generated. Sub-codebook i, i = 1, 2, consists of codewords:

un
i (m0, m11, m21, l0, mi2, li)

generated according to:
n

∏
j = 1

pUi |U0
(ui,j |u0,j(m0, m11, m21, l0)),

where li∈{1, . . . , 2nR′i}.
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(Encoding) For the encoding, given {mi}2
i = 0, we first find a triple (l0, l1, l2) such that:

(Un
0 (·, l0) , Un

1 (·, l0, ·, l1) , Un
2 (·, l0, ·, l2) , Sn) ∈ T n

ε′ .

If there is more than one triple, we arbitrarily choose one of them, and if there is no
triple, we choose (l0, l1, l2) = (1, 1, 1). We then construct the transmitted codeword as x0,j =

γ(u0,j (·) , u1,j (·) , u2,j (·) , sj), j = 1, 2, . . . , n.
(Decoding) Receiver 1 decodes

(
m̂01 , m̂11, m̂12

)
, if it is the unique tuple that satisfies:(

Un
0 (·, l0) , Un

1 (·, l0, ·, l1) , Ỹn
1
)
∈ T n

ε for some (m21, l0, l1);

otherwise, an error is declared. Receiver 2 decodes (m̂02 , m̂21, m̂22), if it is the unique tuple that satisfies:(
Un

0 (·, l0) , Un
2 (·, l0, ·, l2) , Ỹn

2
)
∈ T n

ε for some (m11, l0, l2);

otherwise, an error is declared. ε in the decoding is strictly greater than ε′ in the encoding.

4.3. A Unified Inner Bound

Here, we discuss that we can have a unified inner-bound expression for both causal and non-causal
cases. The inequalities in (6)–(10) can be used for both the channel with causal CSIT and the channel
with non-causal CSIT. This is because, for the channel with causal CSIT, (U0, U1, U2) is independent of
S, and the terms I(U0; S), I(U0, U1; S), I(U0, U2; S) and I(U0, U1, U2; S) are zero. Then, the inequalities
in (6)–(10) reduce to the ones in (1)–(5), and we can have a unified inner bound, stated as Corollary 1.

Corollary 1. A rate triple (R0, R1, R2) is achievable for the discrete memoryless broadcast channel with causal
CSIT if it satisfies (6)–(10) for some pmf p(u0, u1, u2) and some function x0 = γ(u0, u1, u2, s). It is achievable
for the discrete memoryless broadcast channel with non-causal CSIT if it satisfies (6)–(10) for some pmf
p(u0, u1, u2 | s) and some function x0 = γ(u0, u1, u2, s).

Remark 1. This unified inner bound is also the best inner bound for the channel without state. This is because
it reduces to Marton’s inner bound with a common message [4] (p. 212) by considering that the channel state
is zero with probability one for the channel without state. Therefore, it is a unified inner bound for all three
categories without RMSI.

As discussed in Section 2, the capacity region of a non-causal case is larger than or equal to the
capacity region of the corresponding causal case. However, an inner bound for a non-causal case is
not necessarily larger than an inner bound for the corresponding causal case when the scheme for the
latter is not a special case of the scheme for the former. By having a unified inner bound, we can show
that the inner bound for a non-causal case (Proposition 1) is larger than or equal to the inner bound for
the corresponding causal case (Theorem 1). This is because the domain of the unified inner bound
for a causal case (including all pmfs p(u0, u1, u2) and all functions x0 = γ(u0, u1, u2, s)) is a subset of
the domain of the unified inner bound for the corresponding non-causal case (including all pmfs
p(u0, u1, u2 | s) and all functions x0 = γ(u0, u1, u2, s)).

In Appendix A, we show that the scheme for the causal category, described in Section 4.1, is not
a special case of the scheme for the non-causal category, described in Section 4.2. However, we show
that by considering some special cases of the parameters in the scheme for the non-causal category,
it asymptotically almost surely has the same codebook construction, encoding and decoding as the
scheme for the causal category.
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5. Broadcast Channel with RMSI

In this section, we address the two-receiver discrete memoryless broadcast channel with RMSI.
We first propose a pre-coding scheme designed to construct the transmission scheme of a channel with
RMSI based on the transmission scheme of the channel without RMSI. By applying this pre-coding
scheme to the transmission schemes achieving the best inner bounds for the causal and non-causal
categories without RMSI, we then derive a unified inner bound that covers all three categories with
RMSI. This inner bound includes the unified inner bound for the three categories without RMSI, stated
as Corollary 1, as a special case.

5.1. Moving from without RMSI to with RMSI

We construct a pre-coding scheme for a channel with RMSI by considering Mm = (M0, M3, M4)

as a new common message and treating only M1 and M2 as the private messages. Mm, M1 and M2 are
then fed to the transmission scheme of the same channel without RMSI. Although Receiver 1 need
not decode M4, having M4 as a part of the common message does not impose any extra constraint.
This is because Receiver 1 knows M4 a priori. The same argument applies to M3 for Receiver 2.
Since Receiver 1 knows M4 a priori and Receiver 2 knows M3 a priori, Receiver 1 decodes Mm over a
set 2n(R0 + R3) candidates, and Receiver 2 decodes it over a set of 2n(R0 + R4) candidates.

Conjecture 1. We conjecture that our pre-coding scheme is an optimal pre-coding scheme in the sense that if
a transmission scheme achieves the capacity region of a channel without RMSI, then the transmission scheme,
constructed by applying our pre-coding scheme to that transmission scheme, also achieves the capacity region of
the same channel with RMSI.

5.2. A Unified Inner Bound

We here present our unified inner bound for the three categories with RMSI, stated as Theorem 2.

Theorem 2. A rate tuple (R0, R1, R2, R3, R4) is achievable for the channel with causal CSIT if it satisfies:

R0 + R1 + R3 < I(U0, U1; Ỹ1)− I(U0, U1; S), (11)

R0 + R2 + R4 < I(U0, U2; Ỹ2)− I(U0, U2; S), (12)

R0 + R1 + R2 + R3 < I(U0, U1; Ỹ1) + I(U2; Ỹ2 | U0)− I(U1; U2 | U0)− I(U0, U1, U2; S), (13)

R0 + R1 + R2 + R4 < I(U1; Ỹ1 | U0) + I(U0, U2; Ỹ2)− I(U1; U2 | U0)− I(U0, U1, U2; S), (14)

2R0 + R1 + R2 + R3 + R4 < I(U0, U1; Ỹ1) + I(U0, U2; Ỹ2)− I(U1; U2 | U0)

− I(U0, U1, U2; S)− I(U0; S), (15)

for some pmf p(u0, u1, u2) and some function x0 = γ(u0, u1, u2, s). It is achievable for the channel with
non-causal CSIT if it satisfies (11)–(15) for some pmf p(u0, u1, u2 | s) and some function x0 = γ(u0, u1, u2, s).
Ỹi = (Yi, S), i = 1, 2, if the channel state is available at receiver i and Ỹi = Yi otherwise.

Remark 2. This inner bound is also used for the discrete memoryless broadcast channel with RMSI, without
state, where we assume that the channel state is zero with probability one. Therefore, it is a unified inner bound
for all three categories with RMSI.

Remark 3. Having a unified inner bound for the three categories without RMSI and applying the same
pre-coding scheme to them are the two basic reasons why we can also have a unified inner bound for the three
categories with RMSI.

Proof of Theorem 2. We prove Theorem 2 by applying our pre-coding scheme to the transmission
schemes of the causal and non-causal categories without RMSI.
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With causal CSIT: For this category, we apply our pre-coding scheme to the transmission scheme
of the discrete memoryless broadcast channel without RMSI, with causal CSIT, described in Section 4.1.
Based on our method, Sub-codebook 0 consists of i.i.d. codewords:

un
0(m0, m3, m4, m11, m21),

generated according to ∏n
j = 1 pU0

(u0,j). Sub-codebook i, i = 1, 2, consists of codewords:

un
i (m0, m3, m4, m11, m21, mi2, li),

generated according to:

n

∏
j=1

pUi |U0
(ui,j | u0,j(m0, m3, m4, m11, m21)),

where li∈{1, . . . , 2nR′i}.
Encoding and decoding are performed similarly to the case without RMSI. For the encoding,

given {mi}4
i = 0, we first find a pair (l1, l2), such that:

(Un
0 (·) , Un

1 (·, l1) , Un
2 (·, l2)) ∈ T n

ε′ .

If there does not exist one pair, we choose (l1, l2) = (1, 1). We then construct the transmitted codeword
as x0,j = γ(u0,j (·) , u1,j (·) , u2,j (·) , sj), j = 1, 2, . . . , n.

For the decoding, Receiver 1 decodes
(
m̂01 , m̂11, m̂12, m̂3

)
, if it is the unique tuple that satisfies:(

Un
0 (·) , Un

1 (·, l1) , Ỹn
1
)
∈ T n

ε for some m21 and l1;

otherwise, an error is declared. Since this receiver knows M4 as side information, it decodes (un
0 , un

1)

over a set of 2n(R0 + R1 + R3 + R21 + R′1) candidates. Receiver 2 decodes (m̂02 , m̂21, m̂22, m̂4), if it is the
unique tuple that satisfies:(

Un
0 (·) , Un

2 (·, l2) , Ỹn
2
)
∈ T n

ε for some m11 and l2;

otherwise, an error is declared. Since this receiver knows M3 as side information, it decodes (un
0 , un

2)

over a set of 2n(R0 + R2 + R4 + R11 + R′2) candidates.
Based on error events, written similarly to the case without RMSI and using the packing

lemma [4] (p. 45) and the mutual covering lemma [4] (p. 208), sufficient conditions for achievability are:

R′1 + R′2 > I(U1; U2 | U0),

R12 + R′1 < I(U1; Ỹ1 | U0),

R0 + R1 + R3 + R21 + R′1 < I(U0, U1; Ỹ1),

R22 + R′2 < I(U2; Ỹ2 | U0),

R0 + R2 + R4 + R11 + R′2 < I(U0, U2; Ỹ2).

After performing the Fourier–Motzkin elimination, we obtain Conditions (11)–(15). Note that the
terms I(U0; S), I(U0, U1; S), I(U0, U2; S) and I(U0, U1, U2; S) are zero for this category. The inner bound
is computed over all pmfs p(u0, u1, u2) and all functions x0 = γ(u0, u1, u2, s).

With non-causal CSIT: For this category, we apply our pre-coding scheme to the transmission
scheme of the channel without RMSI, with non-causal CSIT, described in Section 4.2. The resulting
changes to the codebook construction, encoding and decoding are similar to the ones for the channel
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with causal CSIT. Based on error events written similarly to the case without RMSI and using the packing
lemma and the multivariate covering lemma [4] (p. 218), sufficient conditions for achievability are:

R′0 > I(U0; S),

R′0 + R′1 > I(U0, U1; S),

R′0 + R′2 > I(U0, U2; S),

R′0 + R′1 + R′2 > I(U0, U1, U2; S) + I(U1; U2 | U0),

R12 + R′1 < I(U1; Ỹ1 | U0),

R0 + R1 + R3 + R21 + R′0 + R′1 < I(U0, U1; Ỹ1),

R22 + R′2 < I(U2; Ỹ2 | U0),

R0 + R2 + R4 + R11 + R′0 + R′2 < I(U0, U2; Ỹ2).

After performing the Fourier–Motzkin elimination, we obtain Conditions (11)–(15). Note that
(U0, U1, U2) is not independent of S for this category. The inner bound is computed over all pmfs
p(u0, u1, u2 | s) and all functions x0 = γ(u0, u1, u2, s).

6. New Capacity Results

In this section, we present new capacity results for the two-receiver discrete memoryless broadcast
channel with RMSI. These results are established using our inner bound in Theorem 2. We also show
that our inner bound is tight for all of the cases whose capacity region was known prior to this work.

6.1. With RMSI, without State

In this subsection, we first derive a general outer bound for the discrete memoryless broadcast
channel with RMSI, without state, stated as Theorem 3. This outer bound is developed based on the
Nair-El Gamal outer bound for the discrete memoryless broadcast channel without RMSI, without
state [25]. We then establish the capacity region for two new cases in this category: the deterministic
channel, stated as Theorem 4, and the more capable channel, stated as Theorem 5.

Theorem 3. If a rate tuple (R0, R1, R2, R3, R4) is achievable for the two-receiver discrete memoryless broadcast
channel with RMSI, without state, then it must satisfy:

R0 + R3 ≤ I(U0; Y1), (16)

R0 + R4 ≤ I(U0; Y2), (17)

R0 + R1 + R3 ≤ I(U0, U1; Y1), (18)

R0 + R2 + R4 ≤ I(U0, U2; Y2), (19)

R0 + R1 + R2 + R3 ≤ I(U0, U1; Y1) + I(U2; Y2 | U0, U1), (20)

R0 + R1 + R2 + R4 ≤ I(U1; Y1 | U0, U2) + I(U0, U2; Y2), (21)

for some pmf p(u1)p(u2)p(u0 | u1, u2) and some function x0 = γ(u0, u1, u2).

Proof of Theorem 3. See Appendix B
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Theorem 4. The capacity region of the two-receiver deterministic broadcast channel with RMSI, without state,
is the closure of the set of all rate tuples (R0, R1, R2, R3, R4), each satisfying:

R0 + R1 + R3< H(Y1), (22)

R0 + R2 + R4< H(Y2), (23)

R0 + R1 + R2 + R3< H(Y1) + H(Y2 | U0, Y1), (24)

R0 + R1 + R2 + R4< H(Y2) + H(Y1 | U0, Y2), (25)

2R0 + R1 + R2 + R3 + R4< I(U0; Y1) + H(Y2) + H(Y1 | U0, Y2), (26)

for some pmf p(u0, x0).

Proof of Theorem 4. (Achievability) Achievability is proven by setting (U0, U1, U2, S) = (U0, Y1, Y2, 0)
in (11)–(15).

(Converse) We start with the outer bound in Theorem 3. By removing Condition (17), adding
Conditions (16) and (21) and enlarging the domain of this outer bound, we obtain the following looser
outer bound: if a rate tuple is achievable, then it must satisfy:

R0 + R1 + R3 ≤ I(U0, U1; Y1), (27)

R0 + R2 + R4 ≤ I(U0, U2; Y2), (28)

R0 + R1 + R2 + R3 ≤ I(U0, U1; Y1) + I(U2; Y2 | U0, U1), (29)

R0 + R1 + R2 + R4 ≤ I(U1; Y1 | U0, U2) + I(U0, U2; Y2), (30)

2R0 + R1 + R2 + R3 + R4 ≤ I(U0; Y1) + I(U1; Y1 | U0, U2) + I(U0, U2; Y2), (31)

for some pmf p(u0, u1, u2) and some function x0 = γ(u0, u1, u2).
By relaxing Conditions (27)–(31), we can write them in the form of Conditions (22)–(26).

As an example, we show this for (31).

2R0 + R1 + R2 + R3 + R4 ≤ I(U0; Y1) + I(U1; Y1 | U0, U2) + I(U0, U2; Y2)

(a)
= I(U0; Y1) + H(Y1 | U0, U2) + H(Y2)− H(Y2 | U0, U2)

≤ I(U0; Y1) + H(Y1, Y2 | U0, U2) + H(Y2)− H(Y2 | U0, U2)

= I(U0; Y1) + H(Y1 | U0, U2, Y2) + H(Y2)

≤ I(U0; Y1) + H(Y1 | U0, Y2) + H(Y2),

where (a) is due to H(Yi | U0, U1, U2) = 0, i = 1, 2, for the deterministic channel.

Theorem 5. The capacity region of the two-receiver more capable broadcast channel with RMSI, without state,
is the closure of the set of all rate tuples (R0, R1, R2, R3, R4), each satisfying:

R0 + R2 + R4 < I(U0; Y2),

R0 + R1 + R2 + R4 < I(U0; Y2) + I(X0; Y1 | U0),

R0 + R1 + R2 + R3 < I(X0; Y1),

for some pmf p(u0, x0).

Proof of Theorem 5. (Achievability) Achievability is proven by setting (U0, U1, U2, S) = (U0, X0, 0, 0)
in (11)–(15). Note that U2 = 0 implies that M21 = M2 and R′1 = 0.
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(Converse) According to Theorem 3, if a rate tuple is achievable, then it must satisfy:

R0 + R2 + R4 ≤ I(U0, U2; Y2), (32)

R0 + R1 + R2 + R3 ≤ I(U0, U1; Y1) + I(U2; Y2 | U0, U1), (33)

R0 + R1 + R2 + R4 ≤ I(U1; Y1 | U0, U2) + I(U0, U2; Y2), (34)

for some pmf p(u0, u1, u2) and some function x0 = γ(u0, u1, u2). Since, for the channel without state,
we have:

I(U2; Y2 | U0, U1) = I(X0; Y2 | U0, U1),

I(U1; Y1 | U0, U2) = I(X0; Y1 | U0, U2),

and for the more capable channel, we have [4] (p. 123):

I(X0; Y2 | U0, U1) ≤ I(X0; Y1 | U0, U1),

we can write (33) and (34) as follows.

R0 + R1 + R2 + R3 ≤ I(U0, U1; Y1) + I(U2; Y2 | U0, U1)

= I(U0, U1; Y1) + I(X0; Y2 | U0, U1)

≤ I(U0, U1; Y1) + I(X0; Y1 | U0, U1)

= I(X0; Y1). (35)

R0 + R1 + R2 + R4 ≤ I(U1; Y1 | U0, U2) + I(U0, U2; Y2)

= I(X0; Y1 | U0, U2) + I(U0, U2; Y2). (36)

From (32), (35), (36) and considering U′0 = (U0, U2), if a rate tuple is achievable, then it
must satisfy:

R0 + R2 + R4 ≤ I(U′0; Y2),

R0 + R1 + R2 + R3 ≤ I(X0; Y1),

R0 + R1 + R2 + R4 ≤ I(X0; Y1 | U′0) + I(U′0; Y2),

for some pmf p(u′0, x0).

6.2. With RMSI, with Causal CSIT

In this subsection, we establish the capacity region of the two-receiver (stochastically) degraded
broadcast channel with RMSI where the channel state is available causally: (i) at only the transmitter;
(ii) at the transmitter and the non-degraded receiver; or (iii) at the transmitter and both receivers.

Theorem 6. The capacity region of the two-receiver degraded broadcast channel with RMSI where the channel
state is available causally at only the transmitter is the closure of the set of all rate tuples (R0, R1, R2, R3, R4),
each satisfying:

R0 + R2 + R4 < I (U0; Y2) ,

R0 + R1 + R2 + R3 < I (U0, U1; Y1) ,

R0 + R1 + R2 + R4 < I (U0; Y2) + I (U1; Y1 | U0) ,

for some pmf p (u0, u1) and some function x0 = γ (u0, u1, s).



Entropy 2017, 19, 138 15 of 22

Proof of Theorem 6. (Achievability) Achievability is proven by setting U2 = 0 in (11)–(15). Note that,
for a causal case, U2 = 0 implies that M21 = M2 and R′1 = 0. (Converse) See Appendix C.

Theorem 7. The capacity region of the two-receiver degraded broadcast channel with RMSI where the channel
state is available causally either at the transmitter and Receiver 1 or at the transmitter and both receivers is the
closure of the set of all rate tuples (R0, R1, R2, R3, R4), each satisfying:

R0 + R2 + R4 < I(U0; Ỹ2),

R0 + R1 + R2 + R3 < I(X0; Y1 | S),
R0 + R1 + R2 + R4 < I(U0; Ỹ2) + I (X0; Y1 | U0, S) ,

for some pmf p (u0, u1) and some function x0 = γ (u0, u1, s). Ỹ2 = (Y2, S) if the channel state is available at
Receiver 2 and Ỹ2 = Y2 otherwise.

Proof of Theorem 7. (Achievability) Achievability is proven by setting U2 = 0 in (11)–(15). Note that,
for a causal case, U2 = 0 implies that M21 = M2, R′1 = 0 and:

I(U0, U1; Y1, S) = I(U0, U1; Y1 | S) = I(X0; Y1 | S),
I(U1; Y1, S | U0) = I(U1; Y1 | U0, S) = I(X0; Y1 | U0, S).

(Converse) See Appendix D.

6.3. With RMSI, with Non-Causal CSIT

In this subsection, we establish the capacity region of the two-receiver (stochastically) degraded
broadcast channel with RMSI where the channel state is available non-causally: (i) at the transmitter
and the non-degraded receiver; or (ii) at the transmitter and both receivers.

Theorem 8. The capacity region of the two-receiver degraded broadcast channel with RMSI where the channel
state is available non-causally either at the transmitter and Receiver 1 or at the transmitter and both receivers is
the closure of the set of all rate tuples (R0, R1, R2, R3, R4), each satisfying:

R0 + R2 + R4 < I(U0; Ỹ2)− I(U0; S),

R0 + R1 + R2 + R3 < I(X0; Y1 | S),
R0 + R1 + R2 + R4 < I(U0; Ỹ2)− I(U0; S) + I(X0; Y1 | U0, S),

for some pmf p (u0, u1 | s) and some function x0 = γ (u0, u1, s). Ỹ2 = (Y2, S) if the channel state is available at
Receiver 2 and Ỹ2 = Y2 otherwise.

Proof of Theorem 8. (Achievability) Achievability is proven by setting U2 = 0 in (11)–(15). Note that,
for a non-causal case, U2 = 0 implies that M21 = M2, and:

I(U0, U1; Y1, S)− I(U0, U1; S) = I(U0, U1; Y1 | S) = I(X0; Y1 | S).

(Converse) See Appendix D.

6.4. Discussion on Prior Known Results

We here show that our inner bound in Theorem 2 is also tight for all of the special cases of the
two-receiver discrete memoryless channel with RMSI whose capacity region was known prior to
this work.

With RMSI, without state: The capacity region of the discrete memoryless channel with
complementary RMSI is achieved by multiplexing all of the requested messages into only one
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codebook [15,16]. This scheme is a special case of our scheme obtained by setting (U0, U1, U2, S) =
(X0, 0, 0, 0). Note that M1 and M2 are equal to zero in this message setup.

The capacity region of the discrete memoryless channel with degraded message sets (due to RMSI)
is achieved by superposition coding [17]. This scheme is a special case of our scheme obtained by
setting (U0, U1, U2, S) = (U0, X0, 0, 0) or (U0, U1, U2, S) = (U0, 0, X0, 0) depending on whether Receiver 1
or Receiver 2 needs to decode the whole set of the source messages, respectively. Note that either M1

or M2 is equal to zero in this message setup.
The less noisy broadcast channel with RMSI is a special case of the more capable broadcast channel

with RMSI [4]. Thus, our scheme can also achieve the capacity region of the less noisy channel.
With RMSI, with causal CSIT: By setting (U1, U2) = (0, 0), our scheme for the causal category

reduces to the one used by Khormuji et al. [19] to establish the capacity region of the two-receiver
discrete memoryless broadcast channel with complementary RMSI where the channel state is available
causally at only the transmitter.

With RMSI, with non-causal CSIT: By setting (U1, U2) = (0, 0), our scheme for the non-causal
category reduces to the one used by Oechtering and Skoglund [20] to establish the capacity region of
the two-receiver discrete memoryless broadcast channel with complementary RMSI where the channel
state is available non-causally at the transmitter and one of the receivers.

7. Conclusions

We proposed a pre-coding scheme designed to construct transmission schemes of two-receiver
broadcast channels with receiver message side information (RMSI) using the best transmission schemes
for the channels without RMSI. This provides a general approach for utilizing RMSI in different
two-receiver broadcast channels. Employing our pre-coding scheme, we derived a unified inner bound
for three categories of the discrete memoryless broadcast channel with RMSI: (i) channel without state;
(ii) channel with causal channel state information at the transmitter (CSIT); and (iii) channel with
non-causal CSIT. We showed that our inner bound establishes the capacity region of some new cases
in each of the three categories. We also showed that our inner bound is tight for all of the cases whose
capacity region was known prior to this work. These results validated our approach for utilizing RMSI
in two-receiver broadcast channels.
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Appendix A
In this section, we show that the scheme for the causal category, described in Section 4.1, cannot

be considered as a special case of the scheme for the non-causal category, described in Section 4.2.
However, the rate regions achievable by both schemes have similar expression. This results in a unified
inner bound for both causal and non-causal cases from which we can show that the inner bound for
a non-causal case is at least as large as the the inner bound for the corresponding causal case. We will
explain the reason behind this observation despite them having different schemes.

We consider a scheme as a special case of another scheme when the latter reduces to the former
by considering some special cases of its parameters, e.g., superposition coding is a special case of the
scheme achieving Marton’s inner bound with a common message [4] (p. 212).

Consider the encoding rule of the scheme for the non-causal category where the encoder finds
a triple (Un

0 , Un
1 , Un

2 ), such that:

(Un
0 , Un

1 , Un
2 , Sn) ∈ T n

ε′ (U0, U1, U2, S).
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The encoder for the causal category cannot check this rule since this encoder only knows Sn at the
end of the transmission. Hence, the scheme for the causal category is not a special case of the scheme
for the non-causal category.

By choosing p(u0, u1, u2 | s) = p(u0, u1, u2) for all s and setting R′0 = 0, the scheme for the
non-causal category has the same codebook construction and decoding approach as the scheme for
the causal category. The only difference is that for the channel state realization sn, the encoder for the
non-causal category finds a triple (Un

0 , Un
1 , Un

2 ), such that:

(Un
0 , Un

1 , Un
2 ) ∈ T n

ε′ (U0, U1, U2 | sn),

where:

T n
ε′ (U0, U1, U2 | sn) =

{
(un

0 , un
1 , un

2) | (un
0 , un

1 , un
2 , sn) ∈ T n

ε′ (U0, U1, U2, S)
}

,

and the encoder for the causal category finds a triple (Un
0 , Un

1 , Un
2 ), such that:

(Un
0 , Un

1 , Un
2 ) ∈ T n

ε′ (U0, U1, U2).

Therefore, the transmitted codewords may be different. However, according to the properties of
joint typicality [4] (p. 30), we have:

• T n
ε′ (U0, U1, U2 | sn) ⊆ T n

ε′ (U0, U1, U2).
• For sufficiently large n,

(1− ε′)2n(H(U0,U1,U2) − ε′H(U0,U1,U2)) ≤
∣∣T n

ε′ (U0, U1, U2)
∣∣≤ 2n(H(U0,U1,U2) + ε′H(U0,U1,U2)).

• If sn ∈ T n
ε′′ , ε′′ < ε′, then, for sufficiently large n,

(1− ε′)2n(H(U0,U1,U2) − ε′H(U0,U1,U2))≤
∣∣T n

ε′ (U0, U1, U2|sn)
∣∣≤ 2n(H(U0,U1,U2) + ε′H(U0,U1,U2)).

Note that in this item, we have also used the fact that p(u0, u1, u2 |s) = p(u0, u1, u2), which results
in H(U0, U1, U2 | S) = H(U0, U1, U2).

• P
(
Sn ∈ T n

ε′′(S)
)
→ 1, as n tends to infinity.

Consequently,

P (T n
ε′ (U0, U1, U2 | sn) = T n

ε′ (U0, U1, U2))→ 1,

as n tends to infinity. Hence, by choosing p(u0, u1, u2 |s) = p(u0, u1, u2), the scheme for the non-causal
category asymptomatically almost surely has the same encoding as the scheme for the causal category.
This leads the scheme for the non-causal category to achieve the same rate region as the scheme for the
causal category.

Appendix B

In this section, we present the proof of Theorem 3, which is based on the proof of the Nair-El Gamal
outer bound for the channel without RMSI [4] (p. 217).

Proof. By Fano’s inequality [4] (p. 19), we have:

H (M0, M1, M3 | Yn
1 , M4) ≤ nε1,n, (A1)

H (M0, M2, M4 | Yn
2 , M3) ≤ nε2,n, (A2)

where εi,n → 0 as n → ∞ for i = 1, 2. For the sake of simplicity, we use εn instead of εi,n for
the remainder.
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Using (A1) and (A2), if a rate tuple (R0, R1, R2, R3, R4) is achievable, then it must satisfy:

n(R0 + R3) ≤I (M0, M3; Yn
1 | M4) + nεn, (A3)

n(R0 + R4) ≤I (M0, M4; Yn
2 | M3) + nεn, (A4)

n(R0 + R1 + R3) ≤I (M0, M1, M3; Yn
1 | M4) + nεn, (A5)

n(R0 + R2 + R4) ≤I (M0, M2, M4; Yn
2 | M3) + nεn, (A6)

n(R0 + R1 + R2 + R3) ≤I (M0, M1, M3; Yn
1 | M4) + I (M2; Yn

2 | M0, M1, M3, M4) + 2nεn, (A7)

n(R0 + R1 + R2 + R4) ≤I (M1; Yn
1 | M0, M2, M3, M4) + I (M0, M2, M4; Yn

2 | M3) + 2nεn. (A8)

Inequalities (A3)–(A8) yield Conditions (16)–(21) by using the auxiliary random variables
defined as:

U0,i =
(

M0, M3, M4, Yi − 1
1 , Yn

2,i + 1

)
,

U1,i = M1,

U2,i = M2,

where Yi − 1
1 = (Y1,1, Y1,2, . . . , Y1,i − 1) and Yn

2,i + 1 = (Y2,i + 1, Y2,i + 2, . . . , Y2,n).
We here only show how Inequalities (A3) and (A7) yield Conditions (16) and (20), respectively.

We just need to follow similar steps for the rest.
In (A3), we expand the mutual information term as follows

I(M0, M3; Yn
1 | M4) =

n

∑
i = 1

I
(

M0, M3; Y1,i | M4, Yi − 1
1

)
≤

n

∑
i = 1

I
(

M0, M3, M4, Yi − 1
1 ; Y1,i

)
≤

n

∑
i = 1

I (U0,i; Y1,i) .

Then, since εn → 0 as n→ ∞, by using the standard time-sharing argument [4] (p. 114), we have:

R0 + R3 ≤ I (U0; Y1) .

In (A7), we expand the mutual information terms as follows.

I (M0, M1, M3; Yn
1 | M4) =

n

∑
i = 1

I
(

M0, M1, M3; Y1,i | M4, Yi − 1
1

)
≤

n

∑
i = 1

I
(

M0, M1, M3, M4, Yi − 1
1 ; Y1,i

)
=

n

∑
i = 1

I
(

M0, M1, M3, M4, Yi − 1
1 , Yn

2,i + 1; Y1,i

)
−

n

∑
i = 1

I
(

Yn
2,i + 1; Y1,i | M0, M1, M3, M4, Yi − 1

1

)
, (A9)
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I (M2; Yn
2 | M0, M1, M3, M4) =

n

∑
i = 1

I
(

M2; Y2,i | M0, M1, M3, M4, Yn
2,i + 1

)
≤

n

∑
i = 1

I
(

M2, Yi−1
1 ; Y2,i | M0, M1, M3, M4, Yn

2,i + 1

)
=

n

∑
i = 1

I
(

Yi−1
1 ; Y2,i | M0, M1, M3, M4, Yn

2,i + 1

)
+

n

∑
i = 1

I
(

M2; Y2,i | M0, M1, M3, M4, Yi − 1
1 , Yn

2,i + 1

)
. (A10)

Then, since εn → 0 as n→ ∞, from (A7), (A9), (A10), the Csiszár sum identity [4] (p. 25) and the
time-sharing argument, we have:

R0 + R1 + R2 + R3 ≤ I (U0, U1; Y1) + I (U2; Y2 | U0, U1) .

Appendix C

In this section, we present the converse proof of Theorem 6. In the converse, we assume that
the broadcast channel is physically degraded as the capacity region of the stochastically-degraded
broadcast channel is equal to its equivalent physically-degraded broadcast channel.

Proof. (Converse) By Fano’s inequality, we have (A1) and (A2). From (A2) and the physical
degradedness of the channel, we have:

H (M0, M2, M4 | Yn
1 , M3) ≤ H (M0, M2, M4 | Yn

2 , M3) ≤ nεn, (A11)

and from (A1) and (A11), we have:

H (M0, M2, M3 | Yn
1 , M4) ≤ 2nεn. (A12)

Using (A1), (A2) and (A12), we obtain the following necessary conditions for achievability:

nR1 ≤ I(M1; Yn
1 | M0, M2, M3, M4) + nεn, (A13)

n(R0 + R2 + R3) ≤ I(M0, M2, M3; Yn
1 | M4) + 2nεn, (A14)

n(R0 + R2 + R4) ≤ I(M0, M2, M4; Yn
2 | M3) + nεn. (A15)

We now define the auxiliary random variables U0,i and U1,i as:

U0,i = (M0, M2, M3, M4, Yi − 1
1 ),

U1,i = (M1, Si − 1),

and expand the mutual information terms in (A13)–(A15) respectively as follows.

I (M1; Yn
1 | M0, M2, M3, M4) =

n

∑
i = 1

I
(

M1; Y1,i | M0, M2, M3, M4, Yi − 1
1

)
≤

n

∑
i = 1

I
(

M1, Si − 1; Y1,i | M0, M2, M3, M4, Yi − 1
1

)
=

n

∑
i = 1

I (U1,i; Y1,i | U0,i) , (A16)
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I (M0, M2, M3; Yn
1 | M4) =

n

∑
i = 1

I
(

M0, M2, M3; Y1,i | M4, Yi − 1
1

)
≤

n

∑
i = 1

I
(

M0, M2, M3, M4, Yi − 1
1 ; Y1,i

)
=

n

∑
i = 1

I (U0,i; Y1,i) , (A17)

I (M0, M2, M4; Yn
2 | M3) =

n

∑
i = 1

I
(

M0, M2, M4; Y2,i | M3, Yi − 1
2

)
≤

n

∑
i = 1

I
(

M0, M2, M3, M4, Yi − 1
2 ; Y2,i

)
≤

n

∑
i = 1

I
(

M0, M2, M3, M4, Yi − 1
2 , Yi − 1

1 ; Y2,i

)
(a)
=

n

∑
i = 1

I
(

M0, M2, M3, M4, Yi − 1
1 ; Y2,i

)
=

n

∑
i = 1

I (U0,i; Y2,i) , (A18)

where (a) follows from the physical degradedness of the channel.
Finally, since εn → 0 as n → ∞, substituting (A16)–(A18) into (A13)–(A15) and using the

time-sharing argument complete the converse proof. Note that (U0,i, U1,i) is independent of Si, and
X0,i is a function of (U0,i, U1,i, Si).

Appendix D

In this section, we present the converse proof of Theorems 7 and 8. We here also assume that the
broadcast channel is physically degraded.

Proof. (Converse) By Fano’s inequality, we have:

H(M0, M1, M3 | Yn
1 , Sn, M4) ≤ nεn, (A19)

H(M0, M2, M4 | Ỹn
2 , M3) ≤ nεn, (A20)

where εn → 0 as n→ ∞.
From (A20) and the physical degradedness of the channel, we have:

H (M0, M2, M4 | Yn
1 , Sn, M3) ≤ H (M0, M2, M4 | Yn

2 , Sn, M3) ≤ nεn, (A21)

and from (A19) and (A21), we have:

H (M0, M1, M2, M3 | Yn
1 , Sn, M4) ≤ 2nεn. (A22)

Using (A19), (A20) and (A22), if a rate tuple (R0, R1, R2, R3, R4) is achievable, then it must satisfy:

nR1 ≤ I(M1; Yn
1 | M0, M2, M3, M4, Sn) + nεn, (A23)

n(R0 + R1 + R2 + R3) ≤ I(M0, M1, M2, M3; Yn
1 | M4, Sn) + 2nεn, (A24)

n(R0 + R2 + R4) ≤ I(M0, M2, M4; Ỹn
2 | M3) + nεn. (A25)

We now define the auxiliary random variables U0,i and U1,i as:

U0,i = (M0, M2, M3, M4, Si − 1, Sn
i + 1, Yi − 1

2 ),

U1,i = (M1, Yi − 1
1 ),
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and expand the mutual information terms in (A23)–(A25) respectively as follows.

I (M1; Yn
1 | M0, M2, M3, M4, Sn) =

n

∑
i = 1

I
(

M1; Y1,i | M0, M2, M3, M4, Sn, Yi − 1
1

)
(a)
=

n

∑
i = 1

I
(

M1; Y1,i | M0, M2, M3, M4, Sn, Yi − 1
1 , Yi − 1

2

)
≤

n

∑
i = 1

I
(

M1, Yi − 1
1 ; Y1,i | M0, M2, M3, M4, Sn, Yi − 1

2

)
=

n

∑
i = 1

I
(
U1,i; Y1,i | U0,i, Si

)
=

n

∑
i = 1

I
(
X0,i; Y1,i | U0,i, Si

)
, (A26)

I (M0, M1, M2, M3; Yn
1 | M4, Sn) =

n

∑
i = 1

I
(

M0, M1, M2, M3; Y1,i | M4, Sn, Yi − 1
1

)
(b)
=

n

∑
i = 1

I
(

M0, M1, M2, M3; Y1,i | M4, Sn, Yi − 1
1 , Yi − 1

2

)
≤

n

∑
i = 1

I
(
U0,i, U1,i; Y1,i | Si

)
=

n

∑
i = 1

I
(
X0,i; Y1,i | Si

)
, (A27)

I(M0, M2, M4; Ỹn
2 | M3)

=
n

∑
i = 1

I(M0, M2, M4; Ỹ2,i | M3, Ỹi − 1
2 )

≤
n

∑
i = 1

I(M0, M2, M3, M4, Si − 1, Ỹi − 1
2 ; Ỹ2,i)

=
n

∑
i = 1

I(M0, M2, M3, M4, Si − 1, Sn
i + 1, Ỹi − 1

2 ; Ỹ2,i)− I(Sn
i + 1; Ỹ2,i | M0, M2, M3, M4, Si − 1, Ỹi − 1

2 )

(c)
=

n

∑
i = 1

I(M0, M2, M3, M4, Si − 1, Sn
i + 1, Ỹi − 1

2 ; Ỹ2,i)− I(Ỹi − 1
2 ; Si | M0, M2, M3, M4, Si − 1, Sn

i + 1)

(d)
=

n

∑
i = 1

I(M0, M2, M3, M4, Si − 1, Sn
i + 1, Ỹi − 1

2 ; Ỹ2,i)− I(M0, M2, M3, M4, Si − 1, Sn
i + 1, Ỹi − 1

2 ; Si)

=
n

∑
i = 1

I(U0,i; Ỹ2,i)− I(U0,i; Si), (A28)

where (a) and (b) follow from the physical degradedness of the channel, (c) from the Csiszár sum identity and
(d) from the independence of (M0, M2, M3, M4, Si − 1, Sn

i + 1) and Si. Note that, for causal cases, (U0,i, U1,i) is
independent of Si, but for non-causal cases, (U0,i, U1,i) and Si are dependent. For both causal and non-causal
cases, X0,i is a function of (U0,i, U1,i, Si).

Finally, since εn → 0 as n → ∞, substituting (A26)–(A28) into (A23)–(A25) and using the time sharing
argument complete the converse proof.
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