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Abstract: In classical concepts, theoretical models are built assuming that the dynamics of the
complex system’s stuctural units occur on continuous and differentiable motion variables. In reality,
the dynamics of the natural complex systems are much more complicated. These difficulties
can be overcome in a complementary approach, using the fractal concept and the corresponding
non-differentiable theoretical model, such as the scale relativity theory or the extended scale relativity
theory. Thus, using the last theory, fractal entropy through non-differentiable Lie groups was
established and, moreover, the pairs generating mechanisms through fractal entanglement states
were explained. Our model has implications in the dynamics of biological structures, in the form of
the “chameleon-like” behavior of cholesterol.
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1. Introduction

The dynamics of complex systems [1,2], from functionality and structure points of view, lead to
some instabilities. These instabilities involve either chaos (e.g., noise regeneration) or pattern
generation (e.g., interference, diffraction fields, etc.).

In classical concepts, the theoretical models (hydrodynamic, kinetic, etc. [1,3,4]) are built assuming
that the dynamics of the complex system’s structural units occur on continuous and differentiable
motion variables (energy, momentum, density, etc.), exclusively dependent on spatial coordinates
and time.

In reality, the complex system’s dynamics are much more complicated and the classical theoretical
models failed in the attempt to explain all these aspects, as illustrated by experimental observations [4].

These difficulties can be overcome with a complementary approach, using fractal concepts, which
were defined for the first time by Mandelbrot [5]. He introduced the term “fractal” to describe the
“exotic” shapes that did not fit the patterns of Euclidean geometry, i.e., irregular geometrical objects,
cells of living organisms, human arterial vessels, neural networks, the convoluted surface of the brain,
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etc., which possess invariance with respect to the scale transformations. This approach is considered
an extension of the conventional Euclidean geometry.

In this spirit, fractal analysis has proven to be a useful tool describing various systems from
physics, chemistry, biology, medicine, etc. [6–9]. Moreover, the analysis of complex systems evolution
showed that most of them are non-linear and, therefore, new mathematical tools were required. These
have been provided by the scale relativity theory (SRT) [10,11] and by the extended scale relativity
theory (ESRT) [12], i.e., the SRT with an arbitrary constant fractal dimension.

These theories consider that the motions of the complex system’s structural units take place
on continuous but non-differentiable curves (fractal curves). In this situation, the Euclidean
dynamics of a complex system subjected to external constraints is replaced by fractal dynamics
characterizing the same system, but free of any external constraints. More precisely, the constrained
motions in the Euclidian space, i.e., on continuous and differentiable curves, are substituted by free,
independent motions (without constrains) in a fractal space, i.e., on continuous, but non-differentiable
(fractal) curves.

Therefore, non-differentiability becomes a fundamental property of the complex system’s
dynamics. In such a conjecture, a correspondence between the interaction processes and the
non-differentiability (fractality) of the motion trajectories can be established. Then, for specific scales
that are large with respect to the inverse of the highest Lyapunov exponent [13,14], the deterministic
trajectories are replaced by a collection of potential trajectories, while the concept of definite positions
is substituted by that of the probability density. Moreover, the complex system’s structural units may
be reduced and identified with their own trajectories so that the complex system will behave as a
special fluid lacking interactions (via their geodesics in a fractal space). Let us call such a fluid a
“fractal fluid”.

In the present paper, the role of fractal entropy in the pairs generating processes is analyzed.
The general theory and some applications are also discussed.

2. Hallmarks of Non-Differentiability

In such a framework, some consequences of non-differentiability, both in the usual space (of the
space and time coordinates) and in the scales space, are evident [10–12,15–17]:

(i) any continuous but non-differentiable curve of the complex system’s structural units (fractal
curve) is explicitly dependent on scale resolution δω, i.e., its length tends to infinity when δω

tends to zero;
(ii) the physics of the complex system phenomena is related to the behavior of a functions set during

the zoom operation of the scale δω. Then, through the substitution principle, δω will be identified
with dω, i.e., δω = dω. Consequently, it will be considered as an independent variable;

(iii) the complex system dynamics is described through fractal variables, i.e., functions dependent
both on the space-time coordinates and the scale resolution, since the differential reflection
invariance in relation to ω, of any dynamical variable, is broken.

As consequence, the velocity field, both in the usual space and in the scales space, becomes a
complex variable dynamic, with the form:

∧
V l = V l

D − iV l
F, i =

√
−1 (1)

where the real part, V l
D, is the differentiable velocity and the imaginary one, V l

F, is the non-differentiable
(fractal) velocity;
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(iv) the differential of the spatial coordinate field, d±Yi, both in the usual space and in the scales
space, is expressed as the sum of two differentials, one of them being the differential part d±yi

and the other one being the scales fractal part, d±σi, i.e.,:

d±Yi = d±yi + d±σi (2)

The sign “+” corresponds to the forward process, while the sign “−” to the backward one;
(v) the fractal part of the spatial coordinate field, both in the usual space and in the scales space,

satisfies the fractal equation:
d±σi(ω, dω) = λi

±(dω)1/DF (3)

where DF defines the fractal dimension of the fractal motion curve and λi
± are constant coefficients

that indicate the fractalization type;
(vi) an infinite number of fractal curves can be found relating any pair of points, both in the usual

space and in the scales space. Then, any external constraint is interpreted as a selection of fractal
curves, both in the usual space and in the scales space, and the real curves, corresponding to the
maximum of the probability density;

(vii) the complex system dynamics, both in the usual space and in the scales space, can be described
through a covariant derivative:

∧
d

dω
= ∂ω +

∧
V l∂l −

1
4
(dω)(2/DF)−1Dlk∂l∂k (4)

where:
Dlk =

(
λl
+λk

+ − λl
−λk
−

)
− i(λl

+λk
+ + λl

−λk
−)

∂l =
∂

∂Yl ; ∂l∂k =
∂2

∂Yl ∂Yk

(5)

In the previous relations the indexes l, k take the values 1, 2, 3 in the usual space, while in the scales
space they have an arbitrary dimension imposed by the intrinsic structure of the complex system.

Considering the functionality of a generalized covariance principle (the complex system physics
laws are invariant both with respect to space-time transformations and to the scales ones), the transition
from the classical physics of complex system dynamics to the non-differentiable (fractal) one can be
implemented by replacing the standard derivative operator d/dω with the non-differentiable operator
∧
d

dω . Thus, this operator plays the role of the covariant derivative, namely it is used to rewrite the
fundamental equations of complex system dynamics, both in the usual space and in the scales space,
in the same form as in the classic (differentiable) case.

Under these conditions, applying the operator (4) to the complex velocity field (1), in the absence
of any external constraint and for motions on Levy curves [5–7], which implies the restriction:

λi
+λl

+ = −λi
−λl
− = ±2λδil (6)

where λ is the fractal-nonfractal transition coefficient, considered with “+” for dω〉0 and with “−” for
dω〈0 (for details see [10–12,15–17]) and δil the Kronecker tensor, the fractal equation of the motion
(geodesics equation) has the following form:

∧
d
∧

Vi

dω
= ∂ω

∧
Vi +

∧
V l∂l

∧
Vi − iλ(dω)(2/DF)−1∂l∂l

∧
Vi (7)

Previous results show that, both in the usual space and in the scales space, the local “acceleration”,
the ”convection” and the “dissipation” make their balance at any point of the non-differentiable curve.
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Moreover, the presence of the complex viscosity-type coefficient indicates that the complex system is a
rheological medium.

For irrotational motions, the complex velocity field
∧

Vi takes the form:

∧
Vi = −2iλ(dω)(2/DF)−1∂ilnΨ (8)

Then substituting this relation in Equation (7), the geodesics equation, both in the usual space
and in the scales space, becomes:

λ2(dω)(4/DF)−2∂l∂lΨ + iλ(dω)(2/DF)−1∂ωΨ = 0 (9)

In the previous Equations (8) and (9), lnΨ is the scalar potential of the complex velocity field. As
the geodesics Equation (15) is of a fractal Schrödinger type, the function Ψ, through ρ = |Ψ|2, becomes
a density probability, thus motivating the procedure for deterministic trajectories substitution with
“potential trajectories collection”, i.e., the probability densities.

Moreover, if Ψ =
√

ρ exp(iS) with
√

ρ is the amplitude and S is the phase of Ψ, the complex
velocity field has the real part:

Vi
D = 2λ(dω)(2/DF)−1∂iS (10)

and the imaginary one:
Vi

F = λ(dω)(2/DF)−1∂ilnρ (11)

Substituting Equation (1) with Equations (10) and (11) in Equation (7) and separating the real and
the imaginary parts, up to an arbitrary phase factor which may be set to zero by a suitable choice of
the phase of Ψ, we obtained:

∂ωVi
D +

(
V l

D∂l

)
Vi

D = −∂iQ (12)

∂ωρ + ∂i
(

ρVi
D

)
= 0 (13)

where Q is the specific fractal potential:

Q = −2λ2(dω)(4/DF)−2 ∂l∂l
√

ρ
√

ρ
= −

V l
FVFl

2
− λ(dω)(2/DF)−1∂iVi

F (14)

Equation (12) represents the specific momentum conservation law, while Equation (13) represents
the states density conservation law. These equations define the fractal hydrodynamical model both in
the usual space and in the scales space.

From such a perspective, the non-linear interactions between the structural units of the complex
system induce a “fractal medium”; therefore, every structural unit is in a perpetual “interaction” with
the “fractal medium”. The “fractal medium” dynamics are described by the fractal hydrodynamics
equations, i.e., by the momentum and states density conservation laws.

The specific fractal potential is, at the same time, both a measure of the interaction degree
between the structural unit and the fractal medium, as well as of the motion curves fractality. The
fractal velocity field does not represent actual motion, but contributes to the transfer of the specific
momentum and energy. This may be seen clearly from the absence of this velocity from the states
density conservation law.

Any interpretation of the specific fractal potential should take cognizance of the “self” nature of
the specific momentum transfer. While the standard energies are stored both in the form of the mass
motion (kinetic energy) and potential energy, some is available elsewhere and only the total energy is
conserved. It is the conservation of the total energy and momentum that ensures “fractal reversibility”
and the existence of the fractal eigenstates, but denies a Levy motion fractal force of interaction with
the “fractal medium”.
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3. Fractal Entropy through Non-Differentiable Lie’s Group

Working with a variant of the Schrodinger-type geodesics equation (see Equation (9)), it implies

that to each dynamic variable Θi, a fractal operator can be associated
∧

Θi. This leads us to fractal
differential equations with eigenfunctions and eigenvalues [10–12]. For example, the fractal operator
of the angular momentum is given by the equation [10–12]:

∧
L =

∧
r ×

∧
P = −iλ(dt)(2/DF)−1

(∧
r ×∇

)
(15)

where
∧
r ,
∧
P are the fractal position-type and, specific momentum-type (the momentum of the mass

unit) operators, respectively.
Thus, Equation (15) becomes:

∧
M1 = −iλ(dt)(2/DF)−1

(
Y2

∂
∂Y3
−Y3

∂
∂Y2

)
∧

M2 = −iλ(dt)(2/DF)−1
(

Y3
∂

∂Y1
−Y1

∂
∂Y3

)
∧

M3 = −iλ(dt)(2/DF)−1
(

Y1
∂

∂Y2
−Y2

∂
∂Y1

) (16)

These non-diferentiable operators satisfy the Lie fractal algebra [10–12]:[ ∧
M1,

∧
M2

]
= iλ(dt)(2/DF)−1 ∧L3[ ∧

M2,
∧

M3

]
= iλ(dt)(2/DF)−1 ∧L1[ ∧

M3,
∧

M1

]
= iλ(dt)(2/DF)−1 ∧L2

(17)

and they make invariant the norm of the null vectors [10–12]:

Y2
1 + Y2

2 + Y2
3 = 0 (18)

In the coordinates system:

Y1 = ρsinω, Y2 = −ρcosω, Y3 = −iρ (19)

and neglecting the fractality degree λ(dt)(2/DF)−1, operators (16) take the form:

∧
M1 = cosω · ρ ∂

∂ρ − sinω · ∂
∂ω

∧
M2 = sinω · ρ ∂

∂ρ + cosω · ∂
∂ω

∧
M3 = −i ∂

∂ω

(20)

Now, the action of the operators (20) on the spin-type fractal “eigenfunctions”:

v+ =
√

ρe
iω
2 , v− =

√
ρe−

iω
2 (21)
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reproduces the action of the Pauli matrices, according to relations: ∧
M1 v+
∧

M1 v−

 = 1
2

[
0 1
1 0

][
v+
v−

]
 ∧

M2 v+
∧

M2 v−

 = 1
2

[
0 i
−i 0

][
v+
v−

]
 ∧

M3 v+
∧

M3 v−

 = 1
2

[
−1 0
0 1

][
v+
v−

]
(22)

It can be shown, in a “strange” manner, that the operators (20) satisfy the same algebras as
Pauli’s matrices.

The infinitesimal operators (16) and (20) do not tell us very much about this group. In this respect,
we shall set operators (20) in a form capable of putting into evidence its isomorphism to known
groups [18,19].

The new operators are given by the linear combinations:

∧
L1 =

∧
M1 − i

∧
M2,

∧
L2 =

∧
M3,

∧
L3 = −(

∧
M1 + i

∧
M2) (23)

Taking α and α as group variables, with α = v+ and α = v−, from Equation (21), the operators (23)
can be also written, in the new variabiles, as:

∧
O1 = α

∂

∂α
,
∧

O2 =
1
2

(
α

∂

∂α
− α

∂

∂α

)
,
∧

O3 = −α
∂

∂α
(24)

and satisfy the algebra: [ ∧
O1,

∧
O2

]
=
∧

O1,
[ ∧

O2,
∧

O3

]
=
∧

O3,
[ ∧

O3,
∧

O1

]
= −2

∧
O2 (25)

Thus, the structure constants of the group algebra are revealed:

C1
12 = C3

23 = 1, C2
31 = −2

the others being null.
The characteristic equations of the group are:

α
∂F
∂α

= 0,
∂

∂α
(αF)− ∂

∂α
(αF) = 0, α

∂F
∂α

= 0

and admits the solution F = const.; therefore, we can take F = 1.
Thus, the group is measurable, having as an elementary measure

dM(α, α) = dα ∧ dα

where “∧” represents the external products of the diferential 1-forms dα and dα. According to the
Jaynes observations [20], if there are unspecified circumstances that admit this group of invariance,
then the equally probable situations a priori accept a uniform distribution of the elementary measure
given by dM.

Further, we will illustrate such an unspecified circumstance as a direct result of considering a
canonic formalism. Indeed, the fact that our Lie’s group in the space of null vectors makes invariant
the elementary measure dM shows that it is, equally, a simplectic group.
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The corresponding Hamiltonian dynamics is generated in the tangent space by the vectors
∧

O1,
∧

O2,
∧

O3 from Equation (24), that satisfy the commutation relations (25). A general vector is a linear
combination of the form:

∧
T = µ

∧
O1 + 2ν

∧
O2 + λ

∧
O3 (26)

A problem arises: finding the functions that are invariant along the trajectories tangent to this
vector, i.e., the solutions of the equations:

∧
TH(α, α) = 0 (27)

Taking into consideration Equation (24), this equation can be explicitly written as:

(να + µα)
∂H
∂α
− (λα + να)

∂H
∂α

= 0 (28)

The characteristic differential system of this equation has the form:

dα

να + µα
= − dα

λα + να
= dτ (29)

and admits the first integral:

H(α, α) =
1
2

(
µα2 + 2ναα + λα2

)
(30)

Therefore, the solution of Equation (29) will be an arbitrary function of this expression that has a
particular role in the theory [18,19], namely that of the Hamiltonian that generates the motion.

Indeed, the differential system (29) is the Hamilton’s equations system associated with
Equation (30), i.e.,:

dα

dτ
=

∂H
∂α

= να + µα,
dα

dτ
= −∂H

∂α
= −λα + να (31)

in which case α is a coordinate-type variable and α a momentum-type one. We noted with dτ the
common value of the two differentials from Equation (29), i.e., the differential of the affine parameter
on the integral curves of the vector (26).

Deriving relations (31) with respect to the affine parameter τ and eliminating α and α based on
Equation (30), the symmetric equations are obtained:

··
α +

(
µλ− ν2)α = 0

··
α +

(
µλ− ν2)α = 0

(32)

In principle, among the solutions of Equation (27) is, also, the density of the complex Gaussian
probability expressed as:

P(α, α) =
1√

µλ− ν2
exp(−H) (33)

where statistical significances can be associated with parameters µ, λ and ν (for details, see [12]). This
fact may confirm, from a mathematical point of view, the idea from statistical fractal mechanics [5–9],
according to which the complex probability density must be, also, a movement integral.

Since our Lie’s group in the space of null vectors is isomorphic to the Barbilian group (for details,
see [17]), it results that the complex Gaussian Equation (33), with additional constrains [21], can have
the role of an entropy in a fractal theory of motion [12].
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4. Pairs Generating Mechanisms: Implications in Dynamics of Biostructures

Schrodinger-type fractal dynamics implies the functionality of the “states entanglement” [11,12]
for the structural units of a complex system [1,2], and, implicitly, their “monogamy”. For example,
the electron with a spin value of +1/2 is entangled with the electron with a spin value of −1/2,
generating the Cooper pairs from superconductivity. Also, the neutron and the proton are entangled,
generating the pair from superfluidity.

At another scale, high density lipoproteins (HDL) and low density proteins (LDL), the two forms
of cholesterol, entangle and generate the “structural unit” of cholesterol-type. The fact that these
two forms are entangled is confirmed by the “chameleon-like” behavior of cholesterol, confirmed by
different medical experiments. For example, Van Lenten [22] found that HDL taken from the same
subjects before and after an acute phase behaved differently: before, HDL prevented the mild oxidation
of LDL, while the same concentrations of HDL taken during the acute-phase response were not as
effective in preventing lipid hydroperoxide formation. Moreover, the HDL taken during the acute
phase actually enhanced LDL-induced monocyte migration. This, together with other experiments
performed by van Lenten [22], support the concept that unlike LDL, HDL is chameleon-like, changing
its colors (apoproteins and associated enzymes) as the landscape changes (going from the basal state
to the acute-phase response and back to the basal state), i.e., if HDL protection is largely due to its
ability to inhibit or destroy the biologically active lipids in LDL, the changes in HDL induced by the
acute-phase response could result in an increase in the local modification of LDL.

In such a context, in order to describe the dynamics for HDL and LDL cholesterol, presented
above, we will use the Schrödinger-type representation in Equation (9) for the stationary case, which
can be viewed as a fundamental equation of biological structures morphogenesis. It has not been
yet considered as such, because its unique domain of application was, up to now, the microscopic
(molecular, atomic, nuclear and elementary particle) domain, in which the available information was
mainly about energy and momentum.
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However, our fractal model extends the potential domain of applications for Schrödinger-type
equations to every system in which the three conditions (an infinite or very large number of
trajectories, a fractal dimension of individual trajectories, local irreversibility) are fulfilled. Macroscopic
Schrödinger equations can be constructed, not based on Planck’s constant }, but on constants that are
specific to each biological structure and may emerge from their self-organization. Indeed, considering
that both LDL and HDL are two different states of the same “entity”, i.e., cholesterol in the form
of a LDL-HDL pair, the dynamics of such a biological structure can be described, for example, by
means of a harmonic oscillator with a plane symmetry (states densities are described by means of
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associated Hermite polynomials, while the informational entropy is given by the logarithm of the
same polynomials [6,7]); we note that these polynomials are solutions of Equation (9) for the stationary
case and for plane symmetry. In this framework, in Figure 1 we present the states density ρ = ΨΨ for
this system, where Ψ is the complex conjugate of Ψ determined from Equation (9) for the stationary
case, while in Figure 2 the associated informational entropy is shown. It can be seen that such a pair
“operates” in a state of maximum informational entropy (for details see [12,15]).
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Figure 2. The informational entropy I = ln ρ: three-dimensional (a); and contour plot dependences (b)
associated with the LDL-HDL pair induced by the quantum numbers nx and ny, respectively.

5. Conclusions

In order to overcome the difficulties generated by the fact that the classical theories failed in
explaining the dynamics of real complex sytems, i.e., fluid and kinetic models in the study of some
phenomena, such as combustion, drug delivery, solid components separation in mixtures, and plasma
ablation behavior, the fractal concepts and the corresponding non-differentiable theoretical models
can be applied. Thus, the fractal entropy through non-differentiable Lie groups, compatible with a
Hamiltonian-type formalism, was established. Furthermore, the pairs generating mechanism was
explained through fractal entanglement states. We identified implications of the presented theory in
the dynamics of some physical systems (the electron with a spin value of +1/2 is entangled with the
electron with a spin value of −1/2, generating the Cooper pairs from superconductivity; the neutron
and the proton are entangled, generating the pair from superfluidity) and biological structures (in the
form of the “chameleon-like” behavior of cholesterol).
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