
entropy

Article

Packer Detection for Multi-Layer Executables Using
Entropy Analysis

Munkhbayar Bat-Erdene, Taebeom Kim, Hyundo Park and Heejo Lee *

Department of Computer Science and Engineering, Korea University, 02841 Seoul, Korea;
munkhbayar@korea.ac.kr (M.B.-E.); ktb88@korea.ac.kr (T.K.); hyundo95@korea.ac.kr (H.P.)
* Correspondence: heejo@korea.ac.kr; Tel.: +82-2-3290-3638

Academic Editor: Raúl Alcaraz Martínez
Received: 31 January 2017; Accepted: 13 March 2017; Published: 16 March 2017

Abstract: Packing algorithms are broadly used to avoid anti-malware systems, and the proportion
of packed malware has been growing rapidly. However, just a few studies have been conducted
on detection various types of packing algorithms in a systemic way. Following this understanding,
we elaborate a method to classify packing algorithms of a given executable into three categories:
single-layer packing, re-packing, or multi-layer packing. We convert entropy values of the executable
file loaded into memory into symbolic representations, for which we used SAX (Symbolic Aggregate
Approximation). Based on experiments of 2196 programs and 19 packing algorithms, we identify
that precision (97.7%), accuracy (97.5%), and recall (96.8%) of our method are respectively high to
confirm that entropy analysis is applicable in identifying packing algorithms.

Keywords: re-packing algorithms; original entry point (OEP); multi-layer packing; piecewise aggregate
approximation (PAA); symbolic aggregate approximation (SAX); entropy analysis

1. Introduction

1.1. Background

Nowadays, malware creates distress and significant financial loss by violating privacy of computer
users. Unfortunately, connived (indulged) on their previous success attackers develop their malware
so that harder to detect [1,2]. Following Yan et al.’s [3] understanding, we consider packer as
“a program that produces a number of data blocks to form a compressed and encrypted version
of the original executable”. Packing helps to evade from anti-virus (AV) by diminishing the size
or transforming the appearance of executable binary [2,4–7]. Overall, “a packer is a program that
transforms an executable binary into another form, and packing is becoming one of the widely used
technique.” According to recent studies over 80% of malware are obfuscated with packers and
compression techniques, Osaghae et al. [8], Jacob et al. [9], Bat-Erdene et al. [2] and Brosch et al. [10].
Generally, to hide the original behavior of the malware attackers use different packing algorithms to
generate a greater number of malware options. Nowadays, Aspack [11], MEW [12], ASProtect [13],
NsPack [14], Themida [15], RLPack [16], VMProtect [17], and Alternate_EXE [18] are widely used
packers. The identification and classification of packing techniques are becoming vital for revealing
an intention and a real behavior of the packing algorithms [2]. Besides, quickly detecting and correctly
unpacking packers allow us to efficiently and accurately unpack a packed executable file and conduct
further analysis.

1.2. Multi-Layer Packing

Malware, malicious software (e.g., viruses, worms, or Trojan horses), challenges computer
systems in the form of the packed executables and is becoming a growing problem to computer

Entropy 2017, 19, 125; doi:10.3390/e19030125 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19030125
http://www.mdpi.com/journal/entropy

Entropy 2017, 19, 125 2 of 18

systems. Symantec Research Laboratories (Osaghae et al. [8], Al-Anezi et al. [19], Santos et al. [20]
and McAfee [21]), over 80% of malware appears to be produced using a packer to circumvent
anti-malware systems; furthermore, more than 50% of new malware are re-packed versions of existing
malware [19,20,22]. If the packed malware [23,24] is re-packed or multi-layer packed a detection of its
infection through signature matching is impossible [2,25–32]. In Figure 1 we present three main parts
of the packing structure.

• Single-layer packing algorithm. A previous study of Bat-Erdene et al. [2] was devoted to single-layer
packing algorithms.
Fi(P)—Single-layer packed benign and malware executables; where Fi is packer, P is benign or
malware executable.

• Re-packing algorithm.
Fi(Fi(P))—Re-packed benign and malware executables; where Fi are same packers; P is benign or
malware executable.

• Multi-layer packing algorithm.
Fj(Fi(P))—Multi-layer packed benign and malware executables; where Fi and Fj are different
packers; P is benign or malware executable.

Re-packing algorithm

`` Twice or more times using

one packing algorithm ‘’

Single-layer packing algorithm
`` Once using one

packing algorithm’’

Multi-layer packing algorithm
`` Twice or more times using

two packing algorithms ‘’

`` Benign executable packed once.

Malware packed once ‘’

To use packing algorithms

BENIGN AND MALWARE

`` Benign or Malware executable

packed using one

packing algorithm ‘’

`` Benign or Malware executable

packed using two or more

packing algorithms ‘’

Figure 1. Structure of single-layer packed, re-packed, and multi-layer packed executables.

To avoid detection systems, attackers use many different packers in one malware family.
Packing algorithms are the double-edged sword; they are extensively used in packing malware
(Jeong et al. [33], Ugarte-Pedrero et al. [25], Bat-Erdene et al. [2]) and are also responsible for protecting
genuine software from reverse engineering. A packed executable has an encoded data section. When
packed executable running on the memory, data section’s size and data changed. An entropy
measurement of running programs enables us to assess whether a given executable is packed.
Identification of packing algorithms is necessary for recognizing hidden malware. Anti-malware
systems need the ability to work with a large number of packers and be ready for new ones since
more and more packing algorithms are created each day. A system capable of automatically detecting
packing algorithms is indispensable, yet there is no complete database. Existing automatic systems
mainly concentrate on detecting the malware itself rather than on methods/approaches for developing
them. Currently, single-layer packing, re-packing, or multi-layer packing algorithms are used
extensively in malware development to assist the malware to remain undetected. We, therefore,
examined a method for detection and classification of re-packing or multi-layer packing algorithms
and classify them by creating simple patterns of packers. Through our method a user can detect
a re-packer or multi-layer packers with high accuracy, as confirmed by our experiments.

Entropy 2017, 19, 125 3 of 18

1.3. Main Contributions

Our contributions are three-fold, as described below:

1. We propose a method based on entropy analysis to detect executables re-packed or multi-layer
packed two or more times.

2. We develop a holistic method for identifying re-packer or multi-layer packer and determine their
packing algorithms of given executables, irrespective of whether the re-packer or multi-layer
packer of the executable are already known. This, to the best of our knowledge, is the first method
to detect re-packer or multi-layer packer using machine learning. Considering experiment results,
we claim that our approach is practically efficient and simpler than any other known methods.

3. We introduce a data conversion method, which significantly reduces the space complexity by
reducing data size by from 1/2 to 1/10000 times.

The article is structured as follows. The next section discusses related works. Section 3 defines
the entropy analysis, packer complexity type, the structure of the proposed method and a symbolic
representation conversion. Section 4 describes the classifier, similarity measurement, and incremental
aggregate analysis. Section 5 describes the evaluation result of re-packed or multi-layer packed
executables and classification techniques. Finally, the article ends with summaries of main findings of
this paper.

2. Related Work

Various methods have been developed for identification of packed malware. Devi et al. [34],
for example, proposed classified single-layer packed and non-packed executables using a pattern
recognition technique for the detection of packed malware binaries. This approach aims to extract
the best set of features from the Windows Portable executable files to pass it to their classification
model. The classification model functions once an executable is classified as a single-layer packed.
Then a second phase concludes whether it is the single-layer packed benign or malware.

Perdisci et al. [35] applied various pattern recognition techniques to classify executables into
single-layer packed and non-packed categories. Their method used publicly available unpacking
tools and signature-based anti-malware systems to distinguish between particular kinds of malware
and benign executables. The weakness of these techniques is that re-packed or multi-layer packed
files cannot be detected and unpacked since their method is not for packer identification. In contrast,
our method identifies and unpacks single-layer packed, re-packed, or multi-layer packed executable
files using entropy analysis. Types of packing algorithms are extracted from packed Portable
Executable (PE) files. The packed files described in this paper are in PE format (Guo et al. [5] and
Pietrek et al. [36,37]), which is the format used in the most Microsoft Windows operation systems.

The thwart program analysis based automated malware detection, malware authors gradually
adopt code protection techniques. Although, Ugarte-Pedrero et al. [38] proposed these techniques that
are initially designed to counter reverse engineering and effectively resist many program tampering
attempts, they are becoming a standard measure of malware detection circumvention. Lyda et al. [39]
presented an encrypted and single-layer packed malware detection technique based on entropy
analysis to analyze packed PE files via byte distribution. Their methodology computes entropy at
benign model level, in which entropy is computed based only on the occurrence frequency of certain
bytes of an executable without considering how these bytes were produced. However, this technique is
not useful in detecting re-packers or multi-layer packers. Sun et al. [40] proposed “a packer classification
method that applies pattern recognition techniques using randomness profiles, a unique feature set
extracted from packed executables.” The researchers presented a packer classification approach by
analyzing the performance of various statistical classifiers and employing statistical classification
algorithms including naive Bayes and k-nearest neighbor. However, their proposed technique did
not apply for detecting unknown packers, re-packers, and multi-layer packers. On the contrary, our

Entropy 2017, 19, 125 4 of 18

classification technique has the ability to extract the packing techniques from packed PE files because
we use a generic unpacking algorithm.

3. Entropy Analysis for Detecting Single-Layer Packing, Re-Packing, or Multi-Layer
Packing Algorithm

In order to detect the re-packing or multi-layer packing algorithm, we first extract the entropy
pattern by unpacking the executable, and then we compare features of the re-packing or multi-layer
packing algorithms with those of single-layer or non-packed executables. In this part, we briefly
describe the operations involved in the re-packing and multi-layer packing process of packed
executables, using entropy analysis and the symbolic representation.

3.1. Packer Complexity Type

Packers are programs that encode executable files and restore the original executable when the
packed files are loaded into memory. There are three kinds of packers (Figure 1):

• Single-layer packing algorithm: These packers represent the simplest case. Single-layer packing
uses only one packer to pack a given binary. This packing technique changes the size, number of
sections and name of an executable (Figure 2).

• Re-packing algorithm: These packers contain re-packed unpacking layers, each one executed
sequentially to unpack each of the sections. The re-packing algorithm uses the same packer
two times to pack a given binary and utilizes compression techniques similar to those of
a single-layer packer, but changes the size.

• Multi-layer packing algorithm: These packers contain multiple unpacking layers, each one executed
sequentially to unpack the following routine. Once the original code has been reconstructed, the
last transition transfers the control back to it. This packing uses a combination of potentially
different packers to pack a given binary, and extensively facilitates the generation of a large
number of packed binaries from the same input binary. Multi-layer packing algorithms change
the size, number of sections and name of a single-layer packed executable.

Executable

Header

Code (.text)

. . . .

Data (.data)

Single-layer

packed

executable

Header

Code (.text)

Unpack (.text)

Packed

. . . .

Data (.data)

Re-packed and

Multi-layer packed

executable

Header

Code (.text)

Unpack (.text)

Packed

. . . .

Data (.data)

Packing

algorithm

Packing

algorithm

Figure 2. Single-layer packing, re-packing, and multi-layer packing process of a PE file.

3.2. Structure of Packer Detection Algorithm

The main idea of this paper is to measure the entropy values while unpacking re-packed or
multi-layer packed executables.

Figure 3 illustrates a process of packer algorithm classification including steps such as unpacking
the re-packed and multi-layer packed executables, conversion of the entropy patterns into symbolic

Entropy 2017, 19, 125 5 of 18

representation and comparison of the symbolic representations. Detecting packing algorithms
straightaway through the entropy pattern is difficult due to the large size of the data that makes
the process time-consuming, generates many errors and hinders the analysis. Therefore, we extracted
unique symbolic representation pattern based on entropy patterns. Then,we classified symbolic
representation pattern using similarity classification techniques. Figure 4 illustrates the process of
conversion of the entropy pattern into the symbolic representation. Figure 4 shows three primary
graphs of symbolic representation process. The first graph is illustrates the original entropy pattern,
Figure 4a. The second graph demonstrates a normalization of the entropy pattern, Figure 4b. The last
graph shows a conversion into symbolic representation, Figure 4c.

Symbolic

representation
Single-layer

packed

Parser

sections of PE

Measure entropy

value of each

section

Training

Packed PE

Symbolic

representation

Re-packed and

multi-layer packed

executable parser

Measure entropy

value or each

section

Testing

Packed PE

Compare

pattern

Classification

of packer

YES

NO

Symbolic pattern of

single-layer packed, re-

packed, and multi-layer

packed executables

Symbolic pattern of

single-layer packed, re-

packed, and multi-layer

packed executables

Figure 3. Re-packing and multi-layer packing algorithm detection method.

10 20 30 40 50 60 70

 0.43

-0.43

D E F E E D E FS

β

t

Entropy

JMPs

JMPs

Normalization

0

Nmax

0

 (a)

Emax

 (b) (c)

Figure 4. Entropy pattern conversion into the symbolic representation. (a) Original entropy pattern;
(b) Normalized of entropy pattern; (c) Symbolic representation of normalized entropy pattern.

3.3. Entropy Analysis and Measurement

Our approach involves the unpacking of re-packed or multi-layer packed executables and
identifying their OEPs. Entropy is a method for measuring uncertainty in a series of information
units (Jeong et al. [33], Bat-Erdene et al. [2] and Vapnik et al. [41,42]). Measuring the entropy pattern
during unpacking process refers to determining the entropy value of re-packed or multi-layer packed
executable. The measured entropy of the original information is lower than that of the compressed
information. Packers then use decryption or loading stubs to “unpack” the program before resuming
normal execution at the original entry point (OEP) of the program. OEP is the address of the first
instruction of the decompressed code. During the unpacking process, we utilize a decompression
module to unpack packed instructions. The paused process continues to execute the next instruction if
the unpacking process is incomplete. The end of the unpacking process can reveal the unpacked code,
which was encoded in the data section. This analysis determines whether the unpacking process is
complete by measuring the entropy of all sections of the re-packed or multi-layer packed executable.
Furthermore, measures the memory space according JMP instruction address. The algorithm used in

Entropy 2017, 19, 125 6 of 18

this procedure is provided in Algorithm 1. Shannon’s formula devised to measure the information
entropy is as follows:

H(x) = −
n

∑
i=1

P(i) · logbP(i) (1)

where H(x) is value of the measured entropy value; P(i) is the probability of the i-th unit of information
in the series of n variables of event x. 2, 10, or Euler’s number is usually used as the base number of
the logarithm (b).

Algorithm 1: Unpacking packed executable.
Input: Re-packed RP or Multi-layer packed executable (MP).
InP-Instruction pointer, UnE-Entropy value, ME-Measure entropy
Output: Entropy values. OEP of RP and MP
To find all section and entry point of RP and MP.
To set a breakpoint to the OEP.
To set Rn to the range of the all section of RP and MP.
// Start analysis.
while the PROCESS is not finish do

InP← a current InP
// ME in only this condition.
if InP is for a JMP then

ME of Rn.
end
if −ξ ≤ME ≤ +ξ then

// The entropy value is stable
if Jump into Rn from outside of Rn is true then

OEP← The next instruction address
Break this loop.

end
end

end

3.4. Conversion into Symbolic Representation (SAX)

Recent literature review concedes that SAX is one of the viable methods that utilizes a similarity
measurement, which is easy to compute, see lookup table as shown in Table 1. Lin et al. [43] defined
the symbolic representation of time-series as the Symbolic Aggregate approXimation (SAX), see Table 2.
In our research SAX is applied as follows, Figure 5:

• Scale and normalize time-series;
• Reduce the dimensionality of the time-series using the Piecewise Aggregate Approximation

(PAA) by a method demonstrated in Lin et al. [43] and Keogh et al. [44,45]. The dimensionality
reduction technique is analogous to Fourier transformation and Wavelets;

• Discretize PAA representation of the time-series that is achieved by determining the number and
location of breakpoints, as demonstrated by Yi et al. [46] and Keogh et al. [44].

The lower-bound distance between two symbolic strings can be proven by simply pointing the
existing proofs of PAA representation. First, we transform the entropy values into the PAA representation;
Next, we symbolize the PAA representation into SAX. Symbolic Aggregate Approximation is based on
the fact that a normalized time-series have high Gaussian distribution [2,43,47].

Entropy 2017, 19, 125 7 of 18

Table 1. A lookup table where the breakpoints divide a Gaussian distribution in an arbitrary number
of equiprobable regions.

βi
a

3 4 5 6 7

β1 −0.43 −0.67 −0.84 −0.97 −1.07
β2 0.43 0 −0.25 −0.43 −0.57
β3 0.67 0.25 0 −0.18
β4 0.84 0.43 0.18
β5 0.97 0.57
β6 1.07

Table 2. Symbolic representation: SAX.

Variable A Series Data

X A time series X = x1, x2, ..., xn
X A PAA of a time series X = x1, x2, ..., xM,
X̃ SAX of time series X̃ = x̃1, x̃2, ..., x̃M
M The number of PAA segments representing time series X, where M ≤ n
a Alphabet size. a is integer, where a > 2

Measure

entropy

SAX

representation

2
. T

h
e

 C
o

n
v

e
rs

io
n

 o
f

 E
n

tro
p

y
 V

a
lu

e
sPattern

extraction

Figure 5. Structure of the pattern extraction method.

In Algorithm 2, we present the process of converting the entropy value into SAX. The entropy
values from unpacking the re-packed or multi-layer packed executables are abbreviated as En,
the scaling values of the original entropy pattern-En, the normalized scaling entropy values-Ennorm,
the breakpoints-β, the number of symbols-φ(β), the sequence of symbols-G, and the SAX pattern as
X̃ respectively.

xi =
1
r

 ri

∑
j=r(i−1)+1

(xi)

, (2)

where r is n/M; n is the length of the string and M is the length of the original time-series. In other
words, we divide data into M equally sized frames to reduce the time-series from n dimensions to M
dimensions, see Table 2. We normalize each entropy values to have a mean of zero and a standard
deviation of one before converting it to PAA representation. Breakpoints (B), a sorted list of numbers,
B = β1, β2, . . . , βa−1, where βi−1 < βi. It divides the area under N(0, 1) Gaussian curve into equal
areas. The size of the alphabet is a random integer a, greater than 2.

f rom βi to βi+1 =
1
a

(3)

(β0 and βa are defined as −∞ and ∞, respectively)

Entropy 2017, 19, 125 8 of 18

Breakpoints are determined from statistical lookup table, as shown in Table 1 Lin et al. [43].
We transform the original entropy values into PAA representations, Q and S using Formula (2), we can
then obtain a lower bounding approximation using the Euclidean distance (ED) [44]:

D(Q, S) =
√

n
N
·

√√√√ M

∑
i=1

(Qi − Si)2. (4)

Algorithm 2: Conversion into SAX

Input: En, En, Ennorm, β and φ(β).
// Extract symbolic presentation pattern, which will be detect re-packing algorithm and

multi-layer packing algorithms.
Output: Gn and X̃.
En← scale En
// Scale the entropy values for SAX.
Ennorm ← Normalize (En)
Loop i = 0; i < φ(β); i < i + 1
if βi−1 < βi then

φ(β)← Divide (Ennorm)

// Divide normalized entropy values using φ(β).
G← Convert (Ennorm)

X̃ ← new SAX pattern (Gn)
// New unique symbolic pattern
// Classify X̃ using fidelity similarity measurement for detection re-packing or multi-layer

packing algorithms.
end
End Loop

4. Classifier

Our proposed method used fidelity, similarity measurement, for classification. This classification
is the simplest and more intuitive and is based on the concept of similarity. We provide a detailed
explanation in Section 4.1. We used a method, to generate high-accuracy patterns for detecting
re-packing or multi-layer packing algorithms. We designed a classifier using several approaches to
classification. In this work, we performed machine learning classification based on simple patterns.
The main concept of the experiment is detecting re-packer or multi-layer packers. We arranged
available re-packer or multi-layer packers by determining their nearest similar simple patterns and
placing them into the families with analogous patterns. We created a new database of families if
the family of similar patterns did not exist. Figure 6 demonstrates how we utilized the similarity
measurements of classification methods to classify the re-packing or multi-layer packing algorithms.
In our proposed method we used similarity classification such as fidelity. We extracted entropy
patterns of known/unknown single-layer packing algorithms, as shown in the previous works [2,47].
We used entropy pattern of single-layer packing algorithm to detect re-packing and multi-layer
packing algorithms. We classified re-packing or multi-layer packing algorithms in the five classes
based on their graphically visualized patterns, including New class, Increasing class, Decreasing class,
Combination class, and Constant class. Straightly using entropy patterns to detect re-packing or
multi-layer packing algorithms is tough to perform further analysis because of a significant amount
of entropy values and the number of errors incurred. Therefore, we used classification methods,
which significantly reduce complexity.

Entropy 2017, 19, 125 9 of 18

Create a new

 class

Classified

Known/unknown

re-packers and

multi-layer packers

Classification

Method

Database of unknown

multi-layer packer,

re-packer patterns

Detect re-packer

 and multi-layer

3
. C

la
s

s
ify

 re
-p

a
c

k
e

rs

a
n

d
 m

u
lti-la

y
e

r p
a

c
k

e
rs

YESNO

Database of known

multi-layer packer,

re-packer patterns

Figure 6. Structure of a classifier.

4.1. Fidelity Coefficient Similarity Measurement

We use the fidelity [2] similarity measures to characterize the similarity between the entropy
values of each packed executable. For the given sequences x = (x1, · · · , xn) and y = (y1, · · · , yn) of
random positive values (xj, yj > 0), the fidelity F(x, y) is defined as:

F(x, y) =

n

∑
i=1

√
xi · yi√

n

∑
i=1

xi

√
n

∑
i=1

yi

(5)

where 0 6 F(x, y) 6 1.
When we extract symbolic representation patterns from entropy patterns of training and testing

packed executables, we perform fidelity similarity measurement on the patterns. Table 3 shows the
fidelity performance of experiments on the single-layer packed, re-packed, or multi-layer packed
executables using Aspack, Alternate_EXE, nPack, NsPack, RLPack and VMProtect packing algorithms.
We extract symbolic representation patterns of re-packer and multi-layer packer. Then we compare
symbolic representation patterns of re-packer or multi-layer packer with that of training packed
executables, including patterns of single-layer packers. When we unpack the single-layer packed
executable, we define OEP from the first section. When unpack the multi-layer packed executable,
define OEP from several sections. Therefore, we compare combination section of single-layer packer
with sections of multi-layer packer (Table 3).

Entropy 2017, 19, 125 10 of 18

Table 3. Fidelity similarity for re-packing and multi-layer packing algorithms.

Single-Layer Packer Re-Packer F(x, y)

Alternate_Exe Alternate_Exe + Alternate_Exe 0.9920
nPack nPack + nPack 0.9908

NsPack NsPack + NsPack 0.9982
RLPack RLPack + RLPack 0.9914

VMProtect VMProtect + VMProtect 0.9999
Single-Layer Packer Multi-Layer Packer F(x, y)

Aspack Section 1 0.9949
NsPack Section 0 0.9821
NsPack Section 1 0.9965

VMProtect Section 4 1.0000
RLPack Section 1 1.0000

VMProtect Section 3 1.0000
VMProtect Section 1 1.0000

NsPack Section 0 0.9961
VMProtect Section 1 1.0000

RLPack Section 0 0.9908

4.2. Incremental Aggregate Analysis

When detecting packing algorithms using the similarity measurement is hard we use
an incremental aggregate analysis [47]:

Ψ(W) ≡ (W0, Wmax, Wmin, σ1, · · · , σm), (6)

where W0 = w1 is the initial entropy value; Wmax ≡ max{w1, · · · , wn} and Smin ≡ min{w1, · · · , wn};
m ≡ n/Z, with Z as the coarse-graining parameter (Z > 1) and represents the incremental change in
the coarse-grained entropy values:

σj ≡


1 (w(j+1)Z − wjz > 0)

0 (w(j+1)Z − wjz = 0)

−1 (w(j+1)Z − wjz < 0)

(j = 1, · · · , l) (7)

5. Assessment of the Classification Method

The dataset used in this experiment contains six benign executables for packing algorithms,
2196 re-packed and multi-layer packed benign executables and 19 popular packers. The data
samples of the six benign executables are selected from Windows System 32 files. We conducted
around 2500 experiments on re-packing and multi-layer packing algorithm detection. Table 4
demonstrates the combination of single-layer packing, re-packing, or multi-layer packing algorithms
for the experiment. First, we extracted re-packed executables from single-layer packed executables.
We selected orange color for the re-packed executables; Second, we extracted multi-layer packed
executables from a combination of single-layer packers and indicated by blue and green colors.
The data sample consisted of training and testing packed executables in the ratio of 50:50, where from
a sample of 2196 re-packed and multi-layer packed executables 1098 were training sets. We compared
performances of different classification techniques by assessing their correctness in the prediction of
the actual classification of the packers. Before introducing the metrics, we defined the classification
of the re-packers and multi-layer packers. Positive if the packer is predicted to be in the Increasing
class, and negative if it is not. Let ACC denote the accuracy of classification based on the percentage of
tested set packers that are correctly identified by the classifier. Where accuracy ACC indicates the
overall effectiveness. In Formula (8) accuracy ACC indicates the overall effectiveness.

ACC = (TPR + TNR)
(P + N)

=
(TPR + TNR)

n
. (8)

Entropy 2017, 19, 125 11 of 18

Table 4. Experimental results of packed executables with the single-layer packers, re-packers, or multi-layer packers.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19.

N FIRST PACKER

PACKERS Alternate_Exe FSG RLPack NsPack UPXN UPX-iT MPRESS Morphine nPack Themida VMProtect Aspack Molebox Petite ASProtect MEW Yoda’sCrypter PELock tELock

1.

SE
C

O
N

D
PA

C
K

ER

Alternate_Exe v2.000 Yes Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Yes Failed Failed
2. FSG v2.0 Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Yes Failed Yes Failed Failed Failed Yes Failed Failed
3. RLPack v1.2 Yes Failed Yes Failed Yes Yes Failed Failed Yes Yes Yes Yes Yes Yes Yes Failed Yes Yes Yes
4. NsPack v3.7 Yes Yes Yes Yes Yes Yes Yes Failed Failed Yes Yes Yes Yes Yes Yes Yes Failed Yes Yes
5. UPXN v301 Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed
6. UPX-iT v1.0 Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed
7. MPRESS v1.27 Failed Failed Failed Failed Yes Yes Failed Failed Failed Yes Yes Failed Yes Failed Failed Failed Failed Yes Failed
8. Morphine v1.6 Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed
9. nPack v1.1.300.2006 Yes Failed Failed Failed Yes Yes Yes Failed Yes Yes Failed Failed Yes Failed Yes Failed Yes Yes Failed
10. Themida v2.4 Failed Yes Yes Yes Yes Failed Failed Failed Yes Yes Yes Failed Yes Yes Yes Failed Yes Yes Yes
11. VMProtect v1.7 Failed Failed Yes Yes Failed Yes Yes Failed Failed Failed Yes Failed Failed Yes Yes Failed Failed Failed Failed
12. Aspack v2.28 Yes Failed Failed Yes Yes Yes Yes Failed Yes Failed Yes Yes Yes Yes Yes Failed Yes Yes Failed
13. Molebox v2.6.1 Yes Failed Yes Yes Yes Yes Yes Failed Yes Yes Yes Yes Failed Yes Yes Yes Yes Yes Yes
14. Petite v2.3 Failed Failed Failed Failed Failed Failed Failed Failed Failed Failed Yes Failed Failed Failed Failed Failed Yes Yes Failed
15. ASProtect v.1.23 Yes Failed Failed Failed Yes Yes Failed Failed Yes Yes Yes Failed Yes Failed Failed Failed Yes Failed Yes
16. MEW v1.2 Failed Failed Yes Failed Failed Failed Yes Failed Yes Yes Yes Failed Yes Yes Yes Yes Yes Failed
17. Yoda’s Crypter v1.3 Yes Yes Failed Failed Yes Yes Yes Failed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
18. PELock v2.0 Failed Yes Failed Failed Yes Yes Failed Failed Yes Yes Yes Yes Yes Yes Yes Failed Yes Failed Yes
19. tELock v0.98 Failed Failed Failed Failed Yes Yes Failed Failed Yes Yes Yes Failed Yes Yes Failed Yes Yes Yes Failed

Gray is re-packed benign executables; for example: Alternate_Exe + Alternate_Exe. Green is two way packed multi-layer packed executables; for example: NsPack + Aspack and Aspack + NsPack. Blue is one way packed
multi-layer packed executables; for example: Alternate_Exe + NsPack. Yes is executable packed with re-packing or multi-layer packing algorithm. Failed is executable not packed with re-packing or multi-layer packing algorithm.

Table 5. Experimental results of the re-packing and multi-layer packing algorithms.

1. 2. 3. 4. 5. 6. 7. 8. 9.

N FIRST PACKER

PACKERS Alternate_Exe RLPack NsPack nPack Themida VMProtect Aspack MEW Yoda’sCrypter

1.

SE
C

O
N

D
PA

C
K

ER

Alternate_Exe Yes Failed Failed Failed Failed Failed Failed Failed Yes/not exe
2. RLPack Yes Yes Failed Yes Yes/not exe Yes Yes Failed Yes
3. NsPack Yes Yes Yes Failed Yes/not exe Yes Yes Yes Failed
4. nPack Yes Failed Failed Yes Yes/not exe Failed Failed Failed Yes/not exe
5. Themida Failed Yes Yes Yes/not exe Yes Yes/not exe Failed Failed Yes/not exe
6. VMProtect Failed Yes Yes Failed Failed Yes Failed Failed Failed
7. Aspack Yes/not exe Failed Yes/not exe Yes Failed Yes/not exe Yes Failed Yes/not exe
8. MEW Failed Yes Failed Yes Yes Yes Failed Yes Yes/not exe
9. Yoda’s Crypter Yes/not exe Failed Failed Yes/not exe Yes/not exe Yes/not exe Yes/not exe Yes/not exe Yes/not exe

Gray is re-packed benign executables; for example: Alternate_Exe + Alternate_Exe. Green is two way packed multi-layer packed executables; for example:

NsPack + Aspack and Aspack + NsPack. Blue is one way packed multi-layer packed executables; for example: Alternate_Exe + NsPack. Yes is executable packed
with re-packing or multi-layer packing algorithm. Failed is executable not packed with re-packing or multi-layer packing algorithm.

Entropy 2017, 19, 125 12 of 18

Result of Experiments

Following our previous work, we utilized SAX representation method to extract re-packing
or multi-layer packing algorithm patterns. The results of experiments on eight packing algorithms
selected from 19 possible packing algorithms (Table 5) demonstrated that some executables did not
execute the files when the executables were packed re-packed and multi-layer packed. For example
Alternate_Exe, RLPack, NsPack, nPack, Themida, VMProtect, Aspack, and MEW. Although Yoda’s
Cryptor packing algorithm can re-pack or multi-layer pack an executable, re-packed or multi-layer
packed executables would not work. We used in the experiment six benign executables, e.g., calc.exe
and notepad.exe, to detect re-packing or multi-packing algorithms. We packed each executable one
time, two times, and combination times using 19 packing algorithms. The experiment was conducted
as follows:

1. We depute packed benign notepad.exe from six packed benign executables.
2. We extract entropy pattern of packed notepad.exe by 19 packing algorithms including the

singe-layer packer, the re-packer, and the multi-layer packer.
3. We scale entropy pattern of each packed notepad executable.
4. We calculate the number of symbols φ(β) for converting using SAX.

Overall, we measure the similarity of all packers and extracted patterns of the packing algorithms
through SAX:

φ(β) =
E
M

, (9)

φ(β) is the number of symbols used for extracting the packing algorithm pattern. In Figure 7 we
demonstrate SAX pattern of packed Notepad.exe with Aspack packer, and also show the combination
of φ(β) for converting the entropy pattern into SAX. The results of experiments denote that our
proposed method is not only useful for identifying re-packing or multi-layer packing algorithms, but
also applicable to re-packed and multi-layer packed executables. For instance, first, we used features
of single-layer packed, re-packed, or multi-layer packed executables to create the operation of each
re-packed or multi-layer packed executables, such as the number of sections, and the size and name
of the section. Second, we found that the nine re-packed or multi-layer packed executable’s entropy
patterns of 8 packing algorithms shown in Figures 8 and 9 and classified into five classes [47]:

• New class includes MEW, Yoda’s Cryptor;
• Increasing class includes Alternate_EXE, NsPack, RLPack;
• Decreasing class consists of nPack;
• Combination class consists of VMProtect, Themida and Aspack;
• Constant class includes TELock.

Experimental results for entropy patterns of single-layer packing and multi-layer packing are
demonstrated in Figure 9. To detect the multi-layer packing algorithm we used two single-layer
packing algorithms. For instance, Figure 9a demonstrates entropy patterns of single-layer
packing of Notepad.exe benign executable with two single-layer packing algorithms including
Aspack(Notepad_Apack.exe) and NsPack(Notepad_NsPack.exe). Figure 9b illustrates entropy pattern
of multi-layer packing of Notepad.exe; first, with Aspack packing algorithm, and next with NsPack
algorithm (Notepad_NsPack_Aspack.exe). Next, we compare and measure fidelity similarities of
single-layer and multi-layer packing algorithms (Table 3). In Figure 8 we illustrate entropy patterns of
single-layer packing and re-packing. First, we identify re-packing algorithm based on the single-layer
packing algorithm. For instance, entropy patterns of Notepad.exe benign executable packed with
the single-layer packing and re-packing algorithms, is demonstrated in Figure 8c. The pattern of
Notepad_RLPack.exe is very similar to the pattern of Notepad_RLPack_RLPack.exe because they are
using same packing algorithms. Then, we measure fidelity similarity of single-layer packing and
re-packing algorithms (Table 3).

Entropy 2017, 19, 125 13 of 18

 1

 10

 100

 1000

Symbols

Symbolic representation

 of Aspack packer

ϕ(β)=10
ϕ(β)=100
ϕ(β)=1000
ϕ(β)=10000

 0

 1

 2

 3

 4

 5

 6

50,000 100,000 150,000

Entropy

JMP

Single-layer Packed

with Aspack

notepad.exe

Figure 7. Entropy patterns converted into SAX using different values of φ(β) for the Aspack packers.

 0

 1

 2

 3

 4

 5

 6

20,000 40,000 60,000 80,000

Entropy

JMP

a. Single-layer and Re-packed

with Alternate_EXE

Alternate_Exe
Alternate_Exe+Alternate_Exe

 0

 1

 2

 3

 4

 5

 6

250,000 500,000 750,000 1000,000

Entropy

JMP

b. Single-layer and Re-Packed

with NsPack

NsPack
NsPack+NsPack

 0

 1

 2

 3

 4

 5

 6

250,000 500,000 750,000 1000,000

Entropy

JMP

c. Single-layer and Re-Packed

with RLPack

RLPack
RLPack+RLPack

 0

 1

 2

 3

 4

 5

 6

20,000 40,000 60,000 80,000

Entropy

JMP

d. Single-layer and Re-Packed

with nPack

nPack
nPack+nPack

 0

 1

 2

 3

 4

 5

 6

50,000 100,000 150,000 200,000

Entropy

JMP

e. Single-layer and Re-Packed

with VMProtect

VMProtect
VMProtect+VMProtect

Figure 8. Entropy patterns of single-layer packed and re-packed executable of Notepad.exe when a
packer is (a) Alternate_EXE; (b) NsPack; (c) RLPack; (d) nPack; (e) VMProtect. y-axis is entropy values
and x-axis is “JMP” instruction numbers.

Entropy 2017, 19, 125 14 of 18

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy

JMP

a. Single-layer Packed with

 Aspack or NsPack

Nspack
Aspack

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy

JMP

d. Multi-layer packed with

NsPack and VMProtect

Section 1
Section 4

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy

JMP

c. Single-layer Packed with

NsPack or VMProtect

NsPack
VMProtect

 0

 1

 2

 3

 4

 5

 6

50,000 100,000 150,000 200,000

Entropy

JMP

f. Multi-layer packed with

RLPack and VMProtect

Section 1
Section 3

 0

 1

 2

 3

 4

 5

 6

50,000 100,000 150,000 200,000

Entropy

JMP

e. Single-layer Packed with

RLPack or VMProtect

VMProtect
RLPack

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy

JMP

h. Multi-layer packed with

VMProtect and NsPack

Section 0
Section 1

 0

 1

 2

 3

 4

 5

 6

100,000 200,000

Entropy

JMP

j. Multi-layer packed with

VMProtect and RLPack

Section 0
Section 1

 0

 1

 2

 3

 4

 5

 6

100,000 200,000 300,000

Entropy

JMP

g. Single-layer Packed with

VMProtect or NsPack

NsPack
VMProtect

 0

 1

 2

 3

 4

 5

 6

50,000 100,000 150,000 200,000

Entropy

JMP

i. Single-layer Packed with

VMProtect or RLPack

RLPack
VMProtect

 0

 1

 2

 3

 4

 5

 6

150,000 300,000

Entropy

JMP

b. Multi-layer packed with

Aspack and NsPack

Section 0
Section 1

Figure 9. Entropy patterns of single-layer packed and multi-layer packed executable of Notepad.exe
using two packers. (a) NsPack or Aspack; (b) NsPack and Aspack; (c) NsPack or VMProtect; (d) NsPack
and VMProtect; (e) RLPack or VMProtect; (f) RLPack and VMProtect; (g) VMProtect or NsPack;
(h) VMProtect and NsPack; (i) VMProtect or RLPack; (j) VMProtect and RLPack. y-axis is entropy
values and x-axis is “JMP” instruction numbers.

Entropy 2017, 19, 125 15 of 18

Table 6 shows results of an operation for single-layer packed, re-packed, or multi-layer packed
executables using few features of classification. In other words, we verify two ways for detecting
re-packers or multi-layer packers using the features of executables and their entropy patterns.
Symbols are used to express the entropy patterns. Then, the patterns of eight re-packing and multi-layer
packing algorithms converted using SAX, Table 7. Based on the fidelity similarity method we detect
re-packing and multi-layer packing algorithms of any packed executables. The average accuracy using
re-packers and multi-layer packer are 98.5% and 97.5%, respectively (Table 7). The accuracy of both
VMProtect and MEW re-packing and multi-layer packing algorithms is 100%, the minimum accuracy
is 95.8%, which relates to the RLPack multi-layer packing algorithm. An average true positive rate (Tr)
of 97.8%, a false positive rate (Fr) of 1.8%, precision (P) of 98.2%, and recall (R) of 96.2% for detection
of re-packing algorithms. Average true positive rate (Tr) is 95.5%, false positive rate (Fr) is 2.3%,
the precision (P) is 97.7%, and the recall (R) is 96.8% for detection multi-layer packing algorithms.

Table 6. Operation for single-layer packing, re-packing, and multi-layer packing algorithms.

Type of Packers Operation Name of Operation Packers
Section Number Size

Single-layer packers

Equivalent Increment NESI Themida
Decrement NESD -

Increment Increment NISI nPack; VMProtect
Decrement NISD -

Decrement Increment NDSI Aspack; MEW; NsPack
Decrement NDSD Alternate_Exe; RLPack

Re-packers

Equivalent Increment NESI -
Decrement NESD -

Increment Increment NISI
Aspack + Apack; nPack + nPack
RLPack + RLPack; Themida + Themida
VMProtect + VMProtect

Decrement NISD -

Decrement Increment NDSI Nspack + Nspack
Decrement NDSD Alternate_Exe + Alternate_Exe

Multi-layer packers

Equivalent Increment NESI -

Decrement NESD Alternate_Exe + nPack

Increment Increment NISI nPack + Aspack; NsPack + VMProtect
RLPack + VMProtect

Decrement NISD -

Decrement Increment NDSI

Alternate_Exe + NsPack; Aspack + NsPack
Aspack + RLPack; Alternate_Exe + RLPack
MEW + NsPack; nPack + MEW
RLPack + MEW; nPack + RLPack
RLPack + NsPack; Themida + MEW
VMProtect + Aspack; VMProtect + MEW
VMProtect + RLPack

Decrement NDSD -

Entropy 2017, 19, 125 16 of 18

Table 7. Detailed accuracy of re-packer and multi-layer packer using the fidelity.

Re-Packer

N Packing Algorithm Tr% Fr% ACC% P% R%

1. Alternate_EXE 96.0 1.2 99.0 98.8 96.3
2. ASPACK 96.0 4.0 97.5 96.0 95.2
3. MEW 100.0 0.0 100.0 100.0 100.0
4. NPACK 100.0 0.8 98.4 99.2 100.0
5. NSPACK 98.5 2.3 96.7 97.7 95.5
6. RLPACK 95.8 4.2 97.0 95.8 90.8
7. THEMIDA 96.0 1.9 99.0 98.1 92.3
8. VMPROTECT 100.0 0.0 100.0 100.0 100.0

AVERAGE 97.8 1.8 98.5 98.2 96.2

Multi-Layer Packer

N PACKERS Tr% Fr% ACC% P% R%

1. Alternate_EXE 93.7 3.0 97.2 96.9 96.3
2. ASPACK 93.0 2.0 96.8 97.9 96.3
3. MEW 94.5 1.3 98.8 98.6 98.0
4. NPACK 95.0 5.5 97.3 94.5 96.8
5. NSPACK 98.5 2.3 95.9 97.7 94.8
6. RLPACK 93.0 3.5 95.8 96.4 95.8
7. THEMIDA 96.0 0.5 98.1 99.5 96.7
8. VMPROTECT 100.0 0.0 100.0 100.0 100.0

AVERAGE 95.5 2.3 97.5 97.7 96.8

6. Conclusions

We proposed a new technique for re-packing or multi-layer packing algorithms detection using
SAX symbolic representation; and classify re-packing, or multi-layer packing algorithms in five
classes using scaling of entropy patterns with symbolic representation patterns. We assessed our
proposed method on a large data set, consisting of 2196 benign single-layer packed, re-packed,
and multi-layer packed executable files and more than 1098 known benign re-packed and multi-layer
packed executable files.

The proposed method unpacked and identified re-packed and multi-layer packed executables
successfully, while maintaining high accuracy. Our work demonstrates that algorithms produce
a highly accurate re-packer and multi-layer packer classification based on real life data. The results of
experiments denote that the technique we proposed is not only useful for identifying re-packing or
multi-layer packing algorithms, but also applicable to re-packed and multi-layer packed executables.

Further research may extract symbolic patterns from new re-packed or multi-layer packed
malware and use supervised classification methods for re-packer and multi-layer packer classification
and detection.

Acknowledgments: This work was supported by Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea government (MSIP) (No. R0190-16-2011, Development of Vulnerability Discovery
Technologies for IoT Software Security).

Author Contributions: Munkhbayar Bat-Erdene initiated the main idea and participated in the annotation of the data.
Munkhbayar Bat-Erdene programmed the experiments, and Heejo Lee supervised the study. Munkhbayar Bat-Erdene
first drafted the manuscript. Heejo Lee, Munkhbayar Bat-Erdene, Taebeom Kim and Hyundo Park reviewed and
further developed the manuscript and contributed to the final version. Munkhbayar Bat-Erdene and Taebeom Kim
developed a custom debugger forWindows 32bit and 64bit PE programs. They focused on CPU instructions of
unpacking behaviors and changing the entropy values. The debugger automatically measures entropies of each
section at the run time, and it detects an original entry point when entropy values are stable. After detection of the
original entry point, the debugger dumps memories, and we verify whether or not the unpacking process is finished.
Hyundo Park contributed in making the experimental hypothesis and validating the experiment results. Furthermore,
he reviewed the paper from beginning to the end. All authors read and approved the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Entropy 2017, 19, 125 17 of 18

References

1. Choi, H.; Zhu, B.B.; Lee, H. Detecting Malicious Web Links and Identifying Their Attack Types.
In Proceedings of the 2nd USENIX Conference on Web Application Development, Portland, OR, USA,
15–16 June 2011; pp. 125–136.

2. Bat-Erdene, M.; Kim, T.; Li, H.; Lee, H. Dynamic classification of packing algorithms for inspecting executables
using entropy analysis. In Proceedings of the IEEE International Conference on Malicious and Unwanted
Software: “The Americas” (MALWARE), Fajardo, PR, USA, 22–24 October 2013; pp. 19–26.

3. Yan, W.; Zhang, Z.; Ansari, N. Revealing Packed Malware. IEEE Secur. Priv. 2008, 6, 65–69.
4. Wright, C.S. Packer Analysis Report Debugging and Unpacking the NsPack 3.4 and 3.7 Packer. Available

online: https://www.sans.org/reading-room/whitepapers/malicious/packer-analysis-report-debugging-
unpacking-nspack-34-37-packer-33428 (accessed on 14 March 2017).

5. Guo, F.; Ferrie, P.; Chiueh, T.C. A study of the packer problem and its solutions. In Proceedings of the
11th International Symposium on Recent Advances in Intrusion Detection (RAID), Cambridge, MA, USA,
15–17 September 2008; pp. 98–115.

6. Yara Rules Project. 2016. Available online: https://github.com/Yara-Rules/rules/ (accessed on 14 March 2017).
7. GitHub. 2017. Available online: https://github.com/m-dwyer/packer-malware (accessed on 14 March 2017).
8. Osaghae, E.O. Classifying Packed Programs as Malicious Software Detected. Int. J. Inf. Technol. Electr. Eng.

2016, 5, 22–25.
9. Jacob, G.; Comparetti, P.M.; Neugschwandtner, M.; Kruegel, C; Vigna, G. A static, packer-agnostic filter to

detect similar malware samples. In Proceedings of the 9th International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), Heraklion, Greece, 26–27 July 2012; pp. 102–122.

10. Brosch, T.; Morgenstern, M. Runtime Packers: The Hidden Problem; Black Hat: Washington, DC, USA, 2006.
11. ASPack Software. Available online: http://www.aspack.com/aspack.html (accessed on 14 March 2017).
12. Northfox’s Dungeon. MEW Software. Available online: https://web.archive.org/web/20070831063728/

http://northfox.uw.hu/index.php?lang=eng&id=dev (accessed on 14 March 2017).
13. ASPack Software. Available online: http://www.aspack.com/asprotect32.html (accessed on 14 March 2017).
14. NsPack 3.7. Available online: http://nspack.download-230-13103.programsbase.com/ (accessed on

14 March 2017).
15. Oreans Technologies. Available online: http://www.oreans.com/themida.php (accessed on 14 March 2017).
16. RLPack 1.2. Available online: http://rlpack.software.informer.com/1.2/ (accessed on 14 March 2017).
17. VMPsoft. Available online: http://vmpsoft.com/products/vmprotect/ (accessed on 14 March 2017).
18. Alternate_EXE Packer. Available online: http://www.alternate-tools.com/pages/c_exepacker.php?lang=

ENG (accessed on 14 March 2017).
19. Al-Anezi, M.M.K. Generic packing detection using several complexity analysis for accurate malware

detection. Int. J. Adv. Comput. Sci. Appl. 2016, doi:10.14569/IJACSA.2014.050102.
20. Santos, I.; Ugarte-Pedrero, X.; Sanz, B.; Laorden, C.; Bringas, P.G. Collective classification for packed

executable identification. In Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse
and Spam Conference; Perth, Australia, 1–2 September 2011; pp. 23–30.

21. McAfee. The Good, the Bad, and the Unknown. Available online: http://www.techdata.com/mcafee/files/
MCAFEE_wp_appcontrol-good-bad-unknown.pdf (accessed on 14 March 2017).

22. Cesare, S.; Xiang, Y; Zhou, W. Malwise—An effective and efficient classification system for packed and
polymorphic malware. IEEE Trans. Comput. 2013, 62, 1193–1206.

23. Offensive Computing. Available online: http://www.offensivecomputing.net/ (accessed on 14 March 2017).
24. VX Heavens. 2017. Available online: http://vxheaven.org/ (accessed on 14 March 2017).
25. Ugarte-Pedrero, X.; Santos, I.; Sanz, B.; Laorden, C.; Bringas, P.G. Countering entropy measure attacks on

packed software detection. In Proceedings of the 2012 IEEE Consumer Communications and Networking
Conference (CCNC), Las Vegas, NV, USA, 14–17 Janaury 2012; pp. 164–168.

26. Shafiq, M.Z.; Tabish, S.M.; Mirza, F; Farooq, M. Pe-miner: Mining structural information to detect malicious
executables in realtime. In Proceedings of the 12th International Symposium on Recent Advances in Intrusion
Detection (RAID), Saint-Malo, France, 23–25 September 2009; pp. 121–141.

https://www.sans.org/reading-room/whitepapers/malicious/packer-analysis-report-debugging-unpacking-nspack-34-37-packer-33428
https://www.sans.org/reading-room/whitepapers/malicious/packer-analysis-report-debugging-unpacking-nspack-34-37-packer-33428
https://github.com/Yara-Rules/rules/
https://github.com/m-dwyer/packer-malware
http://www.aspack.com/aspack.html
https://web.archive.org/web/20070831063728/http://northfox.uw.hu/index.php?lang=eng&id=dev
https://web.archive.org/web/20070831063728/http://northfox.uw.hu/index.php?lang=eng&id=dev
http://www.aspack.com/asprotect32.html
http://nspack.download-230-13103.programsbase.com/
http://www.oreans.com/themida.php
http://rlpack.software.informer.com/1.2/
http://vmpsoft.com/products/vmprotect/
http://www.alternate-tools.com/pages/c_exepacker.php?lang=ENG
http://www.alternate-tools.com/pages/c_exepacker.php?lang=ENG
http://www.techdata.com/mcafee/files/MCAFEE_wp_appcontrol-good-bad-unknown.pdf
http://www.techdata.com/mcafee/files/MCAFEE_wp_appcontrol-good-bad-unknown.pdf
http://www.offensivecomputing.net/
http://vxheaven.org/

Entropy 2017, 19, 125 18 of 18

27. Liu, L.; Ming, J.; Wang, Z.; Gao, D; Jia, C. December. Denial-of-service attacks on host-based generic
unpackers. In Proceedings of the International Conference on Information and Communications Security
(ICICS), Beijing, China, 14–17 December 2009; pp. 241–253.

28. Meijer, B.R. Rules and algorithms for the design of templates for template matching. In Proceedings
of the 11th IAPR International Conference on Pattern Recognition, Conference A: Computer Vision and
Applications, The Hague, The Netherlands, 30 August–3 September 1992; pp. 760–763.

29. Cesare, S.; Xiang, Y. Classification of malware using structured control flow. In Proceedings of the Eighth
Australasian Symposium on Parallel and Distributed Computing, Brisbane, Australia, 1 January 2010; pp. 61–70.

30. Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2,
121–167.

31. Martignoni, L.; Christodorescu, M.; Jha, S. Omniunpack: Fast, generic, and safe unpacking of malware.
In Proceedings of the Computer Security Applications Conference (ACSAC), Miami Beach, FL, USA,
10–14 December 2007; pp. 431–441.

32. Kang, M.G.; Poosankam, P.; Yin, H. Renovo: A hidden code extractor for packed executables. In Proceedings
of the ACM Workshop on Recurring Malcode, Alexandria, VA, USA, 2 November 2007 ; pp. 46–53.

33. Jeong, G.; Choo, E.; Lee, J.; Bat-Erdene, M.; Lee, H. Generic unpacking using entropy analysis. In Proceedings
of the 2010 5th International Conference on Malicious and Unwanted Software (MALWARE), Nancy, France,
19–20 October 2010; pp. 98–105.

34. Devi, D.; Nandi, S. Detection of packed malware. In Proceedings of the First International Conference on
Security of Internet of Things, Kollam, India, 17–19 August 2012 ; pp. 22–26.

35. Perdisci, R.; Lanzi, A.; Lee, W. Classification of packed executables for accurate computer virus detection.
Pattern Recognit. Lett. 2008, 29, 1941–1946.

36. An in-Depth Look Into the Win32 Portable Executable File Format—Part 2. Available online: http://www.
delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
(accessed on 14 March 2017).

37. Pietrek, M. Peering Inside the PE: A Tour of the Win32 Portable Executable File Format. Available online:
https://msdn.microsoft.com/en-us/library/ms809762.aspx (accessed on 14 March 2017).

38. Ugarte-Pedrero, X.; Balzarotti, D.; Santos, I.; Bringas, P.G. SoK: Deep packer inspection: A longitudinal study
of the complexity of run-time packers. In Proceedings of the IEEE Symposium on Security and Privacy,
San Jose, CA, USA, 17–21 May 2015; pp. 659–673.

39. Lyda, R.; Hamrock, J. Using entropy analysis to find encrypted and packed malware. IEEE Secur. Priv. 2007,
5, 40–45.

40. Sun, L.; Versteeg, S.; Boztaş, S.; Yann, T. Pattern recognition techniques for the classification of malware
packers. In Proceedings of the 15th Australasian conference on Information security and privacy, Sydney,
Australia, 5–7 July 2010; pp. 370–390.

41. Vapnik, V. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995.
42. Vapnik, V.; Chervonenkis, A.Y. Theory of Pattern Recognition: Statistical Problems of Learning; Nauka: Moscow,

Russia, 1974.
43. Lin, J.; Keogh, E.; Lonardi, S; Chiu, B. A symbolic representation of time series, with implications for

streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, San Diego, CA, USA, 13–13 June 2003; pp. 2–11.

44. Keogh, E.; Kasetty, S. On the need for time series data mining benchmarks: A survey and empirical
demonstration. Data Min. Knowl. Discov. 2003, 7, 349–371.

45. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in
large time series databases. Knowl. Inf. Syst. 2001, 3, 263–286.

46. Yi, B.K.; Faloutsos, C. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the 26th
International Conference on Very Large Data Bases (VLDB), Cairo, Egypt, 10–14 September 2000.

47. Bat-Erdene, M.; Park, H.; Li, H.; Lee, H.; Choi, M.S. Entropy analysis to classify unknown packing algorithms
for malware detection. Int. J. Inf. Secur. 2016, doi:10.1007/s10207-016-0330-4.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
http://www.delphibasics.info/home/delphibasicsarticles/anin-depthlookintothewin32portableexecutablefileformat-part2
https://msdn.microsoft.com/en-us/library/ms809762.aspx
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Multi-Layer Packing
	Main Contributions

	Related Work
	Entropy Analysis for Detecting Single-Layer Packing, Re-Packing, or Multi-Layer Packing Algorithm
	Packer Complexity Type
	Structure of Packer Detection Algorithm
	Entropy Analysis and Measurement
	Conversion into Symbolic Representation (SAX)

	Classifier
	Fidelity Coefficient Similarity Measurement
	Incremental Aggregate Analysis

	Assessment of the Classification Method
	Conclusions

