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Abstract: The so-called Novikov power plant model has been widely used to represent some actual
power plants, such as nuclear electric power generators. In the present work, a thermo-economic
study of a Novikov power plant model is presented under three different regimes of performance:
maximum power (MP), maximum ecological function (ME) and maximum efficient power (EP). In this
study, different heat transfer laws are used: The Newton’s law of cooling, the Stefan–Boltzmann
radiation law, the Dulong–Petit’s law and another phenomenological heat transfer law. For the
thermoeconomic optimization of power plant models, a benefit function defined as the quotient of
an objective function and the total economical costs is commonly employed. Usually, the total costs
take into account two contributions: a cost related to the investment and another stemming from
the fuel consumption. In this work, a new cost associated to the maintenance of the power plant is
also considered. With these new total costs, it is shown that under the maximum ecological function
regime the plant improves its economic and energetic performance in comparison with the other
two regimes. The methodology used in this paper is within the context of finite-time thermodynamics.

Keywords: thermo-economics optimization; irreversible heat engine; Novikov model

1. Introduction

During more than four decades, a branch of irreversible thermodynamics called finite-time
thermodynamics (FTT) has been developed [1–5]. Within the context of FTT, it has been possible to
elaborate detailed models of heat engines working at finite-time and with entropy production [6–10].
One of the applications of FTT has been in the field of thermoeconomics [11–14]. In 1995, Alexis De Vos
introduced for the first time a thermoeconomic study for the Novikov plant model [15]. In his study,
De Vos takes into account two costs: a cost related to the investment and another cost associated to the
fuel consumption. From his thermoeconomic study, De Vos found that the optimal thermoeconomic
efficiency under maximum power conditions is between the Curzon–Ahlborn (CA) efficiency and
Carnot efficiency [16]. Here, De Vos refers to the power production rate W of the Novikov plant model.
Later, Barranco-Jiménez and Angulo-Brown [17,18] extended the De Vos thermoeconomic approach,
but using the so-called ecological function [19,20], and they also showed that the economical efficiency
under this regime of performance lies between the CA efficiency and the Carnot efficiency. In 2009,
Barranco-Jiménez [21] studied the thermoeconomics of a nonendoreversible Novikov engine. He used
different heat transfer laws: The Newton’s law of cooling, the Stefan–Boltzmann radiation law [22],
the Dulong–Petit’s law of cooling [23] and a phenomenological heat transfer law [24,25] (the usage
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of each transfer law depends on the kind of heat engine model to describe [22–27]). He calculated
the thermoeconomic optimal efficiencies under two regimes of performance, namely, the maximum
power regime and the ecological regime, and he found that when the Novikov model maximizes the
ecological function, it reduces the rejected heat to the environment down to about 50% with respect
to the heat rejected under maximum power conditions. Recently, Pacheco-Paez et al. [28,29] made a
thermoeconomic analysis of a Novikov plant following the De Vos approach (with a linear heat transfer
law) but including a new cost associated to the maintenance of the power plant. The aim of this paper
is to extend the thermoeconomic analysis of the Novikov plant model (see Figure 1) by considering
different heat transfer laws. Besides, in the optimization of the benefit functions, we take into account
a new cost associated to the maintenance of the power plant [28,29]. In our study, we also consider
three regimes of performance: maximum power (MP) [3], maximum efficient power (EP) [30,31] and
maximum ecological function (ME) [19,20]. The methodology used in this paper is within the context
of finite-time thermodynamics. Apart from the De Vos method, there exist other approaches for the
thermoeconomic analysis of power plant models. Interestingly, the thermoeconomic analysis based
on exergy has played an important role in this discipline [32–36]. The work is organized as follows:
In Section 2, we present the thermoeconomic analysis of the Novikov power plant under different
criteria of performance. In Section 3, we analyze the environmental impact of the thermoeconomic
model, and finally in Section 4, we present our conclusions.
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Figure 1. Novikov’s model for a thermal power plant. QH , QL and W are quantities per unit time.

2. Thermoeconomic Analysis

Applying the first law of thermodynamics to Figure 1, the power output is given by,

W = QH −QL, (1)

where QH and QL are the heat transfers between the thermal baths and the working fluid (W, QH and
QL are quantities per cycle’s period). On the other hand, the internal efficiency of the engine is given
by [21],

η =
W
QH

= 1− τ

R
1
θ

, (2)

where τ = TL/TH , θ = T3/TH and the parameter R = ∆S1/|∆S2| is the non-endoreversibility
parameter [37,38] (which characterizes the degree of internal irreversibility that comes from the
Clausius inequality), ∆S1 being the change of the internal entropy along the hot isothermal branch
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and ∆S2 the entropy change corresponding to the cold isothermal compression. This parameter in
principle is within the interval 0 < R ≤ 1 (R = 1 for the endoreversible limit). If we consider that the
heat transferred between the hot source and the working fluid obeys a generalized law of the type,

QH = gTH
n(1− θ)n, (3)

where the exponent n can be any real number different from zero and it takes the values n = 1 for a
Newtonian heat transfer law (N) and n = 5/4 for a Dulong–Petit heat transfer law (DP) [23,27] and g
is the thermal conductance (see Figure 1). From Equations (2) and (3), the power output (W = ηQH)

results in

W = gTn
Hη

(
1− τ

R(1− η)

)n
(4)

The De Vos thermoeconomical analysis considers a profit function F, which is maximized [11].
This profit function is given by the quotient of the power output W (that is, the power production rate
W of the Novikov plant model) and the total costs involved in the performance of the power plant,
that is

F =
W
C

(5)

Apart from this De Vos method, there exist other approaches for the thermoeconomic analysis
of power plant models. Significantly, the thermoeconomic analysis based on exergy has played an
important role in this matter [32–36]. In his study, De Vos assumed that the running costs of the plant
consist of two parts: a capital cost which is proportional to the investment and, therefore, to the size of
the plant, and a fuel cost that is proportional to the fuel consumption and, therefore, to the heat input
rate. In this work, we also take into account a cost associated to the maintenance of the power plant
which is taken as proportional to the power output of the plant. This choice is based on an intuitive
idea that has to do with the wheatering of the engine depending on its excessive usage. Therefore,
the running costs of the plant exploitation are now defined as,

C = aQmax + bQH + cW, (6)

where the proportionality constants a, b and c have units of $/Watt, and Qmax = gTH
n(1− τ)n is the

maximum heat that can be extracted from the heat reservoir without supplying work in the same
manner previously considered by De Vos [11] (see Figure 1). Equation (6) is taken as a linear relation
inspired in the linear character of the first law of thermodynamics [39]. Using Equations (3) and (4),
the running costs of the plant are given by,

C = agTH
n
[
(1− τ)n + β

(
1− τ

R(1− η)

)n
+ γη

(
1− τ

R(1− η)

)n]
, (7)

where β = b/a and γ = c/a (0 ≤ β < ∞ and 0 ≤ γ). After substituting Equations (4) and (7) into
Equation (5), the dimensionless objective profit function is given by,

aFN−DP
MP =

η
(

1− τ
R(1−η)

)n

(1− τ)n + β
(

1− τ
R(1−η)

)n
+ γη

(
1− τ

R(1−η)

)n , (8)

which is valid for the transfer laws of Newton (N), and Dulong–Petit (DP). Now, we define
two additional objective functions, one in terms of the so-called modified ecological function
(E ≡W− ∈ TLσ, with σ the rate of total entropy production of the Novikov model and ∈ a parameter
which depends on the heat transfer law used in the Novikov model [19,20]). This function is a slight
modification of the former ecological function [19], which preserves the original physical meaning of
that function; that is, it represents a good trade-off between high power output and low dissipation.
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On the other hand, we also use a profit function based on the efficient power [30,31] (PEP ≡ ηW),
which is an objective function of the class of compromise functions looking for a good trade-off
between power output and efficiency. Both objective functions are divided by the total costs involved
in the performance of the plant, that is, FEP = ηW

C and FME = W−∈TLσ
C , respectively. Analogously to

Equation (8), by using Equations (4), (5) and (7), FEP and FME are given by,

aFN−DP
EP =

η2
(

1− τ
R(1−η)

)n

(1− τ)n + β
(

1− τ
R(1−η)

)n
+ γη

(
1− τ

R(1−η)

)n , (9)

and,

aFN−DP
ME =

[(1 + ε)η − ε(1− τ)]
(

1− τ
R(1−η)

)n

(1− τ)n + β
(

1− τ
R(1−η)

)n
+ γη

(
1− τ

R(1−η)

)n . (10)

The maximization of the objective functions given by Equations (8)–(10) by means of d(aF)
dη

∣∣∣
η∗

= 0

gives the corresponding optimal efficiencies. Therefore, taking the derivatives of aFN−DP
MP , aFN−DP

PE
and aFN−DP

ME with respect to η and setting them equal to zero, we obtain the optimal efficiency (η∗)
that maximizes Equations (8)–(10), respectively. In Figure 2, for the case of a Newton heat transfer
law (n = 1 in Equation (3)), we show the behavior of the three objective functions versus the internal
efficiency η for the following arbitrary values R = 1 (endoreversible case), β = 0 and τ = 0.5.
We observe in Figure 2 that there exists an efficiency value (η∗) which depends on the parameter
γ. The benefits function diminishes as the parameter γ increases. Besides, for the case of maximum
power conditions, the maximum value of aFN is obtained for practically the same value of η for the
two values of γ considered.

Entropy 2017, 19, 118  4 of 15 

 

( )EPP Wη≡ , which is an objective function of the class of compromise functions looking for a good 

trade-off between power output and efficiency. Both objective functions are divided by the total 

costs involved in the performance of the plant, that is, EP
WF
C

η=  and L
ME

W T
F

C
σ− ∈

= , 

respectively. Analogously to Equation (8), by using Equations (4), (5) and (7), EPF  and MEF  are 
given by, 

( )

2 1
(1 )

1 1 1
(1 ) (1 )

n

N DP
EP n n

n

R
aF

R R

τη
η

τ ττ β γη
η η

−

 − − =
   − + − + −   − −   

, (9) 

and, 

( )

( )

1 (1 ) 1
(1 )

1 1 1
(1 ) (1 )

n

N DP
ME n n

n

R
aF

R R

τε η ε τ
η

τ ττ β γη
η η

−

  + − − −   − =
   − + − + −   − −   

. (10) 

The maximization of the objective functions given by Equations (8)–(10) by means of 
( )

0
d aF

d
η

η
∗

=  gives the corresponding optimal efficiencies. Therefore, taking the derivatives of 

N DP
MPaF − , N DP

PEaF −  and N DP
MEaF −  with respect to η  and setting them equal to zero, we obtain the 

optimal efficiency ( )η∗  that maximizes Equations (8)–(10), respectively. In Figure 2, for the case of a 

Newton heat transfer law ( 1n =  in Equation (3)), we show the behavior of the three objective 
functions versus the internal efficiency η  for the following arbitrary values 1R =  (endoreversible 

case), 0β =  and 0.5τ = . We observe in Figure 2 that there exists an efficiency value ( )η∗  which 

depends on the parameter γ . The benefits function diminishes as the parameter γ  increases. 

Besides, for the case of maximum power conditions, the maximum value of NaF  is obtained for 
practically the same value of η  for the two values of γ  considered. 

 

Figure 2. Comparison between the three thermoeconomic objective functions with respect to the 
internal efficiency for a Newton heat transfer law for two values of the parameter γ  ( NF  

represents the three objective functions with a Newtonian heat transfer law). 

In Figure 3, we can observe for the three benefit functions how the optimal efficiency tends to the 
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Figure 2. Comparison between the three thermoeconomic objective functions with respect to the
internal efficiency for a Newton heat transfer law for two values of the parameter γ (FN represents the
three objective functions with a Newtonian heat transfer law).

In Figure 3, we can observe for the three benefit functions how the optimal efficiency tends to the
reversible value (Carnot efficiency) when β→ ∞ , such as it occurs in the De Vos approach [11,21].
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The optimal efficiencies are obtained in terms of the dimensionless parameter β, but this parameter
is not easy to evaluate [11] and it is more convenient to work in terms of the so-called fuel fractional
cost ( f ) [11,17], defined as the ratio between the fuel cost and the total costs of the plant, that is,

f =
bQH

aQmax + bQH + cW
, (11)

which is in the interval 0 ≤ f < 1. From the previous equation and by using Equations (2)–(4), we get

β =

(
f

1− f

) (1− τ)n + γη
(

1− τ
R(1−η)

)n

(
1− τ

R(1−η)

)n

. (12)

From Equations (8)–(10), we can numerically find the optimal efficiencies by solving polynomial
equations of the form: H(τ, f , γ, R, η) = 0. However, some analytical expressions can be obtained
for γ = 0 in the cases of both Newton (n = 1) and Dulong–Petit (n = 5/4) laws previously reported
in [21]. For the case of maximum power output, the optimal efficiencies are given by [20]

ηN
MP(τ, f , R) = 1− f

2R
τ −

√
4(1− f )Rτ + f 2τ2

2R
. (13a)

ηDP
MP(τ, f , R) = 1− 10( f − 1)τ

(5 f − 1)τ +
√

80(1− f )Rτ + (1− 5 f )2τ2
. (13b)

As it was previously mentioned, under the maximum power conditions, the optimum value of η

does not appreciably change the maximum of the benefit function, that is, the optimal efficiency is
practically independent of the parameter γ, which is associated to the maintenance costs of the plant
(see Figure 2). Interestingly, the inclusion of this new parameter has a remarkable effect on the optimal
efficiencies for the cases of ME and EP maximizations. In fact, η∗ME and η∗EP increase with respect to
the results without maintenance costs (see Figure 2); that is, better maintenance is reflected as better
efficiency. For the case of maximum efficient power and maximum ecological function (with γ = 0),
the optimal efficiencies are given by,

ηN
EP(τ, f , R) = 1− (1 + f )

4R
τ −

√
8(1− f )Rτ + (1 + f )2τ2

4R
, (14a)
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ηDP
EP (τ, f , R) = 1− 10( f − 1)τ

(3 + 5 f )τ +
√

160(1− f )Rτ + (3 + 5 f )2τ2
, (14b)

ηN
ME(τ, f , R) = 1− f

2R
τ −

√
4(1− f )Rτ3/2 + f 2τ2

2R
, (15a)

ηDP
ME(τ, f , R) = 1− 100(1− f )τ

(1− 5 f )Λ +
√

800Λ(1− f )R + [(1− 5 f )Λ]2
. (15b)

where Λ = τ +
√

τ(80 + τ). For the cases f = 0 and R = 1, from Equations (13a), (14a)

and (15a), we obtain the optimal efficiencies ηCA = 1 − τ1/2, ηEP = 1 − τ
4 −

[8τ(1+τ)]1/2

4 and
ηME = 1− τ3/4 previously reported by Curzon-Ahlborn [16], Yilmaz [30] and Arias-Hernández and
Angulo-Brown [20], for the Curzon-Ahlborn heat engine under maximum power output, maximum
efficient power and maximum ecological function conditions, respectively.

Now, we consider two other heat transfer laws between the hot source and the working fluid
as follows,

QH = gTH
n(1− θn)Sign(n), (16)

Qmax = gTH
n(1− τn)Sign(n), (17)

Here, the exponent n takes the values of n = −1 for a phenomenological heat transfer law
(Ph) [24,25] and n = 4 for a Stefan–Boltzmann (SB) radiation law ([22,26]) and the Sign function leads
to Sign(n) = 1 if n > 0, and Sign(n) = −1 if n < 0. In this case, the objective functions under the
three regimes considered result in,

aFSB−Ph
MP =

η
[
1−

(
τ

R(1−η)

)n]
(1− τn) + β

[
1−

(
τ

R(1−η)

)n]
+ γη

[
1−

(
τ

R(1−η)

)n] , (18)

aFSB−Ph
EP =

η2
[
1−

(
τ

R(1−η)

)n]
(1− τn) + β

[
1−

(
τ

R(1−η)

)n]
+ γη

[
1−

(
τ

R(1−η)

)n] , (19)

and,

aFSB−Ph
ME =

[2η − (1− τ)]
[
1−

(
τ

R(1−η)

)n]
(1− τn) + β

[
1−

(
τ

R(1−η)

)n]
+ γη

[
1−

(
τ

R(1−η)

)n] . (20)

In Figures 4 and 5, we show the behavior of aFSB−Ph
MP , aFSB−Ph

EP and aFSB−Ph
ME for the case of a

phenomenological (Ph) heat transfer law (n = −1 in Equations (18)–(20)) versus the internal efficiency
for R = 1, β = 0 and τ = 0.5 (a similar behavior is found for the benefit functions for the case of
the Stefan–Boltzmann law). We can see in Figures 5 and 6 that these profit functions have a similar
behavior to the Newton and the Dulong–Petit cases; that is, the benefits function also diminishes as the
parameter γ increases. In [11], it was shown that the maxima points of the MP profit function tend to
the reversible limit (Carnot point) when the parameter β tends to infinite. This same behavior occurs
for the EP and ME profit functions. In Figure 6 we only show, as an example, the case of the EP profit
function for several increasing values of the parameter β, and it is clear how the curve that contains
the maxima points tend to the Carnot efficiency (ηC = 0.5, in this case).

In a similar way to the Newton and the Dulong–Petit cases, we can obtain the optimal efficiencies
in terms of the parameter β (or f ).
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Analogously to Newton and Dulong–Petit laws, we can also obtain some analytical expressions for
γ = 0 for both Ph (n = −1) and SB radiation (n = 4) laws. Therefore, under maximum power output,
maximum efficient power and maximum ecological function conditions, we obtain, respectively,

ηPh
MP(τ, f , R) =

R− τ

R(2− f )
, (21a)

ηPh
EP(τ, f , R) =

τ( f − 3)
R( f − 1)− 2τ

, (21b)

ηPh
ME(τ, f , R) =

R[( f − 3)− ( f − 1)τ] + 2τ

2R( f − 2)
, (21c)

and,

ηS−B
MP (τ, f , R) = 1− 8( f − 1)Rτ

(4 f − 3)τ +
√
(4 f − 3)2τ2 + 16R(1− f )τ

, (22a)

ηS−B
EP (τ, f , R) = 1− 2( f − 1)τ −

√
8(1− f )τR + (1− 2 f )τ2

2R
, (22b)

ηS−B
ME (τ, f , R) = 1−

(4 f − 3)τ +
√
(4 f − 3)2τ2 + 8R( f − 1)(1 + τ)τ

2R
. (22c)

Similarly as for the Newton heat transfer law, for a phenomenological heat transfer law when
f = 0 and R = 1, from Equation (21a–c), we obtain the optimal efficiencies ηMP = (1− τ)/2 previously
reported by De Vos [24], ηEP = 3τ

1+2τ and ηME = 3(1− τ)/4 (these last two expressions were previously
published by Barranco-Jiménez [21]), for the Curzon-Ahlborn heat engine under maximum power
output, maximum efficient power and maximum ecological function conditions, respectively.
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Similarly as for the Newton heat transfer law, for a phenomenological heat transfer law when 
0f =  and 1R = , from Equation (21a–c), we obtain the optimal efficiencies ( )1 2MPη τ= −  
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3. Numerical Results: Environmental Impact

When we calculate the derivative of Equations (8)–(10), that is, d(aFi)
dη

∣∣∣
η∗i

, for i = MP, EP, ME,

we obtain equations of the form d(aFi)
dη

∣∣∣
ni
= H

(
τ, β, γ, R, η∗i

)
. Therefore, we have to solve numerically

polynomial equations of the form,

HN−DP
i = HN−DP

i

(
τ, β, γ, R, ηN−DP

i

)
= 0, (23)

These previous expressions are not shown in explicit form because they are very large. Finally,
using the expression for the fractional fuel cost f [11,17] (see Equation (12)), we obtain the numerical
optimal efficiencies in terms of the parameter R, the parameter τ and the economic parameters f and γ.
In Figure 7, we show the optimal numerical efficiencies under maximum power, maximum efficient
power and maximum ecological function conditions, respectively. In this Figure (see solid lines),
we also show the optimal efficiencies given by Equations (13a), (14a) and (15a).

On the other hand, in Figure 8 we depict the corresponding optimal efficiencies against f for
the Newtonian case, but with R = 0.9 < 1 (this case is a representative one of any nonendoreversible
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situation). As we can see in this case, the ηN optimal values are all smaller than those corresponding to
Figure 7. This behavior for R < 1 is present for any heat transfer law and any operating regime [21,40].
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We can also see that the optimal efficiencies under the maximum ecological function regime
(for all values of the parameters R, γ and f for the case of Newton heat transfer law, see Figures 7 and 8)
are greater than the optimal efficiencies under both maximum power output and maximum efficient
power conditions, respectively. For the case of both phenomenological and Stefan–Boltzmann laws,
the optimal efficiencies have a similar behavior with respect to the parameters R, γ and f . Besides,
all of these optimal efficiencies satisfy the following inequality:

ηC > ηME > ηEP > ηMP > ηCA, (24)

The previous inequality was recently obtained by Barranco-Jiménez et al. for the case of both
endoreversible and nonendoreversible models of heat thermal engines [21,40]. In addition, we can see
in Figures 2 and 3 how the optimal efficiency under the maximum ecological function regime leads
to a high reduction on the profits in comparison with those at maximum power output. However,
this reduction is concomitant with a better efficiency for each value of the parameter f (see Table 1
in [11] for fractional fuel costs for several kinds of fuels). This value of the efficiency provides a
diminution of the energy rejected to the environment by the power plant. Therefore, the ecological
criterion becomes an appropriate procedure for the search for insight into an engine’s performance for
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providing a less aggressive interaction with the environment. Therefore, we propose the following
simplified analysis:

From the first law of thermodynamics we get,

QL = QH −W, (25)

where QL is the heat rejected to the environment by the power plant. For the cases of heat transfer of
the Newton and Dulong–Petit types, when the power plant works under maximum power conditions
by using Equations (3), (4) and (25), we get

QL(η
∗
MP, τ, R) = gTn

H(1− ηn
MP)

(
1− τ

R
(
1− η∗MP

))n

. (26)

In a similar way, the expressions when the power plant works under maximum ecological function
and maximum efficient power conditions are, respectively,

QL(η
∗
ME, τ, R) = gTn

H(1− ηn
ME)

(
1− τ

R
(
1− η∗ME

))n

, (27)

QL(η
∗
EP, τ, R) = gTn

H(1− ηn
EP)

(
1− τ

R
(
1− η∗EP

))n

. (28)

The solutions of Equations (26)–(28) were obtained in a numerical manner similarly to the
equations in Section 2. In our optimization, we consider different values for the maintenance of the
power plant (parameter γ) and we can observe for each thermodynamic regime that while the γ

parameter increases, the heat rejected to the environment slightly diminishes, as it is shown in Figure 9.
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In Figure 9, we show the amount of heat rejected to the environment for each one of the three
regimes of performance. As we can see, the heat rejected to the environment under the maximum
ecological function presents a less aggressive impact to the environment in comparison with the other
two regimes (see Figure 10a,b). We can also observe in Figure 10 that when the cost of the maintenance is
taken into account, the rejected heat slightly diminishes in the three regimes of performance considered.
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Dulong–Petit type.
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Furthermore, by applying the second law of thermodynamic (see Figure 1) we get,

σ =
QH −W

TL
− QH

TH
. (29)

Using Equations (1), (3) and (4) and after some algebraic manipulations, for the cases of heat
transfer of the Newton and Dulong–Petit types, the entropy production under maximum power
conditions can be calculated by the following expression:

σMP(η
∗
MP, τ, R) = (1− τ − η∗MP)

(
1− τ

R
(
1− η∗MP

))n

. (30)
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Similarly to Equation (30), the expressions when the power plant works under maximum
ecological function and maximum efficient power conditions are, respectively,

σME(η
∗
ME, τ, R) = (1− τ − η∗ME)

(
1− τ

R
(
1− η∗ME

))n

, (31)

σEP(η
∗
EP, τ, R) = (1− τ − η∗EP)

(
1− τ

R
(
1− η∗EP

))n

. (32)

It is important to mention that all of the calculations were made in a numerical form. The behavior
of the above equations can be observed in Figure 12. As can be seen in Figure 12b, the entropy
production of the power plant when it is working under maximum ecological conditions is less than
when it is working under maximum power conditions.

In Figure 13a, we show the ratio between the amounts of entropy production for two regimes:
maximum ecological function and maximum power. In a similar manner, in Figure 13b, we show
the ratio between the amounts of entropy production for maximum efficient power conditions and
maximum power conditions. In addition, in Figure 14, we show the ratios of entropy production for a
heat transfer of the Dulong–Petit type. In all of our numerical calculations we have attempted to use
for the distinct involved parameters only typical values reported in the FTT literature.
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4. Conclusions 

In this work, we have made a thermoeconomic study of an irreversible simplified thermal 
power plant model (the so-called Novikov engine). This irreversible model modifies the results 
obtained by means of an endoreversible one due to the inclusion of the engine’s internal dissipation 
through the lumped parameter R (see Figures 7 and 8). In our study, we use different heat transfer 
laws: the Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and 
another phenomenological heat transfer law. We also take into account a cost associated to the 
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Figure 14. Ratio of entropy production between efficient power and maximum power and ecological
function and maximum power conditions, respectively, for a heat transfer of the Dulong–Petit type.

4. Conclusions

In this work, we have made a thermoeconomic study of an irreversible simplified thermal power
plant model (the so-called Novikov engine). This irreversible model modifies the results obtained
by means of an endoreversible one due to the inclusion of the engine’s internal dissipation through
the lumped parameter R (see Figures 7 and 8). In our study, we use different heat transfer laws: the
Newton’s law of cooling, the Stefan–Boltzmann radiation law, the Dulong–Petit’s law and another
phenomenological heat transfer law. We also take into account a cost associated to the maintenance of
the power plant which we assume as proportional to the power output of the plant. The inclusion
of this new cost has a noticeable impact on the improvement of the optimal efficiencies of the plant
model, nevertheless, the benefit functions diminish. This effect is only relevant when the plant model
works under ME and EP regimes; however, when the plant model works at maximum power regime,
the benefits diminish and the optimal efficiency practically does not change. We found that when
the Novikov model maximizes the ecological function, it remarkably reduces the rejected heat to
the environment in comparison to the rejected heat in the case of a power plant model working
under the maximum power regime (see Figures 9–11). In addition, we analyzed the effect of internal
irreversibilities on the reduction of power output and on the total entropy production of the model. In
summary, we have shown that the maximum ecological regime has more advantages in the way of
thermoeconomic performance than the other mentioned operating regimes.
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