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Abstract: This paper presents a novel theory and method to calculate the canonical labelings of
digraphs whose definition is entirely different from the traditional definition of Nauty. It indicates the
mutual relationships that exist between the canonical labeling of a digraph and the canonical labeling
of its complement graph. It systematically examines the link between computing the canonical
labeling of a digraph and the k-neighborhood and k-mix-neighborhood subdigraphs. To facilitate the
presentation, it introduces several concepts including mix di f f usion outdegree sequence and entire mix
di f f usion outdegree sequences. For each node in a digraph G, it assigns an attribute m_NearestNode to
enhance the accuracy of calculating canonical labeling. The four theorems proved here demonstrate
how to determine the first nodes added into MaxQ(G). Further, the other two theorems stated
below deal with identifying the second nodes added into MaxQ(G). When computing Cmax(G),
if MaxQ(G) already contains the first i vertices u1, u2, · · · , ui, Diffusion Theorem provides a guideline
on how to choose the subsequent node of MaxQ(G). Besides, the Mix Diffusion Theorem shows
that the selection of the (i + 1)th vertex of MaxQ(G) for computing Cmax(G) is from the open
mix-neighborhood subdigraph N++(Q) of the nodes set Q = {u1, u2, · · · , ui}. It also offers two
theorems to calculate the Cmax(G) of the disconnected digraphs. The four algorithms implemented in
it illustrate how to calculate MaxQ(G) of a digraph. Through software testing, the correctness of our
algorithms is preliminarily verified. Our method can be utilized to mine the frequent subdigraph. We
also guess that if there exists a vertex v ∈ S+(G) satisfying conditions Cmax(G− v) 6 Cmax(G− w)

for each w ∈ S+(G) ∧ w 6= v, then u1 = v for MaxQ(G).

Keywords: canonical labeling; k-mix-neighborhood subdigraph; algorithm; adjacency matrix;
mix diffusion degree sequence; entire mix diffusion degree sequences

1. Introduction

A canonical labeling [1–3] of a graph, also called a canonical form [4], a canonical code [5],
or an optimum code [6], is a unique string corresponding to the graph and is lexicographically smallest
or largest according to the different definitions used in the studies. Two digraphs are isomorphic if and
only if they have the same canonical labelings. Until now, the computation of the canonical labeling
as the digraph isomorphism problem remains an unsolved problem in computational complexity
theory in the sense that no polynomial-time algorithm exists for calculating the canonical labeling of
a digraph. Therefore, the computation of the canonical labeling is NP-hard [4,7].

Numerous methods have emerged to calculate the canonical labelings of undirected graphs.
However, different methods use distinct definitions of the canonical labeling. Given a graph with
n vertices, Huan et al. concatenates the lower triangular entries (including the diagonal entries) of its
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adjacency matrix to produce its canonical labeling [8]. Kuramochi and Karypis construct the canonical
labeling by concatenating the columns of the upper-triangular portion of its adjacency matrix [9,10].
To create the canonical labeling, He et al. concatenate the rows of its adjacency matrix to form a n2

binary number [11,12].
Babai and Luks pioneered the establishment of a general group-theoretic approach to compute

canonical labeling [4]. However, combinatorial methods have worked well in various special cases.
For random graphs, Babai et al. produce a canonical labeling with high probability [4,13]. Arvind et al.
propose two corresponding logspace algorithms for partial 2- and 3-Trees [7,14].

Jianqiang Hao establishes a new theoretical framework to compute the canonical labeling Cmax(G)

of undirected graphs by defining a set of concepts useful for classifying graphs [15].
Currently, Nauty [1,16–18] is the most popular and practical tools for considering the

automorphism group and the canonical label of a graph or digraph. On isomorphism testing, Nauty is
more efficient than Ullmann [19]. It has almost become the industry standard used to calculate
the canonical label, as well as the automorphism group. For computing the canonical labeling and
automorphism group, Nauty and [20] use the depth-first search to traverse the potential intermediate
nodes in the search tree. The nodes of the search tree generated by Nauty are equitable ordered
partitions of nodes in G. Nauty iteratively refines partitioning nodes until places the nodes that have
the same properties into an automorphism orbit. As the partition refinement becomes finer and
smaller, it automatically creates the canonical label. Nauty also requires exponential time to compute
the canonical labeling for a given Miyazaki graph [21]. Tener and Deo [22] made improvements for
dealing with the problem.

Besides Nauty, Bliss [3,23], Traces [2], and Conauto [24] are also state-of-the-art tools for graphs
isomorphism testing. Based on backtracking, individualization of vertices, and partition refinement,
Bliss [3,23] is an efficient canonical labeling tool for handling large and sparse graphs. Katebi et al. [25]
can find the symmetry while calculating the canonical labeling. To fix the glitch of Nauty, Traces [2]
uses the strategy of breadth-first search to find the automorphism group and the canonical labeling.
Conauto also uses the basic individualization/refinement technique and is very fast for random graphs
and several families of hard graphs.

For the improvement of performance, existing algorithms commonly utilize backtracking and
orbit partitioning technique to avoid repeatedly visiting the same vertices, as well as manage to reduce
the accessed nodes in the search tree. McKay and Piperno provides a comprehensive discussion of
the issue [18].

Nauty dominated the field for several decades. As a result, an in-depth study for the canonical
labeling has been confined to the theoretical framework of Nauty. This means that people just
follow the research trajectory of nauty to extend and establish further study. When the graph under
consideration contains a large number of automorphisms, it is difficult to verify the correctness of the
canonical labeling obtained by performing Nauty according to the standard of Nauty.

Although many algorithms have emerged to calculate the canonical labelings of undirected
graphs, to our best knowledge no algorithm other than Nauty exists for computing the canonical
labelings of digraphs.

Throughout the paper, the canonical labeling Cmax(G) of a digraph is the lexicographically
largest code obtained by concatenating the rows of the associated adjacency matrix (see Definition 7).
Our definition of canonical labeling is entirely different from that of Nauty.

Although a few algorithms also give the same definition of the canonical labeling as described in
Definition 7, their primary purpose is not to study how to construct a canonical labeling of a digraph,
but for other intentions such as to mine the frequent subdigraphs. As a result, they can only work
for some restricted undirected graph classes. Jianqiang Hao utilizes the Cen(G) to calculate the first
node u1 added into MaxQ(G) of simple undirected graphs [15]. Based on current knowledge and
Definition 7, a general algorithm for computing the canonical labelings of digraphs is not available.
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This paper focuses on the development of general theory and methods to calculate the canonical
labeling Cmax(G) of digraphs. In the rest of this paper, Section 2 establishes some basic terminology and
preliminary information. Section 3 describes the results accompanied by some discussion. Section 4
presents our algorithms for computing the canonical labeling of digraphs. Section 5 displays the
implementation of our algorithms and evaluates our approach through many examples. Finally,
Section 6 comments on our results and future work.

2. Preliminaries

In this section, we provide a brief review of the fundamental information used throughout the
paper. A more comprehensive presentation can be found in most standard textbooks [26,27]. A directed
graph (or digraph) G =< V(G), E(G) > consists of a nonempty set V(G) of vertices (or nodes) and
a set E(G) of directed edges (or arcs). A directed edge associated with the ordered pair (u, v) is said to
start at u and end at v. We also say that the vertex u is its tail and the vertex v is its head. Throughout
the paper, we denote (u, v) by u→ v. For the edge u→ v ∈ E(G), the vertex v is said to be adjacent
from the vertex u, the vertex u is said to be adjacent to the vertex v, and the edge u→ v is said to be

incident from the vertex u and incident to the vertex v. The directed distance
−−−→
d(u, v) from vertex u to

vertex v in G is the length of the shortest directed path from u to v [28], if any; otherwise
−−−→
d(u, v) = ∞.

This paper deals with only finite simple digraphs, which have no loops and no multiple edges.
For each u ∈ V(G), let d+−G (u) = |{v|v → u ∧ u → v ∈ E(G)}|, d+G (u) = |{v|u → v ∈ E(G)}|,
d−G (u) = |{v|v→ u ∈ E(G)}|, and dG(u) = d+G (u)+ d−G (u) denote the outindegree, outdegree, indegree,
and degree of u respectively, and omit the subscript G when no ambiguity can arise. Denote by ∆(G),
∆+−(G), ∆+(G), and ∆−(G) the maximum degree, the maximum outindegree, the maximum outdegree,
and the maximum indegree of all vertices of a graph G, respectively.

Denote by d(G) = (dG(u1), dG(u2), · · · , dG(un)) the degree sequence of G, by dG(V1) = (dG(v1),
dG(v2), · · · , dG(vm)) the degree sequence of a subset V1 ⊆ V(G) with vi ∈ V1, i = 1, 2, · · · , m, and by
dG(H) = (dH(w1), dH(w2), · · · , dH(ws)) the degree sequence of a subdigraph H ⊆ G with wj ∈ V(H),
j = 1, 2, · · · , s, and omit the subscript G when no ambiguity can arise.

In addition, denote by d+(G) = (d+G (u1), d+G (u2), · · · , d+G (un)) the outdegree sequence of G,
by d+G (V1) = (d+G (v1), d+G (v2), · · · , d+G (vm)) the outdegree sequence of a subset V1 ⊆ V(G) with vi ∈ V1,
i = 1, 2, · · · , m, and by d+G (H) = (d+H(w1), d+H(w2), · · · , d+H(ws)) the outdegree sequence of a subdigraph
H ⊆ G with wj ∈ V(H), j = 1, 2, · · · , s, and omit the subscript G when no ambiguity can arise.

Similarly, denote by d−(G) = (d−G (u1), d−G (u2), · · · , d−G (un)) the indegree sequence of G,
by d−G (V1) = (d−G (v1), d−G (v2), · · · , d−G (vm)) the indegree sequence of a subset V1 ⊆ V(G) with vi ∈ V1,
i = 1, 2, · · · , m, and by d−G (H) = (d−H(w1), d−H(w2), · · · , d−H(ws)) the indegree sequence of a subdigraph
H ⊆ G with wj ∈ V(H), j = 1, 2, · · · , s, and omit the subscript G when no ambiguity can arise.

Throughout this paper, unless otherwise specified, any given degree sequence is non-increasing.
Throughout this paper, let S(G) = {u|u ∈ V(G)∧ d(u) = ∆(G) }, S+(G) = {u ∈ V(G)| d+(u) = ∆+(G)},
S−(G) = {u ∈ V(G)|d−(u) = ∆−(G)}, and S+

−(G) = {u ∈ S+(G)|d−(u) = ∆−(S+(G))} where
∆−(S+(G)) = max{d−(u)|u ∈ S+(G)}.

Definition 1. Let G =< V(G), E(G) > be a simple digraph with n nodes. The vertex-induced subdigraph on
V1 ⊆ V(G) of G is the subdigraph with the nodes set V1 together with any directed edge whose endpoints are
both in V1, denoted by G[V1].

Definition 2. Let G =< V(G), E(G) > and H =< V(H), E(H) > be two digraphs with n nodes. If there
exists a bijection f : V(G)→ V(H) such that ∀u→ v ∈ E(G) if and only if f (u)→ f (v) ∈ E(H). We say
f is an isomorphic map of G → H. Furthermore, we say that the graph G and H are isomorphic, denoted by
G ∼= H. An isomorphic map f of G onto itself is said to be an automorphism of G.
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Definition 3. Let G =< V(G), E(G) > be a simple digraph with n nodes v1, v2, · · · , vn. The adjacency
matrix A(G) = (ai,j) of G is a n× n-square matrix such that ai,j = 1 if there is an edge vi → vj ∈ E(G) and
ai,j = 0 otherwise.

The adjacency matrix for a digraph G does not have to be symmetric, because there may not be
an edge vi → vj, when there is an edge from vj → vi. In addition, ai,i = 0 for every vi ∈ V(G) since G
has no loops.

Given two vectors X = (x1, x2, · · · , xi, · · · , xm) in Rm and Y = (y1, y2, · · · , yj, · · · , yn) in Rn,
the question arises as to how to decide which one is greater. The following conventions apply when
comparing two vectors.

Definition 4. Let X = (x0, x1, · · · , xi, · · · , xm) and Y = (y0, y1, · · · , yi, · · · , yn) be two vectors in N
(the collection of natural numbers) with m ≥ 0 and n ≥ 0, respectively. Then, defined the lexicographic
order for the two vectors as follows:

1. X = Y, if m = n and xi = yi for all 0 ≤ i ≤ m.
2. X < Y if and only if either of the following is true.

(a) ∃k, 0 ≤ k ≤ min(m, n), xi = yi for i < k, xk < yk.
(b) xi = yi for 0 ≤ i ≤ m and m < n.

Definition 5. Let Z1 = (X0, X1, · · · , Xi, · · · , Xm) and Z2 = (Y0, Y1, · · · , Yj, · · · , Yn) be two vectors with
m ≥ 0 and n ≥ 0 respectively, with each Xi, Yj, i = 0, 1, · · · , m, j = 0, 1, · · · , n being a vector in N (the collection
of natural numbers). Then, defined the lexicographic order for the two vectors as follows:

1. Z1 = Z2, if m = n and Xi = Yi for all 0 ≤ i ≤ m.
2. Z1 < Z2 if and only if either of the following is true.

(a) ∃k, 0 ≤ k ≤ min(m, n), Xi = Yi for i < k, xk < yk.
(b) Xi = Yi for 0 ≤ i ≤ m and m < n.

Definition 6. Let A = (ai,j)n×n and B = (bi,j)n×n be two matrices with ai,j, bi,j = 0, 1 for i, j = 1, 2, · · · , n.
Then, defined the lexicographic order for the two matrix as follows:

1. A = B, if ai,j = bi,j for all 1 ≤ i, j ≤ n.
2. A < B, if ∃i, j, 1 ≤ i, j ≤ n satisfying conditions ak,l = bk,l for all k ≤ i, l ≤ j, and ai,j+1 < bi,j+1 with

j < n or ai+1,1 < bi+1,1 with i < n, j = n.

Given a matrix X, if there is at least one positive element and the remaining elements are 0, we call X > 0.
Otherwise, if all elements of X are 0, we call X = 0.

Definition 7. Let G =< V(G), E(G) > be a simple digraph with n nodes whose adjacency matrix is
A(G) = (ai,j)n×n (see (1)). To concatenate the rows of A(G) according to the following order a1,1, a1,2, · · · ,
a1,n, a2,1, a2,2, · · · , a2,n, · · · ,ai,1, ai,2, · · · , ai,n, · · · , an,1, an,2, · · · , an,n forms a corresponding binary number
a1,1a1,2 · · · , a1,n a2,1a2,2 · · · a2,n · · · ai,1ai,2 · · · ai,n · · · an,1an,2· · · an,n, which is called a labeling of G, denoted
by C(G).
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A(G) =



→a1,1 →a1,2 →a1,3 · · · · · · · · · · · · →a1,n
→a2,1 →a2,2 →a2,3 · · · · · · · · · · · · →a2,n

↓
... · · · . . . · · · · · · · · · · · · ↓

...

↓
... · · · · · · . . . · · · · · · · · · ↓

...
→ai,1 →ai,2 · · · →ai,i−1 →ai,i →ai,i+1 · · · →ai,n

↓
... · · · · · · · · · · · · . . . · · · ↓

...

↓
... · · · · · · · · · · · · · · · . . . ↓

...
→an,1 →an,2 →an,3 · · · · · · · · · →an,n−1 →an,n


(1)

The first row of A(G) is the labeling piece 1 of C(G), denoted by C1(G). Similarly, the second
row is the labeling piece 2 of C(G), denoted by C2(G). · · · . The nth row is the labeling piece n of C(G),
denoted by Cn(G). It is clear that C(G) = C1(G)C2(G) · · ·Cn(G).

A permutation π of the vertices of G is an arrangement of the n vertices without repetition.
The number of permutations of the vertices of G is n!. Clearly each distinct permutation π of the
n vertices of V(G) defines a different adjacency matrix. Given a permutation π, one can obtain
a labeling C(G) corresponding to π by Definition 7. Denote by L(G) the collection of all labelings of G.

For every C1(G), C2(G) ∈ L(G), assume that C1(G) = i1i2 · · · im, C2(G) = j1j2 · · · jn with
i1, i2, · · · , im, j1, j2, · · · , jn = 0 or 1. Let X = (i1, i2, · · · , im) and Y = (j1, j2, · · · , · · · jn). By Definition 4,
if X > Y, then we call C1(G) > C2(G). Otherwise, if X < Y, then we call C1(G) < C2(G). Otherwise,
if X = Y, then we call C1(G) = C2(G).

It is clear that (L(G), 6) is a well-ordered set, where 6 denotes the less-than-or-equal-to binary
relation on the set L(G) expressed as above. By the well-ordering theorem, it follows that L(G) has
a minimum and maximum element, denoted by Cmin(G) and Cmax(G) respectively.

The two permutations of the n vertices of G corresponding to Cmin(G) and Cmax(G)

are the minimum and maximum node sequence, denoted by MinQ(G) and MaxQ(G), respectively.
Likewise, the two adjacency matrices of G corresponding to Cmin(G) and Cmax(G) are the
minimum and maximum canonical label matrix, denoted by Amin(G) and Amax(G), individually.

C1(G), C2(G), · · · , Cn(G) corresponding to Amin(G) are minimum canonical label piece 1, 2, · · · , n
of canonical labeling C(G), denoted by C1

min(G), C2
min(G), · · · , Cn

min(G), respectively. Likewise, C1(G),
C2(G), · · · , Cn(G) corresponding to Amax(G) are maximum canonical label piece 1, 2, · · · , n of canonical
labeling C(G), denoted by C1

max(G), C2
max(G), · · · , Cn

max(G), respectively.
Based on the above definitions, the following equations hold.

Cmin(G) = C1
min(G)C2

min(G) · · ·Cn
min(G) (2)

Cmax(G) = C1
max(G)C2

max(G) · · ·Cn
max(G) (3)

Theorem 1. Let G =< V(G), E(G) > and H =< V(H), E(H) > be two digraphs with n nodes.
Their adjacency matrices are A(G) and A(H) respectively. G ∼= H if and only if Cmax(G)=Cmax(H).

Definition 8. Let G =< V(G), E(G) > be a simple digraph with n nodes. The complement G of G is a digraph
satisfying the following condition: for all u, v ∈ V(G), u→ v ∈ E(G) if and only if u→ v /∈ E(G).

Lemma 1. Let G =< V(G), E(G) > be a simple digraph with n nodes. G =< V(G), E(G) > is the
complement digraph of G. We have C(G) = C(G) and C(G) = C(G).

Proof. The adjacency matrices of G and G satisfy the condition
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A(G) + A(G) = J =



0 1 · · · · · · 1

1 0 1 · · ·
...

... 1 0 1
...

...
... 1

. . . 1
1 · · · · · · 1 0


.

J is a n× n matrix of zeros and ones whose main diagonal elements are 0, and all other elements
are 1. By A(G) = J − A(G) and the complement graph G, we have C(G) = C(G). Similarly, by
A(G) = J− A(G), we have C(G) = C(G) for the complement graph G of a graph G.

Theorem 2. Let G =< V(G), E(G) > be a simple digraph with n nodes. G =< V(G), E(G) > is the
complement graph of G. We have

Cmin(G) = Cmax(G) (4)

Cmax(G) = Cmin(G) (5)

Cmin(G) = Cmax(G) (6)

Cmax(G) = Cmin(G) (7)

Proof. By Lemma 1, it follows that C(G) = C(G). Clearly if the k-bit of C(G) is 0, the k-bit of C(G)

is 1, and vice versa. Therefore, one can easily get the Cmax(G) by performing a complement operation
on Cmin(G). Similarly, by Lemma 1, the equality C(G) = C(G) holds. Clearly if the k-bit of C(G) is
0, the k-bit of C(G) is 1, and vice versa. Accordingly, one can obtain the Cmax(G) of G by performing
a complement operation on Cmin(G).

Because C(Kn) is a constant binary number, to minimize C(G) one must maximize C(G). On the
contrary, to maximize C(G), one must maximize C(G). Similarly, to minimize C(G) one must maximize
C(G). Contrarily to maximize C(G), one must minimize C(G). From the above analysis, the following
equations hold.

Cmin(G) = Cmax(G). Cmax(G) = Cmin(G).

Cmin(G) = Cmax(G). Cmax(G) = Cmin(G).

By Theorem 2, it can be observed that if one has calculated the Cmax(G), one can easily get Cmin(G).
Moreover, the calculation methods of Cmax(G) and Cmax(G) are same.

The paper focuses on the development of efficient methods to calculate Cmax(G). A MaxEm digraph
is a digraph with the greatest C(G) that corresponds to a permutation of the vertices.

For every u ∈ V(G), the number of nodes with outdegree d+G(u) is the outdegree multiplicity of
u, denoted by dm+

G(u). In addition, unless otherwise specified, throughout this paper, the outdegree
sequence is non-increasing.

Definition 9. Let G =< V(G), E(G) > be a simple digraph with n nodes. The open neighborhood,
in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a vertex u in G
are subdigraphs of G defined as

N (u) = (V(N (u)), E(N (u))), N− (u) = (V(N− (u)), E(N− (u))),

N+ (u) = (V(N+ (u)), E(N+ (u))), N+−(u) = (V(N+−(u)), E(N+−(u))),

N++(u) = (V(N++(u)), E(N++(u))) (8)
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where

V(N (u)) = {v ∈ V(G)− u |v→ u ∈ E(G)∨ u→ v ∈ E(G)}, (9)

E(N (u)) = {v→ w ∈ E(G) |v, w ∈ V(N(u))},
V(N− (u)) = {v ∈ V(G)− u |v→ u ∈ E(G)∧ u→ v /∈ E(G)}, (10)

E(N− (u)) = {v→ w ∈ E(G) |v, w ∈ V(N−(u))},
V(N+ (u)) = {v ∈ V(G)− u |u→ v ∈ E(G)∧ v→ u /∈ E(G)}, (11)

E(N+ (u)) = {v→ w ∈ E(G) |v, w ∈ V(N+(u))},
V(N+−(u)) = {v ∈ V(G)− u |u→ v ∈ E(G)∧ v→ u ∈ E(G)}, (12)

E(N+− (u)) = {v→ w ∈ E(G) |v, w ∈ V(N+−(u))}.
V(N++(u)) = V(N+−(u))∪V(N+(u)), (13)

E(N++ (u)) = {v→ w ∈ E(G) |v, w ∈ V(N++(u))}.

The open k-neighborhood, k-in-neighborhood, k-out-neighborhood,k-outin-neighborhood, and k-mix-neighborhood
subdigraphs of u with k > 2 are subdigraphs of G defined as

Nk (u) = (V(Nk (u)), E(Nk (u))), N−k (u) = (V(N−k (u)), E(N−k (u))),

N+
k (u) = (V(N+

k (u)), E(N+
k (u))), N+−

k (u) = (V(N+−
k (u)), E(N+−

k (u))),

N++
k (u) = (V(N++

k (u)), E(N++
k (u)))

where

V(Nk (u)) = {v ∈ V(G)− u |d(u, v) 6 k∨ d(v, u) 6 k}, (14)

E(Nk (u)) = {v→ w ∈ E(G) |v, w ∈ V(Nk(u))},
V(N−k (u)) = {v ∈ V(G)− u |d(v, u) 6 k}, (15)

E(N−k (u)) = {v→ w ∈ E(G) |v, w ∈ V(N−k (u))},
V(N+

k (u)) = {v ∈ V(G)− u |d(u, v) 6 k}, (16)

E(N+
k (u)) = {v→ w ∈ E(G) |v, w ∈ V(N+

k (u))},
V(N+−

k (u)) = {v ∈ V(G)− u |d(u, v) = d(v, u) 6 k}, (17)

E(N+−
k (u)) = {v→ w ∈ E(G) |v, w ∈ V(N+−

k (u))}.
V(N++

k (u)) = V(N+−
k (u))∪V(N+

k (u)), (18)

E(N++
k (u)) = {v→ w ∈ E(G) |v, w ∈ V(N++

k (u))}.

Definition 10. Let G =< V(G), E(G) > be a simple digraph with n nodes. The close neighborhood,
in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a vertex u
in G are subdigraphs of G defined as

N [u] = (V(N [u]), E(N [u])), N− [u] = (V(N− [u]), E(N− [u])),

N+ [u] = (V(N+ [u]), E(N+ [u])), N+−[u] = (V(N+−[u]), E(N+−[u])),

N++[u] = (V(N++[u]), E(N++[u]))
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where

V(N [u]) = V(N (u))∪ {u}, E(N [u]) = {v→ w ∈ E(G)|v, w ∈ V(N [u])}, (19)

V(N− [u]) = V(N− (u))∪ {u}, E(N− [u]) = {v→ w ∈ E(G)|v, w ∈ V(N− [u])}, (20)

V(N+ [u]) = V(N+ (u))∪ {u}, E(N+ [u]) = {v→ w ∈ E(G)|v, w ∈ V(N+ [u])}, (21)

V(N+−[u]) = V(N+−(u))∪ {u}, E(N+−[u]) = {v→ w ∈ E(G)|v, w ∈ V(N+−[u])}, (22)

V(N++[u]) = V(N+−[u])∪V(N+[u]), E(N++[u]) = {v→ w ∈ E(G)|v, w ∈ V(N++[u])}. (23)

The close k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood
subdigraphs of u with k > 2 are subdigraphs of G defined as

Nk [u] = (V(Nk [u]), E(Nk [u])), N−k [u] = (V(N−k [u]), E(N−k [u])),

N+
k [u] = (V(N+

k [u]), E(N+
k [u])), N+−

k [u] = (V(N+−
k [u]), E(N+−

k [u])),

N++
k [u] = (V(N++

k [u]), E(N++
k [u]))

where

V(Nk [u]) = V(Nk (u))∪ {u}, E(Nk [u]) = {v→ w ∈ E(G)|v, w ∈ V(Nk [u])}, (24)

V(N−k [u]) = V(N−k (u))∪ {u}, E(N−k [u]) = {v→ w ∈ E(G)|v, w ∈ V(N−k [u])}, (25)

V(N+
k [u]) = V(N+

k (u))∪ {u}, E(N−k [u]) = {v→ w ∈ E(G)|v, w ∈ V(N+
k [u])}, (26)

V(N+−
k [u]) = V(N+−

k (u))∪ {u}, E(N+−
k [u]) = {v→ w ∈ E(G)|v, w ∈ V(N+−

k [u])}, (27)

V(N++
k [u]) = V(N+−

k [u])∪V(N+
k [u]), E(N++

k [u]) = {v→ w ∈ E(G)|v, w ∈ V(N++
k [u])}. (28)

Definition 11. Let G =< V(G), E(G) > be a simple digraph with n nodes. The open neighborhood,
in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a nodes set
Q ⊆ V(G) are subdigraphs of G defined as

N (Q) = (V(N (Q)), E(N (Q))), N− (Q) = (V(N− (Q)), E(N− (Q))),

N+ (Q) = (V(N+ (Q)), E(N+ (Q))), N+−(Q) = (V(N+−(Q)), E(N+−(Q))),

N++(Q) = (V(N++(Q)), E(N++(Q)))

where

V(N (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ (v→ u ∈ E(G)∨ u→ v ∈ E(G))}, (29)

E(N (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N(Q))},
V(N− (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ v→ u ∈ E(G)∧ u→ v /∈ E(G)}, (30)

E(N− (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N−(Q))},
V(N+ (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ u→ v ∈ E(G)∧ v→ u /∈ E(G)}, (31)

E(N+ (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N+(Q))},
V(N+−(Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ u→ v ∈ E(G)∧ v→ u ∈ E(G)}, (32)

E(N−+ (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N+−(Q))},
V(N++(Q)) = V(N+−(Q))∪V(N+(Q)), (33)

E(N++ (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N++(Q))}.
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The open k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood
subdigraphs of Q with k > 2 are subdigraphs of G defined as

Nk (Q) = (V(Nk (Q)), E(Nk (Q))), N−k (Q) = (V(N−k (Q)), E(N−k (Q))),

N+
k (Q) = (V(N+

k (Q)), E(N+
k (Q))), N+−

k (Q) = (V(N+−
k (Q)), E(N+−

k (Q))),

N++
k (Q) = (V(N++

k (Q)), E(N++
k (Q)))

where

V(Nk (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ (d(v, u) 6 k∨ d(u, v) 6 k)}, (34)

E(Nk (Q)) = {v→ w ∈ E(G) |v, w ∈ V(Nk(Q))},
V(N−k (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ d(v, u) 6 k}, (35)

E(N−k (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N−k (Q))},
V(N+

k (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ d(u, v) 6 k}, (36)

E(N+
k (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N+

k (Q))},
V(N+−

k (Q)) = {v ∈ V(G)−Q |∃u ∈ Q∧ d(u, v) = d(v, u) 6 k}, (37)

E(N+−
k (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N+−

k (Q))},
V(N++

k (Q)) = V(N+−
k (Q))∪V(N+

k (Q)), (38)

E(N++
k (Q)) = {v→ w ∈ E(G) |v, w ∈ V(N++

k (Q))}.

Definition 12. Let G =< V(G), E(G) > be a simple digraph with n nodes. The close neighborhood,
in-neighborhood, out-neighborhood, outin-neighborhood, and mix-neighborhood subdigraphs of a nodes set
Q ⊆ V(G) are subdigraphs of G defined as

N [Q] = (V(N [Q]), E(N [Q])), N− [Q] = (V(N− [Q]), E(N− [Q])),

N+ [Q] = (V(N+ [Q]), E(N+ [Q])), N+−[Q] = (V(N+−[Q]), E(N+−[Q])),

N++[Q] = (V(N++[Q]), E(N++[Q]))

where

V(N [Q]) = V(N (Q)) ∪Q, E(N [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N [Q])}, (39)

V(N− [Q]) = V(N− (Q)) ∪Q, E(N− [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N− [Q])}, (40)

V(N+ [Q]) = V(N+ (Q)) ∪Q, E(N+ [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N+ [Q])}, (41)

V(N+−[Q]) = V(N+−(Q)) ∪Q, E(N+−[Q]) = {v→ w ∈ E(G)|v, w ∈ V(N+−[Q])}, (42)

V(N++[Q]) = V(N+−[Q]) ∪V(N+[Q]), E(N++[Q]) = {v→ w ∈ E(G)|v, w ∈ V(N++[Q])}. (43)

The close k-neighborhood, k-in-neighborhood, k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood
subdigraphs of Q with k > 2 are subdigraphs of G defined as

Nk [Q] = (V(Nk [Q]), E(Nk [Q])), N−k [Q] = (V(N−k [Q]), E(N−k [Q])),

N+
k [Q] = (V(N+

k [Q]), E(N+
k [Q])), N+−

k [Q] = (V(N+−
k [Q]), E(N+−

k [Q])),

N++
k [Q] = (V(N++

k [Q]), E(N++
k [Q]))



Entropy 2017, 19, 79 10 of 50

where

V(Nk [Q]) = V(Nk (Q)) ∪Q, E(Nk [Q]) = {v→ w ∈ E(G)|v, w ∈ V(Nk [Q])}, (44)

V(N−k [Q]) = V(N−k (Q)) ∪Q, E(N−k [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N−k [Q])}, (45)

V(N+
k [Q]) = V(N+

k (Q)) ∪Q, E(N+
k [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N+

k [Q])}, (46)

V(N+−
k [Q]) = V(N+−

k (Q)) ∪Q, E(N+−
k [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N+−

k [Q])}, (47)

V(N++
k [Q]) = V(N+−

k [Q]) ∪V(N+
k [Q]), E(N++

k [Q]) = {v→ w ∈ E(G)|v, w ∈ V(N++
k [Q])}. (48)

In the following section, unless otherwise specified, each k-neighborhood, k-in-neighborhood,
k-out-neighborhood, k-outin-neighborhood, and k-mix-neighborhood subdigraphs are closed.

A digraph is connected if its underlying graph is connected. For k = 1, we omit the subscript 1
and let N++(u) = N++

1 (u), N++[u] = N++
1 [u], N++(Q) = N++

1 (Q), and N++[Q] = N++
1 [Q].

Definition 13. Let G =< V(G), E(G) > be a simple digraph with n nodes. Suppose that H ⊆ G
and u ∈ V(H). We denote by Nk

H(u) the open k-neighborhood subdigraph of u in H, by Nk
H [u] the

close k− neighborhood subdigraph of u in H, by Nk++
H (u) the open k-mix-neighborhood subdigraph of

u in H, and by Nk++
H [u] the close k-mix-neighborhood subdigraph of u in H.

For k = 1, we omit the superscript 1 and let NH(u) = N1
H(u), NH [u] = N1

H [u], N++
H (u) = N1++

H (u),
and N++

H [u] = N1++
H [u].

Definition 14. Let G =< V(G), E(G) > be a simple connected digraph with n nodes. For every u ∈ V(G),
there exists a positive integer k satisfying conditions Nk−1[u] ⊂ G and Nk[u] = G. The value of k is called the
di f f usion radius of u denoted by ρG[u], and the subscript G can be omitted when no ambiguity can arise.

By Definition 14, it is clear that Nρ[u][u] = G for every u in G.

Definition 15. Let G =< V(G), E(G) > be a simple connected digraph with n nodes. For every u ∈ V(G),
there exists a positive integer k satisfying conditions N++

k−1[u] ⊂ G and N++
k [u] = N++

k−1[u]. The value of k is
called the mix di f f usion radius of u denoted by ρ++

G [u], and the subscript G can be omitted when no ambiguity
can arise.

Definition 16. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close k neighborhood
subdigraph is Nk[u] with k = 1, 2, · · · . A node in N[u] is a one di f f usion node of u. For k > 1, a node v in
Nk[u] satisfying condition v /∈ Nk−1[u] is a k di f f usion node of u.

Definition 17. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close
k-mix-neighborhood subdigraph is N++

k [u] with k = 1, 2, · · · . A node in N++[u] is a one mix di f f usion node
of u. For k > 1, a node v in N++

k [u] satisfying condition v /∈ N++
k−1[u] is a k mix di f f usion node of u.

Every node v in G is assigned an attribute m_NearestNode whose function, described in Section 3.1.2.

Definition 18. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close k neighborhood
subdigraph is Nk[u] with k = 1, 2, · · · . Assume that H is a connected component of Nk[u] with k > 1. Assume
that Vm ⊆ V(H) with m = 0, 1, 2, · · · , t, where V0 is in ascending order of attribute m_NearestNode with
v − > m_NearestNode > 1 for every v ∈ V0, and V1, V2, · · · , Vt contain the 1, 2, · · · , k di f f usion nodes of u
respectively, satisfying conditions V0 ∪V1 ∪ · · · ∪Vt = V(H) and Vi ∩Vj = ∅ for i 6= j, i, j = 0, 1, · · · , t.

We define d+σ (H) = (d+Nk[u]
(V0), · · · , d+Nk[u]

(Vi), · · · , d+Nk[u]
(Vt)) to be the di f f usion outdegree sequence

of H where d+Nk[u]
(Vi) with i = 0, 1, · · · , t are the outdegree sequences in descending order induced by all vertices

in Vi respectively.
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Definition 19. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close
k-mix-neighborhood subdigraph is N++

k [u] with k = 1, 2, · · · . Assume that H is a connected component
of N++

k [u] with k > 1. Assume that Vm ⊆ V(H) with m = 0, 1, 2, · · · , t, where V0 is in ascending order
of attribute m_NearestNode with v − > m_NearestNode > 1 for every v ∈ V0, and V1, V2, · · · , Vt contain
the 1, 2, · · · , k mix di f f usion nodes of u respectively, satisfying conditions V0 ∪V1 ∪ · · · ∪Vt = V(H) and
Vi ∩Vj = ∅ for i 6= j, i, j = 0, 1, · · · , t.

We define d+τ (H) = (d+
N++

k [u]
(V0), · · · , d+

N++
k [u]

(Vi), · · · , d+
N++

k [u]
(Vt)) to be the mix di f f usion outdegree

sequence of H where d+
N++

k [u]
(Vi) with i = 0, 1, · · · , t are the outdegree sequences in descending order induced

by all vertices in Vi respectively.

Definition 20. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close k neighborhood
subdigraph is Nk[u] with k = 1, 2, · · · . Assume that Nk[u] has p connected components H1, H2, · · · , Hp with
di f f usion outdegree sequences d+σ (H1), d+σ (H2), · · · , d+σ (Hp) respectively, satisfying conditions d+σ (H1) >
d+σ (H2) > · · · > d+σ (Hp).

Define dσ
G[Nk(u)] = (dσ(H1), dσ(H2), · · · , dσ(Hp)) to be the entire di f f usion outdegree sequence of

Nk(u) pertaining to u in G, and omit the subscript G when no ambiguity can arise.

Definition 21. Let G =< V(G), E(G) > be a simple digraph and u be a node in G whose close k-mix
neighborhood subdigraph is N++

k [u] with k = 1, 2, · · · . Assume that N++
k [u] has p connected components H1,

H2, · · · , Hp with mix di f f usion outdegree sequences d+τ (H1), d+τ (H2), · · · , d+τ (Hp) respectively, satisfying
conditions d+τ (H1) > d+τ (H2) > · · · > d+τ (Hp).

Define dτ
G[N

++
k [u]] = (d+τ (H1), d+σ (H2), · · · , d+τ (Hp)) to be the entire mix diffusion outdegree sequence

of N++
k [u] pertaining to u in G, and omit the subscript G when no ambiguity can arise.

Definition 22. Let G =< V(G), E(G) > be a simple digraph with n nodes. For every u, v ∈ V(G)

with u 6= v and , let N++
1 [u], N++

2 [u], · · · , N++
ρ++[u][u] be the close 1, 2, · · · , ρ++[u] mix-neighborhood

subdigraph of u with entire mix di f f usion outdegree sequences dτ[N++
1 [u]], dτ[N++

2 [u]], · · · , dτ[N++
ρ++[u][u]],

respectively. Let N++
1 [v], N++

2 [v], · · · , N++
ρ++[v][v] be the 1, 2, · · · , ρ++[v] mix-neighborhood subdigraph of v

with entire mix di f f usion outdegree sequences dτ[N++
1 [v]], dτ[N++

2 [v]], · · · , dτ[N++
ρ++[v][v]], respectively.

Let Z1 = (dτ[N++
1 [u]], dτ[N++

2 [u]], · · · , dτ[N++
ρ++[u][u]]) and Z2 = (dτ[N++

1 [v]], dτ[N++
2 [v]], · · · ,

dτ[N++
ρ++[v][v]]) . If Z1 > Z2, we write u � v with respect to G. Otherwise, if Z1 < Z2, we write u ≺ v

with respect to G. Otherwise, if Z1 = Z2, we write u � v with respect to G, and omit the symbol G when no
ambiguity can arise. Denote u � v or u � v by u < v and u ≺ v or u � v by u 4 v.

It is clear that �, ≺, �, < define a binary relation on the set of nodes V(G). By Definition 22,
for every u, v ∈ V(G) with u 6= v, one of the following statements is true: (1) u � v. (2) u ≺ v. (3) u � v.

It can be shown that (V(G), <) is a well-ordered set, where < denotes the binary relation u < v
on the set V(G). By the well-ordering theorem, it follows that there exists a maximum and minimum
element in V(G), denoted by G<

max and G<
min respectively with G<

max ∈ V(G) and G<
min ∈ V(G).

The symbol < can be omitted if no confusion arises. The following Lemmas 2–4 immediately follow
from Definition 22.

Lemma 2. Let G =< V(G), E(G) > be a simple digraph with n nodes. For every u, v ∈ V(G) with u 6= v,
if the symbol < denotes the binary relation u < v on the set V(G), then, all of the nodes in G form a single chain
L on G: v1 < v2 < · · · < vi < · · · < vn with vi ∈ V(G), i = 1, 2, · · · , n.

Lemma 3. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. For every u, v ∈ S+(G) with u 6= v, if the symbol < denotes the binary relation u < v on the
set S+(G), then, all of the nodes in S+(G) form a single chain L on G: v1 < v2 < · · · < vi < · · · < vs with
vi ∈ S+(G), i = 1, 2, · · · , s.
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Lemma 4. Let G =< V(G), E(G) > be a simple digraph with n nodes. For every u ∈ V(G), suppose that
N++

k [u] is the close k mix-neighborhood subdigraph of u in G. Let S+(N++
k [u]) = {v ∈ V(N++

k [u])| d+(v)
= ∆+(N++

k [u]) = t}.
For every v, w ∈ S+(N++

k [u]) with v 6= w, if the symbol < denotes the binary relation v < w on the set
S+(N++

k [u]), then, all of the nodes in S+(N++
k [u]) form a single chain L on N++

k [u]: v1 < v2 < · · · < vi <
· · · < vt with vi ∈ S+(N++

k [u]), i = 1, 2, · · · , t.

The conclusions in the following Propositions 1 and 2 are obvious by Definitions 4, 5, and 22.

Proposition 1. Let G =< V(G), E(G) > be a simple digraph with n nodes. For every u, v ∈ V(G)

with u 6= v and , let N++
1 [u], N++

2 [u], · · · , N++
ρ++[u][u] be the close 1, 2, · · · , ρ++[u] mix-neighborhood

subdigraph of u with entire mix di f f usion outdegree sequences dτ[N++
1 [u]], dτ[N++

2 [u]], · · · , dτ[N++
ρ++[u][u]],

respectively. Let N++
1 [v], N++

2 [v], · · · , N++
ρ++[v][v] be the close 1, 2, · · · , ρ++[v] mix-neighborhood subdigraph

of v with entire mix di f f usion outdegree sequences dτ[N++
1 [v]], dτ[N++

2 [v]], · · · , dτ[N++
ρ++[v][v]], respectively.

Let Z1 = (dτ[N++
1 [u]], dτ[N++

2 [u]], · · · , dτ[N++
ρ++[u][u]]) = (X1, Y1) with X1 = (dτ[N++

1 [u]], dτ[N++
2 [u]],

· · · , dτ[N++
k [u]]) and Y1 = (dτ[N++

k+1[u]], dτ[N++
k+2[u]], · · · , dτ[N++

ρ++[u][u]]) . Let Z2 = (dτ[N++
1 [v]],

dτ[N++
2 [v]], · · · , dτ[N++

ρ++[v][v]]) = (X2, Y2) with X2 = (dτ[N++
1 [v]], dτ[N++

2 [v]], · · · , dτ[N++
k [v]]) and

Y2 = (dτ[N++
k+1[v]], dτ[N++

k+2[v]], · · · , dτ[N++
ρ++[v][v]]) . If X1 = X2, then Y1 > Y2 leads to Z1 > Z2. Otherwise,

Y1 < Y2 leads to Z1 < Z2. Otherwise, Y1 = Y2 leads to Z1 = Z2. Accordingly, it follows that if X1 = X2,
then Y1 > Y2 leads to u � v. Otherwise, Y1 < Y2 leads to u ≺ v. Otherwise, Y1 = Y2 leads to u � v.

Proposition 2. Let G =< V(G), E(G) > be a simple digraph with n nodes. For every u, v ∈ V(G)

with u 6= v and , let N++
1 [u], N++

2 [u], · · · , N++
ρ++[u][u] be the close 1, 2, · · · , ρ++[u] mix-neighborhood

subdigraph of u with entire mix di f f usion outdegree sequences dτ[N++
1 [u]], dτ[N++

2 [u]], · · · , dτ[N++
ρ++[u][u]],

respectively. Let N++
1 [v], N++

2 [v], · · · , N++
ρ++[v][v] be the close 1, 2, · · · , ρ++[v] mix-neighborhood subdigraph

of v with entire mix di f f usion outdegree sequences dτ[N++
1 [v]], dτ[N++

2 [v]], · · · , dτ[N++
ρ++[v][v]], respectively.

If dτ[N++
1 [u]] = dτ[N++

1 [v]], dτ[N++
2 [u]] = dτ[N++

2 [v]], · · · , dτ[N++
k−1[u]] = dτ[N++

k−1[v]], dτ[N++
k [u]] >

dτ[N++
k [v]], then u � v with respect to G (see Definition 22).

3. Results and Discussion

Let G =< V(G), E(G) > be a simple digraph with n nodes. In the section, we will study
how to compute the maximum element Cmax(G) of the digraph G. Without loss of generality,
let MaxQ(G) = (u1, u2, · · · , ui, · · · , un). Throughout the paper, our algorithms mentioned use an
adjacency list to store the digraph G.

3.1. Compute Cmax(G) of the Digraph G

In this subsection, we examine how to compute the maximum element Cmax(G) of a digraph G.
What approach should one take to calculate the maximum element Cmax(G)? From the connection
between Cmax(G) and Amax(G), any method for calculating Cmax(G) must first obtain the permutation
MaxQ(G) corresponding to the adjacency matrix Amax(G).

3.1.1. Compute the First Node u1 Added into MaxQ(G)

In this sub-subsection, we examine how to compute the first vertex u1 of MaxQ(G). Here, assume
that G is a connected digraph of order n > 1. Note that to maximize C(G) one must let a1,2 = 1 (see (1)).
a1,2 = 1 can always be achieved since G is connected with order n > 1. Furthermore, to obtain Cmax(G),
one must select u1 from S+(G). Only by so doing, there can be more “1”s in the high bits of C1

max(G)

such that ensures maximum C(G). Otherwise, C(G) cannot reach the maximum value. From preceding
discussion, we get the following result.
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Proposition 3. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G)}. Then the selection of u1 of MaxQ(G) is from S+(G) for obtaining Cmax(G).

Proof. Let us assume that t = ∆+(G). By (1), it follows that C1
max(G) = a1,1a1,2a1,3 · · · a1,n. Since

∆+(G) = t, it can be shown that a1,1 = 0, a1,2 = 1, · · · , a1,t+1 = 1 for C1
max(G). Therefore, the conclusion

of Proposition 3 holds.

Proposition 4. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G)}. If |S+(G)| = 1 with v ∈ S+(G), then u1 = v for MaxQ(G).

Proof. By Proposition 3, it immediately follows that the selection of u1 of MaxQ(G) is from S+(G) for
obtaining Cmax(G). Since |S+(G)| = 1, therefore, u1 = v for MaxQ(G).

Lemma 5. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s} with |S+(G)| > 1. Let S1 be the set of all vertices v ∈ S+(G) satisfying |V(N+−(v))| > 0.
Then, u1 ∈ S1 for MaxQ(G).

Proof. By Proposition 3, clearly u1 ∈ S+(G) is true. Since G is a simple digraph with n nodes,
then C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0 and C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,2 = 0 (see (1)).

Since ∆+(G) = s, it follows that a1,2 = a1,3 = · · · = a1,s+1 = 1 and a1,s+2 = a1,s+3 = · · · = a1,n = 0
for C1

max(G).
If u1 /∈ S1, one can assert that u1 ∈ S+(G)− S1. As a result, |V(N+−(u1))| = 0 holds by the

condition of Lemma 5. Therefore, C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 0 and a2,2 = 0.

Otherwise, if u1 ∈ S1, then |V(N+−(u1))| > 0 holds by the condition of Lemma 5. Therefore,
C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1 and a2,2 = 0.
By comparing the above two results obtained for C2

max(G), we have that u1 ∈ S1 holds
for MaxQ(G).

Theorem 3. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s} with |S+(G)| > 1. Assume that v ∈ S+(G) have the open outin-neighborhood subdigraph
N+−(v) with |V(N+−(v))| > 0 (see Definition 9). Suppose that there exists a node v1 ∈ V(N+−(v))
satisfying condition d+H(v1) = ∆+(H) where H = N++(v).

For each w ∈ S+(G)∧w 6= v with |V(N+−(w))| > 0, suppose that there exists a node w1 ∈ V(N+−(w))

satisfying condition d+M(w1) = ∆+(M) where M = N++(w). If condition d+H(v1) > d+M(w1) is satisfied,
then u1 = v for MaxQ(G).

Proof. Since G is a simple digraph with n nodes, it follows that C1
max(G) = a1,1a1,2a1,3 · · · a1,n with

a1,1 = 0 and C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,2 = 0 (see (1)). Since ∆+(G) = s, it follows that

a1,2 = a1,3 = · · · = a1,s+1 = 1 for C1
max(G).

By the conditions of Theorem 3, clearly d+H(v1) = ∆+(H) and d+M(w1) = ∆+(M). For simplicity,
let us assume that r = d+H(v1), t = d+M(w1).

If conditions r = d+H(v1) > t = d+M(w1) hold for each w ∈ S+(G) ∧ w 6= v and let the u1 = w,
then at most C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0, a2,3 = a2,4 = · · · = a2,t+2 = 1,
and a2,t+3 = a2,t+4 = · · · = a2,s+1 = a2,s+2 = · · · = a2,n = 0 since there exists a node w1 ∈ V(N+−(w))

satisfying condition d+M(w1) = ∆+(M) where M = N++(w).
Otherwise, if let the u1 = v, then C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0, a2,3 = a2,4 =

· · · = a2,r+2 = 1, and a2,r+3 = a2,r+4 = · · · = a2,s+1 = a2,s+2 = · · · = a2,n = 0 since there exists a node
v1 ∈ V(N+−(v)) satisfying condition d+H(v1) = ∆+(H) where H = N++(v).

Since r > t, Theorem 3 holds by comparing the above two results of C2
max(G) obtained.
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Theorem 4. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s} with |S+(G)| > 1. Assume that v ∈ S+(G) have the open outin-neighborhood subdigraph
N+−(v) with |V(N+−(v))| > 0 (see Definition 9). Suppose that there exists a node v1 ∈ V(N+−(v))
satisfying condition d+H(v1) = ∆+(H) where H = N++(v).

For each w ∈ S+(G)∧w 6= v with |V(N+−(w))| > 0, suppose that there exists a node w1 ∈ V(N+−(w))

satisfying condition d+M(w1) = ∆+(M) where M = N++(w). If conditions d+H(v1) = d+M(w1) and d+G(v1) >

d+G(w1) hold, then u1 = v for MaxQ(G).

Proof. Since G is a simple digraph with n nodes, it follows that C1
max(G) = a1,1a1,2a1,3 · · · a1,n with

a1,1 = 0 and C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,2 = 0(see (1)). Since ∆+(G) = s, one can assert that

a1,2 = a1,3 = · · · = a1,s+1 = 1 and a1,s+2 = a1,s+3 = · · · = a1,n = 0 for C1
max(G).

By the conditions of Theorem 4, clearly d+H(v1) = d+M(w1) = ∆+(H). For simplicity, let us assume
that t = d+H(v1) = d+M(w1) and l = d+G(v1) > m = d+G(w1).

If conditions d+G(v1) > d+G(w1) hold for each w ∈ S(G)∧w 6= v and let the u1 = w, then at most
C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0, a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 = a2,t+4 =

· · · = a2,s+1 = 0, a2,s+2 = a2,s+3 = · · ·=a2,s+m−t = 1, and a2,s+m−t+1 = a2,s+m−t+2 = · · ·=a2,n = 0 since
the node w1 ∈ V(N+−(w)) satisfying condition d+M(w1) = ∆+(M) where M = N++(w) (see (1)).

On the contrary, if let the u1 = v, then C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0,

a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 = a2,t+4 = · · · = a2,s+1 = 0, a2,s+2 = a2,s+3 = · · ·=a2,s+l−t = 1,
a2,s+l−t+1 = a2,s+l−t+2 = · · ·=a2,n = 0 since the node v1 ∈ V(N+−(v)) satisfying condition
d+H(v1) = ∆+(H) where H = N++(v) (see (1)).

Since l > m, then the binary number a2,s+2a2,s+3 · · · a2,s+l−t > the binary number a2,s+2a2,s+3 · · ·
a2,s+m−t. Therefore, Theorem 4 holds.

Theorem 5. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)|
d+(u) = ∆+(G) = s} with |S+(G)| > 1. Suppose that |V(N+−(u))| = 0 holds for every u ∈ S+(G).
Let v ∈ S+(G) and v1 ∈ V(N++(v)) satisfying condition d+H(v1) = ∆+(H) where H = N++(v). Let w ∈
S+(G) ∧ w 6= v and w1 ∈ V(N++(w)) satisfying condition d+M(w1) = ∆+(M) where M = N++(w).
If condition d+H(v1) > d+M(w1) holds, then u1 = v for MaxQ(G).

Proof. Since G is a simple digraph with n nodes, it follows that C1
max(G) = a1,1a1,2a1,3 · · · a1,n with

a1,1 = 0 and C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,2 = 0 (see (1)). Since ∆+(G) = s, it follows that

a1,2 = a1,3 = · · · = a1,s+1 = 1 for C1
max(G).

By the conditions of Theorem 5, clearly d+H(v1) = ∆+(H) and d+M(w1) = ∆+(M). For simplicity,
let us assume that r = d+H(v1), t = d+M(w1).

If conditions r = d+H(v1) > t = d+M(w1) hold for each w ∈ S+(G) ∧ w 6= v and let the u1 = w,
then at most C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 0, a2,2 = 0, a2,3 = a2,4 = · · · = a2,t+2 = 1,
and a2,t+3 = a2,t+4 = · · · = a2,s+1 = a2,s+2 = · · · = a2,n = 0 since |V(N+−(w))| = 0 holds and
w1 ∈ V(N++(w)) satisfies condition d+M(w1) = ∆+(M) where M = N++(w).

Conversely, if let the u1 = v, then C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 0, a2,2 = 0, a2,3 = a2,4 =

· · · = a2,r+2 = 1, and a2,r+3 = a2,r+4 = · · · = a2,s+1 = a2,s+2 = · · · = a2,n = 0 since |V(N+−(v))| = 0
holds and v1 ∈ V(N++(v)) satisfies condition d+H(v1) = ∆+(H) where H = N++(v).

Since r > t, Theorem 5 holds by comparing the above two results of C2
max(G) obtained.

Theorem 6. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)|
d+(u) = ∆+(G) = s} with |S+(G)| > 1. Suppose that |V(N+−(u))| = 0 holds for every u ∈ S+(G).
Let v ∈ S+(G) and v1 ∈ V(N++(v)) satisfying condition d+H(v1) = ∆+(H) where H = N++(v).
Let w ∈ S+(G)∧w 6= v and w1 ∈ V(N++(w)) satisfying condition d+M(w1) = ∆+(M) where M = N++(w).
If conditions d+H(v1) = d+M(w1) and d+G(v1) > d+G(w1) hold, then u1 = v for MaxQ(G).
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Proof. Since G is a simple digraph with n nodes, it follows that C1
max(G) = a1,1a1,2a1,3 · · · a1,n with

a1,1 = 0 and C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,2 = 0 (see (1)). Since ∆+(G) = s, one can assert that

a1,2 = a1,3 = · · · = a1,s+1 = 1 and a1,s+2 = a1,s+3 = · · · = a1,n = 0 for C1
max(G).

By the conditions of Theorem 6, clearly d+H(v1) = d+M(w1) = ∆+(H). For simplicity, let us assume
that t = d+H(v1) = d+M(w1) and l = d+G(v1) > m = d+G(w1).

If conditions d+G(v1) > d+G(w1) hold for each w ∈ S(G)∧w 6= v and let the u1 = w, then at most
C2

max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 0, a2,2 = 0, a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 = a2,t+4 =

· · · = a2,s+1 = 0, a2,s+2 = a2,s+3 = · · · = a2,s+m−t = 1, and a2,s+m−t+1 = a2,s+m−t+2 = · · ·=a2,n = 0
since |V(N+−(w))| = 0 holds and w1 ∈ V(N++(w)) satisfies condition d+M(w1) = ∆+(M) where
M = N++(w) (see (1)).

Conversely, if let the u1 = v, then C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 0, a2,2 = 0,

a2,3 = a2,4 = · · · = a2,t+2 = 1, a2,t+3 = a2,t+4 = · · · = a2,s+1 = 0, a2,s+2 = a2,s+3 = · · ·=a2,s+l−t = 1,
a2,s+l−t+1 = a2,s+l−t+2 = · · ·=a2,n = 0 since |V(N+−(v))| = 0 holds and v1 ∈ V(N++(v)) satisfies
condition d+H(v1) = ∆+(H) where H = N++(v) (see (1)).

Since l > m, then the binary number a2,s+2a2,s+3 · · · a2,s+l−t > the binary number a2,s+2a2,s+3 · · ·
a2,s+m−t. Therefore, Theorem 6 holds.

Conjecture 1. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s} with |S+(G)| > 1. If there exists a vertex v ∈ S+(G) satisfying conditions Cmax(G− v) 6
Cmax(G−w) for each w ∈ S+(G)∧w 6= v, then u1 = v for MaxQ(G).

3.1.2. Calculate the Intermediate Vertices Added into MaxQ(G)

When our algorithm has computed the first node u1 of MaxQ(G), how would it determine the
subsequent nodes for calculating Cmax(G)? Note that a directed edge of G corresponds to 1 bit of
the adjacency matrix A(G). To maximize C(G) by maximizing C2(G), one must let u2 belong to the
mix-neighborhood subdigraph N++(u1) so that makes a1,2 = 1 (see (1)). Otherwise, if u2 /∈ N++(u1),
then a1,2 = 0 (see (1)) and C(G) 6=Cmax(G). The following Lemma 6 summarizes the above results.

Lemma 6. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. Assume that u1 is the first node of MaxQ(G) obtained for computing Cmax(G). By (12) of
Definition 9, if condition |V(N+−(u1))| ≥ 1 holds, then u2 ∈ V(N+−(u1)) for computing the second node of
MaxQ(G) so that obtaining Cmax(G). Further, if |V(N+−(u1))| = 1 with v ∈ V(N+−(u1)), then u2 = v.

Proof. We now prove the first statement of Lemma 6 by contradiction. Assume by contradiction
that u2 /∈ V(N+−(u1)). By Definition 9 and the condition that u1 is the first node of MaxQ(G),
it follows that u2 ∈ V(N−(u1)) ∪ V(N+(u1)) for obtaining Cmax(G). By the condition ∆+(G) = s,
clearly C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0, a1,2 = 1, · · · , a1,s+1 = 1, a1,s+2 = 0, · · · , a1,n = 0
since G is a simple digraph, and C2

max(G) = a2,1a2,2a2,3 · · · a2,n. It can be seen that if u2 ∈ V(N+−(u1)),
then there are a1,2 = 1 consistent with the requirement of C1

max(G) and a2,1 = 1 for C2
max(G)(see (1)).

If u2 ∈ V(N−(u1)), by (10) of Definition 9 then a1,2 = 0 for C1
max(G), leading to a contradiction

with the constraint a1,2 = 1 satisfied by C1
max(G). Otherwise, if u2 ∈ V(N+(u1)), by (11) of Definition 9

then a1,2 = 1 for C1
max(G) and a2,1 = 0 for C2

max(G), resulting in a contradiction with the result a2,1 = 1
obtained for C2

max(G). Therefore, the assumption that u2 /∈ V(N+−(u1)) does not hold. The second
claim of Lemma 7 immediately follows from the previous result.

Lemma 7. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. Assume that u1 is the first node of MaxQ(G) obtained for computing Cmax(G). By Definition 9,
if conditions |V(N+−(u1))| = |V(N−(u1))| = 0 ∧ |V(N+(u1))| ≥ 1 hold, then u2 ∈ V(N+(u1)) for
computing the second node of MaxQ(G) so that getting Cmax(G).
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Proof. Since u1 is the first node of MaxQ(G) and G is a simple digraph, by 4+(G) = s then
C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0, a1,2 = 1, · · · , a1,s+1 = 1, a1,s+2 = 0, · · · , a1,n = 0 (see (1)).
By the conditions |V(N+−(u1))| = |V(N−[u1])− u1| = 0, it follows that a2,1 = · · · = an,1 = 0 for
Cmax(G). Therefore, u2 ∈ V(N+(u1)) for MaxQ(G) due to |V(N+(u1))| ≥ 1 holds.

Lemma 8. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. Assume that u1 is the first node of MaxQ(G) obtained for computing Cmax(G). By Definition 9,
if conditions |V(N+−(u1))| = 0 ∧|V(N−(u1))| ≥ 1 ∧|V(N+(u1))| ≥ 1 hold, then u2 ∈ V(N+(u1)) for
computing the second node of MaxQ(G) so that getting Cmax(G).

Proof. Since u1 is the first node of MaxQ(G), G is a simple digraph, and 4+(G) = s, then
C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0, a1,2 = 1, · · · , a1,s+1 = 1, a1,s+2 = 0, · · · , a1,n = 0 (see (1)).
If |V(N+−(u1))| = 0, clearly u2 /∈ V(N+−(u1)) for MaxQ(G). If u2 ∈ V(N−(u1)), it follows that
a1,2 = 0 for C1

max(G), which is a contradiction with previous result a1,2 = 1 derived for C1
max(G).

Therefore, if |V(N+(u1))| ≥ 1, then u2 ∈ V(N+(u1)).

Theorem 7. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. By Definition 9, let H = N++(v) be the mix-neighborhood subdigraph of v. For computing
Cmax(G), suppose that MaxQ(G) already contains the first node u1 = v with V(N+−(v)) = {v1, v2, · · · , vt},
t > 1. If one of the following conditions holds, then u2 = v1 for MaxQ(G).

1. d+H(v1) > d+H(vi) for i = 2, · · · , t.
2. d+G(v1) > d+G(vi) hold for d+H(v1) = d+H(vi) with i ∈ {2, · · · , t}.

Proof. (1) By Lemma 6, it follows that if condition |V(N+−(v))| ≥ 1 holds, then u2 ∈ V(N+−(v))
for MaxQ(G). By the conditions of Theorem 7, there is C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0,
a1,2 = 1, · · · , a1,s+1 = 1, a1,s+2 = 0, · · · , a1,n = 0 (see (1)).

Note that C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0 since v1 ∈ V(N+−(v)) and G is

a simple digraph. For simplicity, let us assume that r = d+H(v1). If u2 = v1, it can be seen that a2,3 = 1,
a2,4 = 1, · · · , a2,r+2 = 1 by properly arranging the nodes of V(H) (see (1)). Otherwise, if u2 = vi with
i ∈ {2, · · · , t}, no matter how the vertices in H are ordered such that there is, at least, one 0 among the r
entries a2,3, a2,4, · · · , a2,r+2 since d+H(vi) < d+H(v1) for i = 2, · · · , t (see (1)). Therefore, the conclusion (1)
of Theorem 7 holds.

(2) Observe that C2
max(G) = a2,1a2,2a2,3 · · · a2,n with a2,1 = 1, a2,2 = 0 since v1 ∈ V(N+−(v))

and G is a simple digraph. For simplicity, let us assume that j = |V(H)|, r = d+H(v1), l = d+G(v1),
and m = max{d+G(vi)} with i ∈ {2, · · · , t}. Without loss of generality assume w ∈ {v2, · · · , vt}
with d+G(w) = m and k = l − m. If u2 = v1, one can let a2,3 = 1, a2,4 = 1, · · · , a2,r+2 = 1,
a2,r+3 = 0, · · · , a2,j+2 = 1 by properly ordering the nodes of V(H) since r = d+H(v1) (see (1)). Since
d+G(v1) > d+G(vi) hold for d+H(v1) = d+H(vi) with i ∈ {2, · · · , t}, it follows that k > 0. Further,
one can let a2,j+3 = 1, a2,j+4 = 1, · · · , a2,j+k+2 = 1, a2,j+k+3 = 0, · · · , a2,n = 0 by properly sorting
the nodes of V(G) − V(H) − v since k > 0 (see (1)). Otherwise, if u2 = w, no matter how the
vertices of V(G) − V(H) − v are ordered such that there is, at least, one 0 among the k entries
a2,j+3, a2,j+4, · · · , a2,j+k+2 since m = d+G(w) < l = d+H(v1) (see (1)). Therefore, the conclusion (2) of
Theorem 7 holds.

Theorem 8. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)|
d+(u) = ∆+(G) = s}. For computing Cmax(G), suppose that MaxQ(G) already contains the first node
u1 = v satisfying conditions |V(N+−(v))| = 0 ∧|V(N−(v))| ≥ 1 ∧|V(N+(v))| ≥ 1 with V(N+(v)) =

{v1, v2, · · · , vt}, t = |V(N+(v))| > 1 (see Definition 9). If one of the following conditions holds, then u2 = v1

for MaxQ(G).

1. d+N+(v)(v1) > d+N+(v)(vi) for i = 2, · · · , t.
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2. d+G(v1) > d+G(vi) hold for d+N+(v)(v1) = d+N+(v)(vi) with i ∈ {2, · · · , t}.

Proof. By Lemma 8, it follows that if conditions |V(N+−(v))| = 0 ∧|V(N−(v))| ≥ 1 ∧ |V(N+(v))| ≥ 1
hold, then u2 ∈ V(N+(v)) for MaxQ(G). By the conditions of Theorem 8, there is C1

max(G) = a1,1a1,2a1,3

· · · a1,n with a1,1 = 0, a1,2 = 1, · · · , a1,s+1 = 1, a1,s+2 = 0, · · · , a1,n = 0 (see (1)). Note that C2
max(G) =

a2,1a2,2a2,3 · · · a2,n with a2,1 = 0, a2,2 = 0 since |V(N+−(u1))| = 0 and G is a simple digraph.
(1) For simplicity, let us assume that r = d+N+(v)(v1). If u2 = v1, it can be seen that a2,3 = 1,

a2,4 = 1, · · · , a2,r+2 = 1 by properly arranging the nodes v1, v2, · · · , vt of V(N+(v)) (see (1)). Conversely,
if u2 = vi with i ∈ {2, · · · , t}, no matter how the vertices in V(N+(v)) are ordered such that there
is, at least, one 0 among the r entries a2,3, a2,4, · · · , a2,r+2 since d+N+(v)(vi) < d+N+(v)(v1) for i = 2, · · · , t
(see (1)). Therefore, the conclusion (1) of Theorem 7 holds.

(2) For convenience, let us assume that j = |V(N+(v))|, r = d+N+(v)(v1), l = d+G(v1),

and m = max{d+G(vi)} with i ∈ {2, · · · , t}. Without loss of generality assume w ∈ {v2, · · · , vt} with
d+G(w) = m and k = l−m.

If u2 = v1, one can let a2,3 = 1, a2,4 = 1, · · · , a2,r+2 = 1, a2,r+3 = 0, · · · , a2,j+2 = 1 by properly
ordering the nodes of V(N+(v)) since r = d+N+(v)(v1) (see (1)). Since d+G(v1) > d+G(vi) hold for

d+N+(v)(v1) = d+N+(v)(vi) with i ∈ {2, · · · , t}, it follows that k > 0. Further, one can let a2,j+3 = 1,
a2,j+4 = 1, · · · , a2,j+k+2 = 1, a2,j+k+3 = 0, · · · , a2,n = 0 by properly sorting the nodes of V(G) −
V(N+(v))− v since k > 0 (see (1)).

Conversely, if u2 = w, no matter how the vertices of V(G)−V(N+(v))− v are ordered such that
there is, at least, one 0 among the k entries a2,j+3, a2,j+4, · · · , a2,j+k+2 since m = d+G(w) < l = d+N+(v)(v1)

(see (1)). Therefore, the conclusion (2) of Theorem 8 holds.

When our algorithm has computed the first i vertices u1, u2, · · · , ui of MaxQ(G), how does it
determine the subsequent nodes ui+1, ui+2, · · · , un for calculating Cmax(G)? Similar to the above
discussion for obtaining u2, it can be shown that the selections of the successor vertices ui+1, ui+2, · · · ,
un of MaxQ(G) are from N(S) with S = {u1, u2, · · · , ui}.

Our algorithm assigns each node in G an attribute called m_NearestNode. Once the ith
node ui has been added into MaxQ(G), it writes the index information i of ui into the attribute
domain m_NearestNode of each node vj ∈N(ui) = {v1, v2, · · · , vt} with j = 1, 2, · · · , t. If vj − >

m_NearestNode= 0, then let vj − > m_NearestNode= i for each vj ∈ N(ui) with j = 1, 2, · · · , t.

Lemma 9. Let G =< V(G), E(G) > be a simple digraph with n nodes. Let S+(G) = {u ∈ V(G)| d+(u)
= ∆+(G) = s}. When computing Cmax(G), if MaxQ(G) already contains the first node u1 = v whose open
mix-neighborhood subdigraph is N++(v) (see Definition 9), then u2, u3, · · · , us, us+1∈ N++(v).

Proof. Since the condition 4+(G) = s holds, it can be asserted that |N++(v)| = s by Definition 9.
Because G is a simple digraph with n nodes, it follows that C1

max(G) = a1,1a1,2a1,3 · · · a1,n with a1,1 = 0,
a1,2 = a1,3 = · · · = a1,s+1 = 1, a1,s+2 = a1,s+3 = · · · = a1,n = 0 for obtaining Cmax(G)(see (1)). To ensure
a1,2 = a1,3 = · · · = a1,s+1 = 1 to maximize C1(G) (see (1)), the assertion u2, u3, · · · , us, us+1∈ N++(v)
is true.

Theorem 9 (Diffusion Theorem of Digraphs). Let G =< V(G), E(G) > be a simple connected digraph with
n nodes. For computing Cmax(G), suppose that MaxQ(G) already contains the first m vertices u1, u2, · · · , um.
Let Q = {u1, u2, · · · , um} whose open neighborhood subdigraph is N(Q)(see Definition 11). If |V(N(Q))| ≥ 1,
then the following two conclusions hold.

1. By Definition 11, the selection of the (m + 1)th vertex of MaxQ(G) for computing Cmax(G) is from the
open neighborhood subdigraph N(Q) of the nodes set Q.

2. the vertex-induced subdigraph of the first m vertices is connected.
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Proof. (1) We prove by contradiction. If um+1 /∈ V(N(Q)), without loss of generality let us assume
that π1 = {u1, u2, · · · , um, v1, um+2, · · · , v2, · · · , un} is a permutation of V(G), satisfying conditions
v1 = um+1 /∈ V(N(Q)), v2 = ui ∈ V(N(Q)) with m + 2 ≤ i ≤ n.

Further, we may assume that if condition um+1 /∈ V(N(Q)) holds, the C(G) corresponding to
π1 is the greatest. Assume that the node v2 = ui ∈ V(N(Q)) is the node whose index i in π1 is the
smallest index in π1 than the indexes of other nodes belonging to V(N(Q)) in π1. This means
that no node belonging to V(N(Q)) is between um+2 and ui−1 of π1 such that for every node
v ∈ {um+2, um+3, · · · , ui−1}, v /∈ V(N(Q)) follows ( see Definition 11).

Let A1(G) be the matrix corresponding to the permutation π1. Let W1, W2, W3, and W4 be the
block submatrices of A1(G) containing the first m rows and the (m + 1)th column, the (m + 2)th to
(i− 1)th columns, the ith column, and the (i + 1)th to nth columns, respectively.

Since v1 /∈ V(N(Q)), then W1 = 0 holds. From the above result, for every node v ∈ {um+2, um+3,
· · · , ui−1}, v /∈ V(N(Q)) holds such that W2 = 0. For v2 ∈ V(N(Q)) = V(N−(Q)) ∪ V(N++(Q)),
if v2 ∈ V(N−(Q)), then W3 = 0. Otherwise, if v2 ∈ V(N++(Q), then W3 > 0. Therefore, W3 ≥ 0.

Similarly, let X1, X2, X3, and X4 be the block submatrices of A1(G) formed by the first m
columns and the (m + 1)th row, the (m + 2)th to (i − 1)th rows, the ith row, and the (i + 1)th to
nth rows, respectively.

Since v1 /∈ V(N(Q)), then X1 = 0 holds. For every node v ∈ {um+2, um+3, · · · , ui−1}, since
v /∈ V(N(Q)) holds, then X2 = 0. For v2 ∈ V(N(Q)) = V(N−(Q))∪V(N++(Q)), if v2 ∈ V(N−(Q)),
then X3 > 0 by Definition 11. Otherwise, if v2 ∈ V(N++(Q), then X3 > 0. Therefore, X3 > 0.

By merely swapping v1 and v2 of π1, one can obtain another permutation π2 = {u1, u2, · · · , um,
v2, um+2, · · · , v1, · · · , un} with v1 /∈ V(N(Q)), v2 ∈ V(N(Q)).

Similar to A1(G), let A2(G) be the matrix corresponding to the permutation π2. Let Y1, Y2, Y3,
and Y4 be the block submatrices of A2(G) containing the first m rows and the (m + 1)th column,
the (m + 2)th to (i− 1)th columns, the ith column, and the (i + 1)th to nth columns, respectively.

For v2 ∈ V(N(Q)) = V(N−(Q)) ∪ V(N++(Q)), if v2 ∈ V(N−(Q)), then Y1 = 0. Otherwise,
if v2 ∈ V(N++(Q), then Y1 > 0. Therefore, Y1 ≥ 0. For every node v ∈ {um+2, um+3, · · · , ui−1},
since v /∈ V(N(Q)) holds, then Y2 = 0. Since v1 /∈ V(N(Q)), then Y3 = 0 holds.

Simila, Let Z1, Z2, Z3, and Z4 be the block submatrices of A2(G) formed by the first m columns and
the (m+1)th rows, the (m+2)th to (i−1)th rows, the ith row, and the (i+1)th to nth rows, respectively.

For v2 ∈ V(N(Q)) = V(N−(Q)) ∪ V(N++(Q)), if v2 ∈ V(N−(Q)), then Z1 > 0 by
Definition 11. Otherwise, if v2 ∈ V(N++(Q), then Z1 > 0. Therefore, Z1 > 0. For every node
v ∈ {um+2, um+3, · · · , ui−1}, since v /∈ V(N(Q)) holds, then Z2 = 0. Since v1 /∈ V(N(Q)), then
Z3 = 0 holds.

By Definition 10, observe that W4 = Y4 since W4 and Y4 are both the m× (n− i) block submatrices
defined by the same nodes sequence ui+1, ui+2, · · · , un, and X4 = Z4 since X4 and Z4 are both the
(n− i)×m block submatrices corresponding to the same nodes sequence ui+1, ui+2, · · · , un.

Furthermore, by Definition 10 note that W2 = Y2 since W2 and Y2 are both the m× (i−m− 2)
block submatrices generated by the same nodes sequence um+2, um+3, · · · , ui−1, and X2 = Z2 since
X2 and Z2 are both the (i−m− 2)×m block submatrices corresponding to the same nodes sequence
um+2, um+3, · · · , ui−1.

By Definition 10, it follows from the results discussed above that W1 = W2 = 0, W3 ≥ 0, Y1 ≥ 0,
Y2 = Y3 = 0, X1 = X2 = 0, X3 > 0, Z1 > 0, Z2 = Z3 = 0.

Therefore, the new C(G) derived from A2(G) is greater than the C(G) stemmed from A1(G) such
that brings a contradiction with the previous assumption that um+1 /∈ N(Q). This contradiction shows
the statement (1) holds.

(2) The result immediately follows from the conclusion (1).

Theorem 10 (Mix Diffusion Theorem of Digraphs). Let G =< V(G), E(G) > be a simple connected
digraph with n nodes. For computing Cmax(G), suppose that MaxQ(G) already contains the first m
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vertices u1, u2, · · · , um. Let Q = {u1, u2, · · · , um} whose open mix-neighborhood subdigraph is N++(Q).
If |V(N++(Q))| ≥ 1, then the following two conclusions hold.

1. By Definition 11, the selection of the (m + 1)th vertex of MaxQ(G) for computing Cmax(G) is from the
open mix-neighborhood subdigraph N++(Q) of the nodes set Q.

2. the vertex-induced subdigraph of the first m vertices is connected.

Proof. (1) We prove by contradiction. If um+1 /∈ V(N++(Q)), without loss of generality let us assume
that π1 = {u1, u2, · · · , um, v1, um+2, · · · , v2, · · · , un} is a permutation of V(G), satisfying conditions
v1 = um+1 /∈ V(N++(Q)), v2 = ui ∈ V(N++(Q)) with m + 2 ≤ i ≤ n.

Further, we may assume that if condition um+1 /∈ V(N++(Q)) holds, the C(G) corresponding
to π1 is the greatest. Assume that the node v2 = ui ∈ V(N++(Q)) is the node whose index i in π1 is
the smallest index in π1 than the indexes of other nodes belonging to V(N++(Q)) in π1. This means
that no node belonging to V(N++(Q)) is between um+2 and ui−1 of π1 such that for every node
v ∈ {um+2, um+3, · · · , ui−1}, v /∈ V(N++(Q)) follows ( see Definition 11).

Let A1(G) be the matrix corresponding to the permutation π1. Let W1, W2, W3, and W4 be the
block submatrices of A1(G) containing the first m rows and the (m + 1)th column, the (m + 2)th to
(i− 1)th columns, the ith column, and the (i + 1)th to nth columns, respectively.

Since v1 /∈ V(N++(Q)), then v1 ∈ V(N−(Q)) ∨ v1 /∈ V(N(Q)). If v1 ∈ V(N−(Q)), then W1 = 0
by Definition 11. Otherwise, if v1 /∈ V(N(Q)), then W1 = 0. Therefore, W1 = 0 for v1 /∈ V(N++(Q)).
From the above result, for every node v ∈ {um+2, um+3, · · · , ui−1}, v /∈ V(N++(Q)) holds such
that v ∈ V(N−(Q)) ∨ v /∈ V(N(Q)). If v ∈ V(N−(Q)), then W2 = 0 by Definition 11. Otherwise,
if v /∈ V(N(Q)), then W2 = 0. Therefore, W2 = 0. Since v2 ∈ V(N++(Q)), then W3 > 0.

By merely swapping v1 and v2 of π1, one can obtain another permutation π2 = {u1, u2, · · · , um,
v2, um+2, · · · , v1, · · · , un} with v1 /∈ V(N++(Q)), v2 ∈ V(N++(Q)).

Similar to A1(G), let A2(G) be the matrix corresponding to the permutation π2. Let Y1, Y2, Y3,
and Y4 be the block submatrices of A2(G) containing the first m rows and the (m + 1)th column,
the (m + 2)th to (i− 1)th columns, the ith column, and the (i + 1)th to nth columns, respectively.

Clearly Y1 > 0 holds for v2 ∈ V(N++(Q)). For every node v ∈ {um+2, um+3, · · · , ui−1}, since
v /∈ V(N++(Q)) holds, then v ∈ V(N−(Q)) ∨ v /∈ V(N(Q)). If v ∈ V(N−(Q)), then Y2 = 0 by
Definition 11. Otherwise, if v /∈ V(N(Q)), then Y2 = 0. Therefore, Y2 = 0. Since v1 /∈ V(N++(Q)),
then v1 ∈ V(N−(Q)) ∨ v1 /∈ V(N(Q)). If v1 ∈ V(N−(Q)), then Y3 = 0 by Definition 11. Otherwise,
if v1 /∈ V(N(Q)), then Y3 = 0. Therefore, Y3 = 0.

By Definition 10, observe that W4 = Y4 since W4 and Y4 are both the m× (n− i) block submatrices
corresponding to the same nodes sequence ui+1, ui+2, · · · , un.

Furthermore, by Definition 10 note that W2 = Y2 since W2 and Y2 are both the m× (i−m− 2)
block submatrices corresponding to the same nodes sequence um+2, um+3, · · · , ui−1, and X2 = Z2 since
X2 and Z2 are both the (i−m− 2)×m block submatrices corresponding to the same nodes sequence
um+2, um+3, · · · , ui−1.

It follows from the results discussed above that W1 = W2 = 0, W3 > 0, Y1 > 0, Y2 = Y3 = 0.
Therefore, the new C(G) derived from A2(G) is greater than the C(G) stemmed from A1(G) such

that brings a contradiction with the previous assumption that um+1 /∈ N++(Q). This contradiction
shows the statement (1) holds.

(2) The result immediately follows from the conclusion (1).

Corollary 1. Let G =< V(G), E(G) > be a simple connected digraph with n nodes. Let S+(G) = {u ∈ V(G)|
d+(u) = ∆+(G) = s}. For computing MaxQ(G), suppose that MaxQ(G) already contains the first m
vertices u1, u2, · · · , um. By Definition 11, if Q = {u1, u2, · · · , um} satisfies conditions |V(N++(Q))| = 0∧
|V(N−(Q))| ≥ 1, then um+1 ∈ V(N−(Q)).
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Proof. By Neighborhood Diffusion Theorem 9, we have that um+1 ∈ V(N(Q)). By Mix Diffusion
Theorem 10, it follows that um+1 ∈ V(N++(Q)). Since conditions |V(N++(Q))| = 0∧ |V(N−(Q))| ≥ 1
hold, the result of Corollary 1 is true.

Corollary 2. Let G =< V(G), E(G) > be a simple connected digraph with n nodes. For computing Cmax(G),
suppose that MaxQ(G) already contains the first m vertices u1, u2, · · · , um. If Q = {u1, u2, · · · , um} has open
neighborhood subdigraph N(Q) satisfying conditions |V(N(Q))| ≥ 1. If |V(N+−(Q))| = 0∧ |V(N+(Q))| > 0,
then um+1 ∈ N+(Q).

Proof. It follows from Mix Diffusion Theorem 10.

3.2. Compute Cmax(G) for a Disconnected Digraph

Let G =< V(G), E(G) > be a simple disconnected digraph with n nodes and p connected
components. Suppose that the p connected components are G1, G2, · · · , Gp. In this subsection,
we study how to compute the maximum element Cmax(G) of G.

If ∆+(G1) > ∆+(G2) > · · · > ∆+(Gp), how does our algorithm work to compute the maximum
element Cmax(G) of G? Observe that to obtain Cmax(G) one had to arrange all vertices of each connected
component Gi with i ∈ {1, 2, · · · , p} together when constructing the adjacency matrix A(G). The result
also follows from the proof of Diffusion Theorem of Digraphs 9.

First, we analyze the features of the adjacency matrix A(G). When constructing the adjacency
matrix A(G), we arrange all vertices of each connected component Gi with i ∈ {1, 2, · · · , p} together.
As a result, the adjacency matrix A(G) is a block matrix, each block of which corresponds to a connected
component. Next, we study the relationship between C(G) and A(G). Furthermore, we show how to
solve the Cmax(G1) of the adjacency matrix A(G).

Lemma 10. Let G =< V(G), E(G) > be a simple disconnected digraph that have two disjoint connected
components G1 =< V(G1), E(G1) > and G2 =< V(G2), E(G2) > with k and l nodes respectively.
Suppose that

Cmax(G1) = C1
max(G1)C2

max(G1) · · ·Ck−1
max(G1),

Cmax(G2) = C1
max(G2)C2

max(G2) · · ·Cl−1
max(G2).

If ∆+(G1) > ∆+(G2), then Cmax(G) satisfies the following equality:

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (49)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0 · · · · · · · · · · · · · · · · · · · · · · · ·

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · · · · · · · · · · · · · · · · · · · · · , Ck+l−1
max (G) = Cl−1

max(G2).

Proof. If ∆+(G1) > ∆+(G2) holds, then ∆+(G) = ∆+(G1). By Proposition 3, it follows that to obtain
Cmax(G), one must choose the vertex with the maximum outdegree from G1 as the first vertex u1

of MaxQ(G).
By Diffusion Theorem of Digraphs 9, the subsequent k− 1 vertices added into MaxQ(G) must

be taken from G1. Similarly, by Proposition 3, it follows that to obtain Cmax(G), one must choose
the (k + 1)th vertex from G2 with the maximum outdegree as the (k + 1)th vertex uk+1 of MaxQ(G).
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By Diffusion Theorem of Digraphs 9, the next l− 1 vertices added into MaxQ(G) must be from G2.
Carefully examining (1), it is not difficult to find that (49) holds.

Note that to ensure the maximization of Cmax(G), one must add l 0 after C1
max(G1), C2

max(G1), · · · ,
Ck−1

max(G1) respectively so that let Ck
max(G) be equal l 0.

Theorem 11. Let G =< V(G), E(G) > be a simple disconnected digraph with n nodes and p connected
components. Suppose that the p connected components are G1, G2, · · · , Gp with |V(G1)| = n1, |V(G2)| = n2,
· · · , |V(Gp)| = np. If Cmax(G1) > Cmax(G2) > · · · > Cmax(Gp), then Cmax(G) satisfies the following equality:

Cmax(G) = C1
max(G1)

n−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−n1︷ ︸︸ ︷
0 · · · 0

n−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0

n−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gp−1)

np︷ ︸︸ ︷
0 · · · 0 · · ·Cnp−1−1

max (Gp−1)

np︷ ︸︸ ︷
0 · · · 0

np︷ ︸︸ ︷
0 · · · 0

C1
max(Gp) · · ·C

np−1
max (Gp). (50)

Proof. We prove (50) by induction on the number p of branches. By the preceding definition, we have
Cmax(G) = C1

max(G)C2
max(G) · · ·Cn−1

max (G) for p = 1. Thus, (50) in Theorem 11 holds for p = 1.
By Lemma 10, (50) holds for p = 2.

By induction, suppose that (50) holds for p = k. In the following, we prove that the equality (50)
also holds for p = k+ 1. We can now treat the front k branch digraphs as the digraph H. Therefore, (50)
also holds for the digraph H.

Cmax(H) =

C1
max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gk−1)

nk︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1−1

max (Gk−1)

nk︷ ︸︸ ︷
0 · · · 0

nk︷ ︸︸ ︷
0 · · · 0

C1
max(Gk)C2

max(Gk) · · ·C
nk−1
max (Gk), (51)

where

C1
max(H) = C1

max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,

...

Cn1−1
max (H) = Cn1−1

max (G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,

Cn1
max(H) =

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0 ,
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Cn1+1
max (H) = C1

max(G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,

...

Cn1+n2−1
max (H) = Cn2−1

max (G2)

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,

Cn1+n2
max (H) =

n−nk+1−n1−n2︷ ︸︸ ︷
0 · · · 0 ,
...

Cn−nk+1−nk−nk−1+1
max (H) = C1

max(Gk−1)

nk︷ ︸︸ ︷
0 · · · 0,

...

Cn−nk+1−nk−1
max (H) = Cnk−1−1

max (Gk−1)

nk︷ ︸︸ ︷
0 · · · 0,

By Lemma 10, we have

Cmax(G) =

C1
max(H)

nk+1︷ ︸︸ ︷
0 · · · 0 C2

max(H)

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cn−nk+1−1

max (H)

nk+1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 C1

max(Gk+1)C2
max(Gk+1) · · ·C

nk+1−1
max (Gk+1). (52)

By (51), substituting C1
max(H) to Cn−nk+1−1

max (H) into (52), we obtain

Cmax(G) =

C1
max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 C2

max(G1)

n−nk+1−n1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1

max (Gk)
nk+1︷ ︸︸ ︷

0 · · · 0
nk+1︷ ︸︸ ︷

0 · · · 0 C1
max(Gk+1)C2

max(Gk+1) · · ·C
nk+1−1
max (Gk+1). (53)

Thus, we have

Cmax(G) = C1
max(G1)

n−n1︷ ︸︸ ︷
0 · · · 0 · · ·Cn1−1

max (G1)

n−n1︷ ︸︸ ︷
0 · · · 0

n−n1︷ ︸︸ ︷
0 · · · 0

C1
max(G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0 · · ·Cn2−1

max (G2)

n−n1−n2︷ ︸︸ ︷
0 · · · 0

n−n1−n2︷ ︸︸ ︷
0 · · · 0

...

C1
max(Gk)

nk+1︷ ︸︸ ︷
0 · · · 0 · · ·Cnk−1

max (Gk)

nk+1︷ ︸︸ ︷
0 · · · 0

nk+1︷ ︸︸ ︷
0 · · · 0

C1
max(Gk+1) · · ·C

nk+1−1
max (Gk+1). (54)

Thus, the equality (50) holds for p = k + 1.

By Theorem 11, it can be seen that one must first calculate Cmax(Gi) of each branch for i = 1, 2, · · · , p
for obtaining Cmax(G), respectively. Furthermore, one substitutes Cmax(Gi) into (50) sequentially to
obtain Cmax(G) of a simple disconnected digraph G.

If the above conditions are not satisfied, how does one calculate Cmax(G) of a disconnected
undirected G? Based on an analysis of the preceding results, establish the following Theorem 12 that is
more general than Lemma 10.
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Theorem 12. Let G =< V(G), E(G) > be a simple disconnected digraph that have two disjoint connected
components G1 =< V(G1), E(G1) > and G2 =< V(G2), E(G2) > with k and l nodes respectively.
Let S+(G1) = {u ∈ V(G1)| d+(u) = ∆+(G1)} and S+(G2) = {u ∈ V(G2)| d+(u) = ∆+(G2)} satisfying
condition ∆+(G1) = ∆+(G2). Suppose that

Cmax(G1) = C1
max(G1)C2

max(G1) · · ·Ck−1
max(G1), (55)

Cmax(G2) = C1
max(G2)C2

max(G2) · · ·Cl−1
max(G2), (56)

If there exists a node u ∈ S+(G1) satisfying condition |N+−(u)| > 0∧ ∆+(N++(u)) > ∆+(N++(v))
for ∀v ∈ S2, then Cmax(G) satisfies the following equality:

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (57)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0 · · · · · · · · · · · · · · · · · · · · · · · ·

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · · · · · · · · · · · · · · · · · · · · · , Ck+l−1
max (G) = Cl−1

max(G2).

Proof. By the condition of Theorem 12, ∆+(G) = max{∆+(G1), ∆+(G2)} = ∆+(G1) = ∆+(G2) since
∆+(G1) = ∆+(G2) holds.

If there exists a node u ∈ S+(G1) satisfying condition |N+−(u)| > 0∧∆+(N++(u)) > ∆+(N++(v))
for ∀v ∈ S2, by Theorem 3, one must choose the first vertex u1 added into MaxQ(G) from G1 so that
obtain Cmax(G).

By Diffusion Theorem of Digraphs 9, one must select u2, u3, · · · , uk into MaxQ(G) from G1 to
obtain Cmax(G). In addition, one must choose the subsequent l nodes into MaxQ(G) from G2. By (55)
and (56), it follows that (58) holds.

Cmax(G) = C1
max(G)C2

max(G) · · ·Ck−1
max(G)Ck

max(G)Ck+2
max(G) · · ·Ck+l−1

max (G), (58)

where

C1
max(G) = C1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, C2

max(G) = C2
max(G1)

l︷ ︸︸ ︷
00 · · · 0, · · · · · · · · · · · · · · · · · · · · · · · · ,

Ck−1
max(G) = Ck−1

max(G1)

l︷ ︸︸ ︷
00 · · · 0, Ck

max(G) =

l︷ ︸︸ ︷
00 · · · 0, Ck+1

max(G) = C1
max(G2),

Ck+2
max(G) = C2

max(G2), · · · · · · · · · · · · · · · · · · · · · , Ck+l−1
max (G) = Cl−1

max(G2).

Note that to ensure the maximization of Cmax(G), l 0 must be added after C1
max(G1), C2

max(G1), · · · ,
Ck−1

max(G1) respectively and let Ck
max(G) be equal l 0.

4. Our Algorithms for Computing the Canonical Labelings of Digraphs

In the section, based on the results of the previous sections, we present our algorithms for
computing canonical labelings of digraphs. We display the major steps required for calculating the
maximum element Cmax(G) of G. When our algorithm has calculated the node u1 of MaxQ(G), then,
it constructs the close mix-neighborhood subdigraph N++[u1] of the set S1 = {u1} (see Figure 1a),
from which it picks a few vertices into MaxQ(G). For clarity of presentation, we call this process
PROGRESS 1. Then again, it builds the close mix-neighborhood subdigraph N++[S2] of the nodes set
S2 = {u1, u2} (see Figure 1b), from which it picks a few vertices into MaxQ(G). We call this process
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PROGRESS 2. · · · . Then again, it builds the close mix-neighborhood subdigraph N++[Sr] of the
nodes set Sr = {u1, u2, · · · , ur} (see Figure 1c,d), from which it picks a few vertices into MaxQ(G). We
call this process PROGRESS r· · · . This process continues until it puts all vertices in G into MaxQ(G)

(see Figure 1e,f).
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Figure 1. Each close mix-neighborhood subdigraph of different nodes sets of an 8× 8 grid digraph
G8,8 consists of pink and green nodes and edges. (a) The close mix-neighborhood subdigraph N++[1];
(b) N++[1, 2]; (c) N++[1, 2, 3]; (d) N++[1, 2, 3, 4]; (e) N++[1, 2, 3, 4, 5]; (f) N++[1, 2, 3, 4, 5, 6].

For PROGRESS 1, after calculating N++[S1], by Lemma 2, our algorithm arranges all nodes
of N++[S1] into a single chain L1 (see Algorithm 1). For simplify, let V1 = V(N++[S1]). If there
are two nodes vi, vj ∈ L1 satisfying condition vi � vj with respect to N++[S1], then it continues to
determine whether vi < vj or vi ≺ vj with respect to G. If vi < vj, it rearranges vi in front of the vj in
L1. Otherwise, it rearranges vi in back of the vj in L1.
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For each PROGRESS r, r = 2, 3, · · · , when calculating N++[Sr], our algorithm continues to
calculate the close in-neighborhood subdigraph N−[Sr] and let N++[Sr] = N−[Sr] if condition
N++[Sr] = ∅ holds for some r.

For each PROGRESS r, r = 2, 3, · · · , after calculating N++[Sr], our algorithm in turn
computes V2 = V(N++(Sr−1)) ∩ V(N++(ur)) (see Figure 2d), V3 = V(N++(Sr−1))− V(N++(ur))

(see Figure 2e), V4 = V(N++(ur)) − V(N++(Sr−1)) (see Figure 2f), and the outdegree sequences
d+N++ [Sr ]

(V2), d+N++ [Sr ]
(V3), d+N++ [Sr ]

(V4) in decreasing order respectively, where Sr−1 = {u1, u2, · · · ,
ur−1}. It can be shown that V2 ∪ V3 ∪ V4 = V(N++(Sr)) and Vi ∩ Vj = ∅ for i 6= j, i, j = 2, 3, 4.
By Lemma 2, it arranges all nodes of Vi into a single chain Li (see Algorithm 1) with i = 2, 3, 4, respectively.
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Figure 2. A wheel graph G, two open mix-neighborhood subdigraphs N++(1) and N++(2), and the
three relevant nodes sets generated by the boolean operations of N++(1) and N++(2). (a) A wheel
digraph G; (b) The open mix-neighborhood subdigraph N++(1); (c) The open mix-neighborhood
subdigraph N++(2); (d) V(N++(1))∩V(N++(2)) = {3, 4}; (e) V(N++(1))−V(N++(2)) = {5, 6, 7};
(f) V(N++(2))−V(N++(1)) = ∅.
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Algorithm 1: Arrange all nodes of Vi into a single chain Li for a close mix-neighborhood
subdigraph N++[Sr] with i = 1, 2, 3, 4, respectively where V1 = V(N++[S1]), V2 =

V(N++(Sr−1))∩V(N++(ur)), V3 = V(N++(Sr−1))−V(N++(ur)), and V4 = V(N++(ur))−
V(N++(Sr−1)).

Input : 1. An simple connected digraph G with n nodes and the close mix-neighborhood
subdigraph N++[Sr] =< V(N++[Sr]), E(N++[Sr]) > of a nodes set Sr ⊆ V(G).

2. A nodes set Vi = {v1, v2, · · · , vt} stored in an array NodeArray.

Output : A list L used to store and rank all nodes of the chain Li.

1 l ← 1; j← 1; f lag← 0 ;

2 Initialize local variables NodeMax, Node ;

3 Compute the outdegree sequence d+N++[Sr]
(Vi) = (d+N++[Sr]

(v1), d+N++[Sr]
(v2), · · · , d+N++[Sr]

(vt)) in

descending order;

4 for (l← 0 to t− 2){

5 NodeMax← NodeArray[l];

6 for (j← l + 1 to t− 1){

7 Node← NodeArray[j];

8 f lag← 0;

9 Compare_Two_Nodes(N++[Sr], NodeMax, Node, f lag); see Algorithm 2;

10 if ( f lag == 0)then // NodeMax � Node with regard to N++[Sr]

11 go back to the beginning of the for-loop;

12 else if ( f lag == 1)then // NodeMax ≺ Node with regard to N++[Sr]

13 NodeMax← Node;

14 else if ( f lag == 2)then // NodeMax � Node with regard to N++[Sr]

15 f lag← 0;

16 Compare_Two_Nodes(G, NodeMax, Node, f lag); see Algorithm 2;

17 if ( f lag == 0 or 2)then // NodeMax < Node with regard to G

18 go back to the beginning of the for-loop;

19 else if ( f lag == 1)then // NodeMax ≺ Node with regard to G

20 NodeMax← Node;

21 Add the NodeMax to the end of the list L;
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Algorithm 2: Compare the entire mix di f f usion outdegree sequences dτ
H[N

++
1 [v]], dτ

H[N
++
2 [v]],

· · · , dτ
H[N

++
ρ[v] [v]] and dτ

H[N
++
1 [w]], dτ

H[N
++
2 [w]], · · · , dτ

H[N
++
ρ[w]

[w]] of two nodes v and w in H.

1 void Compare_Two_Nodes(Graph H, CNode v, CNode w, int & f lag)

2 {

3 r← 0; k← 0; f lag← 0;

4 while ( r <= ρ++[v] and r <= ρ++[w]){ // r <= mix di f f usion radius ρ++[v] and
ρ++[w]

5 r← r + 1; k← 1;

6 Compute the close r mix-neighborhood subdigraph N++
r [v] of v in H;

7 Compute the p connected components H1, H2, · · · , Hp of N++
r [v];

8 Calculate the entire mix di f f usion outdegree sequencedτ
H[N

++
r [v]] = (d+τ (H1), d+τ (H2), · · · ,

d+τ (Hp)), satisfying conditions d+τ (H1) > d+τ (H2) > · · · > d+τ (Hp);

9 Compute the close r mix-neighborhood subdigraph N++
r [w] of w in H;

10 Compute the l connected components J1, J2, · · · , Jl of N++
r [w];

11 Calculate the entire mix di f f usion outdegree sequencedτ
H[N

++
r [w]] = (d+τ (J1), d+τ (J2), · · · ,

d+τ (Jl)), satisfying conditions d+τ (J1) > d+τ (J2) > · · · > d+τ (Jl);

12 while (k <= p and k <= l){

13 f lag← 0;

14 // Compare two mix di f f usion outdegree sequences (see Algorithm 3)
Compare_Two_Mix_Di f f usion_OutDegree_Sequences(H, N++

r [v], N++
r [w], d++

τ (Hk),
d++

τ (Jk), f lag);

15 if ( f lag == 0 or f lag == 1)then // v � w or v ≺ w with regard to H

16 return;

17 k← k + 1;

18 if ( k <= p and k > l)then

19 f lag← 0; return; // v � w with regard to H;

20 else if ( k > p and k <= l)then

21 f lag← 1; return; // v ≺ w with regard to H;

22 if ( r <= ρ++[v] and r > ρ++[w])then

23 f lag← 0; return; // v � w with regard to H;

24 else if ( r > ρ++[v] and r <= ρ++[w])then

25 f lag← 1; return; // v ≺ w with regard to H;

26 else

27 f lag← 2; return; // v � w with regard to H;

28 }
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Algorithm 3: Compare two mix di f f usion outdegree sequences d+τ (Hk) and d+τ (Jk) of two nodes
v and w in H.

1 void Compare_Two_Mix_Diffusion_OutDegree_Sequences(Digraph H, Digraph N++
r [v],

Digraph N++
r [w], QueueArray d+τ (Hk), QueueArray d+τ (Jk), int & f lag)

2 {

3 d1 ← 0; d2 ← 0; m← 0; l← 1;

4 Let mix di f f usion outdegree sequence d+τ (Hk) = (d+
N++

r [v]
(V0), d+

N++
r [v]

(V1), · · · , d+
N++

r [v]
(Vs));

// Have V0 ∨V1 ∨ · · · ∨Vs = V(Hk) and Vi ∩Vj = ∅ for i 6= j, i, j = 0, 1, · · · , s;

5 Let mix di f f usion outdegree sequence d+τ (Jk) = (d+
N++

r [w]
(U0), d+

N++
r [w]

(U1), · · · , d+
N++

r [w]
(Ut));

// Have U0 ∨U1 ∨ · · · ∨Ut = V(Jk) and Ui ∩Uj = ∅ for i 6= j, i, j = 0, 1, · · · , t;

6 while ( m <= s and m <= t){ // m <= s and m <= t

7 Let the outdegree sequence d+Nr[v]
(Vm) = (d+Nr[v]

(a1), d+Nr[v]
(a2), · · · , d+Nr[v]

(aj), · · · ,
d+Nr[v]

(aλ)) in descending order;// Have Vm = {a1, a2, · · · , aλ};

8 Let the outdegree sequence d+Nr[w]
(Um) = (d+Nr[w]

(b1), d+Nr[w]
(b2), · · · , d+Nr[w]

(bj), · · · ,
d+Nr[w]

(bµ)) in descending order;// Have Um = {b1, b2, · · · , bµ};

9 while (l <= λ and l <= µ){

10 d1 ← d+Nr[v]
(al); d2 ← d+Nr[w]

(bl);

11 // Compare d1 and d2 (see Algorithm 4);

12 Compare_d1_and_d2(m, d1, d2, f lag);

13 if ( f lag == 0 or f lag == 1)then

14 return; // d+τ (Hk) 6= d+τ (Jk) with regard to H;

15 l← l + 1;

16 if ( l <= λ and l > µ)then

17 f lag← 0; return; // d+τ (Hk) > d+τ (Jk) with regard to H;

18 else if ( l > λ and l <= µ)then

19 f lag← 1; return; // d+τ (Hk) < d+τ (Jk) with regard to H;

20 m← m + 1; l← 1;

21 if ( m <= s and m > t)then

22 f lag← 0; return; // d+τ (Hk) > d+τ (Jk) with regard to H;

23 else if ( m > s and m <= t)then

24 f lag← 1; return; // d+τ (Hk) < d+τ (Jk) with regard to H;

25 else

26 f lag← 2; return; // d+τ (Hk) == d+τ (Jk) with regard to H;

27 }



Entropy 2017, 19, 79 29 of 50

Algorithm 4: Compare d1 and d2.

1 void Compare_d1_and_d2(int m, int d1, int d2, int & f lag)

2 {

3 f lag← 0;

4 if (m == 0)then

5 if (d1 < d2)then

6 f lag← 0; return;

7 else if ( d1 > d2)then

8 f lag← 1; return;

9 else

10 if (d1 > d2)then

11 f lag← 0; return;

12 else if ( d1 < d2)then

13 f lag← 1; return;

14 f lag← 2; return;

15 }

Next, our algorithm sequentially performs the following steps for the nodes of Li with i = 2, 3, 4:

1. Starting from the head of L2, our algorithm successively determines whether each node u ∈ L2

satisfies the outdegree multiplicity condition dm+
N++(Sr)

(u)= 1. If the number of vertices satisfying

condition dm+
N++(Sr)

(u)= 1 is less than 2 in L2, it puts u into MaxQ(G). If there are two nodes

vi, vj ∈ L2 satisfying condition vi � vj with respect to N++[Sr], then it continues to determine
whether vi < vj or vi ≺ vj with respect to G. If vi < vj, it rearranges the vi in front of the vj in L2

(see Algorithm 1). Otherwise, it rearranges the vi in back of the vj in L2 (see Algorithm 1).
2. Except the nodes added into MaxQ(G), it uses a queue Q to store the intermediate nodes to be

added to MaxQ(G). After performing Step 1, it sequentially determines whether or not each
node u ∈ L2 is in Q. If u is in Q and the number of nodes added into MaxQ(G) is less than 2 in the
preceding procedures, it puts u into MaxQ(G) and simultaneously deletes u from Q. Otherwise,
it inputs u into Q.

3. For L3, if the number of vertices of L2 added into MaxQ(G) is 0 and the number of vertices
satisfying condition dm+

N++(Sr)
(u)= 1 with u ∈ L3 is less than 2, it puts u into MaxQ(G).

The remaining processing steps are the same as for L2.
4. For L4, if the number of vertices of L2 and L3 added into MaxQ(G) is 0 and the number of vertices

satisfying the condition dm+
N++(Sr)

(u)= 1 with u ∈ L4 is less than 2, it puts u into MaxQ(G).
The remaining processing steps are the same as for L2.

Our algorithm uses an array MaxQ to store the nodes of MaxQ(G) and an array Q to keep the
nodes to be added to MaxQ(G) temporarily.

Experiments demonstrate that our approach is a novel way by which one can accurately calculate
MaxEm digraphs (defined in Section 2) for many types of digraphs. Figures 3–21 produced by our
software show the correctness of our software for calculating MaxEm digraphs of these digraph classes
aforementioned.
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Figure 3. The MaxEm digraphs of three digraphs G3,3,3, G4,4,4, and G1. (a) The 3× 3× 3 grid digraph
G3,3,3 with 27 nodes and 54 directed edges; (b) The MaxEm digraph of G3,3,3; (c) The 4× 4× 4 grid
digraph G4,4,4 with 64 nodes and 144 directed edges; (d) The MaxEm digraph of G4,4,4; (e) A digraph
G1 with 77 nodes and 196 directed edges; (f) The MaxEm digraph of G1.
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Figure 4. The MaxEm digraphs of three digraphs G2, G12,12, and G3. (a) A 10× 10 king digraph G2

with 100 vertices and 342 directed edges ; (b) The MaxEm digraph of G2; (c) A 12× 12 grid digraph
G12,12 with 144 nodes and 264 edges; (d) The MaxEm digraph of G12,12; (e) A wheel digraph G3 with
51 nodes and 100 directed edges; (f) The MaxEm digraph of G3.
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Figure 5. The MaxEm digraphs of G4, T1, and T2. (a) A digraph G4 with 50 nodes and 90 directed
edges; (b) The MaxEm digraph of G4; (c) A directed tree T1 with 39 nodes and 38 directed
edges; (d) The MaxEm digraph of T1; (e) A directed tree T2 with 42 nodes and 41 directed edges;
(f) The MaxEm digraph of T2.
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Figure 6. The MaxEm digraphs of three digraphs G5, G6, and G7. (a) A digraph G5 with 22 nodes and
37 directed edges; (b) The MaxEm digraph of G5; (c) A digraph G6 with 53 nodes and 80 directed edges;
(d) The MaxEm digraph of G6 ; (e) A graph G7 with 49 nodes and 78 directed edges; (f) The MaxEm
digraph of G7.
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Figure 7. The MaxEm digraphs of three digraphs G8, G9, and G10. (a) The Doyle digraph G8 with
27 nodes and 54 directed edges; (b) The MaxEm digraph of G8; (c) The Clebsch digraph G9 with
16 nodes and 40 directed edges; (d) The MaxEm digraph of G9; (e) The 4-hypercube digraph G10 with
16 nodes and 32 directed edges; (f) The MaxEm digraph of G10.
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Figure 8. The MaxEm digraphs of three digraphs G11, G12, and G13. (a) The coxeter digraph G11

with 28 nodes and 42 directed edges; (b) The MaxEm digraph of G11; (c) The Dyck digraph G12 with
32 vertices and 48 directed edges; (d) The MaxEm digraph of G12; (e) A Shrikhande digraph G13 with
16 vertices and 48 directed edges; (f) The MaxEm digraph of G13.
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Figure 9. The MaxEm digraphs of three digraphs G14, G15, and G16. (a) The 6th order cube-connected
cycle digraph G14 with 24 vertices and 36 directed edges; (b) The MaxEm digraph of G14;
(c) A triangle-replaced digraph G15 with 30 nodes and 45 directed edges; (d) The MaxEm digraph of G15;
(e) The Thomassen digraph G16 with 34 vertices and 52 directed edges; (f) The MaxEm digraph of G16.
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Figure 10. The MaxEm digraphs of three digraphs G17, G18, and G19. (a) The musical digraph G17 with
24 nodes and 60 directed edges; (b) The MaxEm digraph of G17; (c) The 12-crossed prism digraph
G18 with 24 nodes and 36 directed edges; (d) The MaxEm digraph of G18; (e) The Icosidodecahedral
digraph G19 with 30 nodes and 60 directed edges; (f) The MaxEm digraph of G19.
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Figure 11. The MaxEm digraphs of three digraphs G20, G21, and G22. (a) The 7-antiprism digraph
G20 with 14 vertices and 28 edges; (b) The MaxEm digraph of G20; (c) A fullerene digraph G21 with
24 vertices and 36 directed edges; (d) The MaxEm digraph of G21; (e) The great rhombicuboctahedron
digraph G22 with 48 vertices and 72 directed edges; (f) The MaxEm digraph of G22.
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Figure 12. The MaxEm digraphs of three digraphs G23, G24, and G25. (a) A Hamiltonian digraph G23

with 20 nodes and 30 directed edges; (b) The MaxEm digraph of G23; (c) The Folkman digraph G24

with 20 nodes and 40 directed edges; (d) The MaxEm digraph of G24; (e) The snark digraph G25 with
20 vertices and 30 directed edges; (f) The MaxEm digraph of G25.



Entropy 2017, 19, 79 40 of 50

10

9

8

7

6

5

4

3

2

1

(a)

1

2

3

4

5

6

10

7

8

9

(b)

10

9

8

7

65

4

32

1

(c)

10

1

2

3

57

8

96

4

(d)

15

14

13

11

12

10

9

8

7

6

5

4

3
21

(e)

1

14

15

12

11

4

2

3

8

13

7

6

9
105

(f)

Figure 13. The MaxEm digraphs of three digraphs K(5,5), G26, and G27. (a) The complete bipartite
digraph K(5,5) with 10 nodes and 25 directed edges; (b) The MaxEm digraph of K(5,5); (c) The triangular
digraph G26 with 10 nodes and 30 directed edges; (d) The MaxEm digraph of G26; (e) A generalized
quadrangle digraph G27 with 15 nodes and 45 directed edges; (f) The MaxEm digraph of G27.
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Figure 14. The MaxEm digraphs of three digraphs G28, G29, and G30. (a) The 6-Andrásfai digraph G28

with 17 nodes and 51 directed edges; (b) The MaxEm digraph of G28; (c) The 4-dimensional Keller
digraph G29 with 16 nodes and 46 directed edges; (d) The MaxEm digraph of G29; (e) The 6× 6 knight
digraph G30 with 36 vertices and 80 directed edges; (f) The MaxEm digraph of G30.
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Figure 15. The MaxEm digraphs of three digraphs G31, G32, and G33. (a) The Loupekine snarks digraph
G31 with 22 nodes and 33 directed edges; (b) The MaxEm digraph of G31; (c) The Errera digraph G32

with 17 nodes and 45 directed edges; (d) The MaxEm digraph of G32; (e) The Sierpinski sieve digraph
G33 with 42 nodes and 72 directed edges; (f) The MaxEm digraph of G33.
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Figure 16. The MaxEm digraphs of three digraphs G34, G35, and G36. (a) The Grinberg digraph G34

with 44 nodes and 67 directed edges; (b) The MaxEm digraph of G34; (c) A digraph G35 with 38 nodes
and 57 directed edges; (d) The MaxEm digraph of G35; (e) The Grinberg digraph G36 with 42 vertices
and 63 directed edges; (f) The MaxEm digraph of G36.
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Figure 17. The MaxEm digraphs of three digraphs G37, G38, and G39. (a) A pentagonal
icositetrahedral digraph G37 with 38 nodes and 60 directed edges; (b) The MaxEm digraph of G37;
(c) The Faulkner-Younger digraph G38 with 42 vertices and 62 directed edges; (d) The MaxEm digraph
of G38; (e) The Faulkner-Younger digraph G39 with 44 nodes and 65 directed edges; (f) The MaxEm
digraph of G39.
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Figure 18. The MaxEm digraphs of three digraphs G40, G41, and G42. (a) The Celmins Swart snarks
digraph G40 with 26 vertices and 39 directed edges; (b) The MaxEm digraph of G40; (c) The truncated
octahedron digraph G41 with 24 nodes and 36 directed edges; (d) The MaxEm digraph of G41;
(e) The Nauru digraph G42 with 24 nodes and 36 directed edges; (f) The MaxEm digraph of G42.
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Figure 19. The MaxEm digraphs of three digraphs G43, G44, and G45. (a) The Wiener-Araya digraph
G43 with 42 nodes and 67 directed edges; (b) The MaxEm digraph of G43; (c) The Zamfirescu digraph
G44 with 48 nodes and 76 directed edges; (d) The MaxEm digraph of G44; (e) The Folkman digraph G45

with 20 nodes and 40 directed edges; (f) The MaxEm digraph of G45.
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Figure 20. The MaxEm digraphs of three digraphs G46, G47, and G48. (a) The 24-cell digraph G46 with
24 nodes and 94 directed edges; (b) The MaxEm digraph of G46; (c) A disconnected graph G47 with
12 nodes and 12 directed edges; (d) The MaxEm digraph of G47; (e) A disconnected digraph G48 that has
four connected components and a total of 100 nodes and 160 directed edges; (f) The MaxEm digraph of G48.
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Figure 21. The MaxEm digraphs of three digraphs G49, G50, and G51. (a) The projective plane digraph
G49 with 26 nodes and 52 directed edges; (b) The MaxEm digraph of G49; (c) The Miyazaki digraph G50

with 40 nodes and 60 directed edges; (d) The MaxEm digraph of G50; (e) The Cubic Hypohamiltonian
digraph G51 with 44 nodes and 75 directed edges; (f) The MaxEm digraph of G51.

5. Software Implementation

Applying the principles described in the preceding sections, we have developed a set of software
tools called GraphLabel 1.0 for computing canonical labelings of Digraphs. Our development
environment includes an Intel(R) Core(TM)2 Quad CPU Q6600 @2.40GHz with 4.00 GB of RAM.
The operating system is Microsoft Windows 8.1 Professional Edition. The graphics card is an NVIDIA
GeForce 9800 GT. The display resolution is 1024× 768× 32 bits (RGB). The internal hard drive is
500 GB. The programming environment is the Microsoft Visual C++ 2012.
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The software adopts object-oriented technology to design several relevant classes including the
classes CNode, CNodeNeighbor, CEdge, CEdgeNeighbor, CGraph, and so on. A detailed description of
the software functions is outside the scope of this article. We will explain it in another paper. All the
figures presented in this paper are produced by using our software system.

We selected a digraph set to test the accuracy of our algorithms. Using our own software platform,
we randomly produced a large number of digraphs as the test cases, including Figures 3e, 5c,e and 6.
To increase the breadth and depth of our testing, we also select many test cases from the library of
benchmarks [29] and online library [30] includings Figures 3a,c, 4, 5a and 7–21.

We apply our algorithms to as many types of digraphs as possible. These digraphs shown in the
article are just a small part of tested digraphs due to the limited length of the article. Each digraph
displayed in the paper includes both the original digraph and the resulting digraph to compare entirely.

6. Conclusions and Future Work

In summary, we obtain the following conclusions: By Theorems 2–12, the paper has established a
relatively complete theoretical system for calculating the MaxEm digraphs of digraphs. Algorithms 1–4
are novel and can accurately calculate MaxEm digraphs for many types of digraphs (see Figures 3–21).
Algorithms 1–4 are also available for simple disconnected digraphs. For each node in a digraph
G, the introduction of the attribute m_NearestNode improves the accuracy of calculating canonical
labeling. Through software testing, the correctness of our algorithms is preliminarily verified.
Our method can be utilized to mine the frequent subdigraph. Besides, it offers Conjecture 1.

Of course, there are still many places we need to improve, including to prove the conjectures
proposed by us, enhance our software system, and use more test cases to test our procedures.
In particular, we need to strengthen our algorithms so that it can calculate the canonical labeling
for more types of digraphs. In future studies, we will extend our approach to mine the frequent
subdigraphs and calculate the canonical labelings of weighted graphs and digraphs.
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